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Abstract
Accuracy ossessmenf of land-cover classifications derived
from rcmote sensing data has been recognized as a valuable
tool in judging the fitness of these data for a pafticular ap-
plication. Recent research initiatives in the area of spatial'data 

accuracy and integration of remote sensing daia in geo-
graphic information systems have revived the discussion on
accuracy ossessment. This article al'ms ot contributing to this
discussion by means of a review based on a division into
positional and thematic accuracy.

An important observation is that there are a limited
number of methods for assessing data accuracy. However,
the applied definitions dffir very much from author to au-
tho4 especially rn ffte ossessm ent of thematic accuracy.

Accuracy ossessmenf mostJy yields one single measure
such os root-mean-square error or proportion of pixels cor-
rectly classified. These single measures do not give sufficient
information and they cqn be based on statistically or meth-
odologically non-valid methods. Therefore, not a single mea'
sure buf also the total process of assessing tfiese meosures
should explicitly be reported.

lntroduction
The accuracy of spatial data has been defined by the United
States Geological Survey as: "The closeness of results of ob-
servations, computations, or estimates to the true values or
the values accepted as being true" (USGS, 1990).

Accuracy assessment or validation is an important step
in the processing of remote sensing data. It determines the
value of the resulting data to a particular user, i.e., the infor-
mation value. During the last two decades, a large number of
articles has been published on accuracy assessment of land-
cover classifications. Very different approaches for validation
have been presented, usually with a particular application in
mind for the data in hand.

At present, the geographic information systems (cts) and
remote sensing communities pay more and more attention to
accuracy topics, Technological developments in the area of
data processing offer more and more possibilities. A respon-
sible use of the stored geodata is only possible if the quality
of these data is known, Furthermore, integrated processing of
different types of geodata can be performed much more re-
sponsibly if (again) the quality of the data is known.

Studies on spatial data accuracy and on errors in the in-

tegration of remote sensing data in a GIS have been initiated
by the National Center for Geographic Information Analysis
(NcctA), Their Research Initiatives 1 (Accuracy of Spatial Da-
tabases) and 12 (Integration of Remote Sensing and cts Tech-
nologies) wiII contribute to the understanding of the
magnitude and attitude of errors in remote sensing data and
how they affect accuracy (Goodchild and Gopal, 1989; Lu-
netta et aI., 1991),

In this article, a review of existing accuracy assessment
procedures for land cover classifications, derived from data
acquired by land observation satellites such as the Landsat
and spot series, will be given. Methods applied for both po-
sitional and thematic accuracy are mentioned and com-
mented on. At this point it is important to stress that there
are differences in meaning among the following three con-
cepts: precision, accuracy, and reliability. They all have a
clear meaning which is explicitly stated for both positional
and thematic characteristics. In this way, an attempt has
been made to reduce the confusion which undoubtedly ex-
ists in this field and to contribute to the ongoing discussion.

Although the word "map" can still be found in many ar-
ticles and presentations, in this article the word map should
be interpreted as "digital raster data" as derived from image
processing, The cartographic presentation of digital data is a
scientific field in itself and is not dealt with in this article.

Remote Sensing and Land Cover
Until now, land-cover and land-use data have been mainly
acquired from terrestrial surveying and visual aerial photoin-
terpretation. Photointerpretation is based on human vision
and pattern recognition capacities. Identification of terrain
objects is based on nine interpretation keys: pattern, tone,
texture, shadow, site, shape, size, association, and resolution
ffor the interested reader, a standard text on these topics
such as Avery and Berlin (1985) is recommended).

The interpretation process can be facilitated by viewing
the photographs stereoscopically. Air photointerpretation
keys also assist the interpreter by offering guidelines for the
identification of certain information classes (Lillesand and
Kiefer, 1987; p. 115). Objects are distinguished by a combi-
nation of both geometric and thematic properties. A good ex-
ample is the delineation of individual trees in a forest stand.

As a result of an interpretation process, a "representa-
tion of the world" is obtained, consisting of terrain objects
with a geometric and a thematic component. Therefore, both

L.L.F. Janssen is with DLO-Winand Staring Centre for Inte-
grated Land, Soil and Water Research, P.O, Box 725, 6700
AC Wageningen, The Netherlands.

F.J.M. van der Wel is with the University of Utrecht, Faculty
of Geographical Sciences-Cartography Section, P.O. Box
80.11.5, 3508 TC Utrecht, The Netherlands.

PE&RS

Photogrammetric Engineering & Remote Sensing,
Vol. 60, No.4, April 1994, pp. 479-426.

0099 -11.72 I I 4/6 004-4 1 9$03. 00/0
O1994 American Society for Photogrammetry

and Remote Sensing

4t9



visual photo-interpretation and terrestrial surveying are typi-
cally directed to vector based data of terrain objects describ-
ing land cover or land use.

Remote sensing is a data acquisition technique. Earth ob-
servation satellites such as Landsat and spor measure the
relative amount of electromagnetic radiation that is reflected
(and emitted) by the Earth's surface. In fact, this is a sam-
pling process dividing the Earth's surface into equal areas
called scene elements. The corresponding image representa-
tion of a scene element is known as a picture element or
pixel. The measurements of these elements in several spec-
iral bands are converted and stored in a limited numbei of
quantization levels (e.g., B- or 16-bits codeJ. The stored val-
ues are referred to as digital numbers (oN),

A remote sensing image can be characterized by an im-
age space and a feature space. The position of a pixel rep-
resented in the image space is determined by a unique row
and column index (ili. The relative spectral reflection values
(DNr, . . .,DN") can be represented in the n-dimensional fea-
ture space.

In most projects remote sensing images undergo two
transformations:

. a registration of the image coordinate system into a certain
map projection, enabling other geodata to be used; and

o a classification of the continuum of soectral data into nomi-
nal user-desired classes (the most subjective transformation),

The classification or interpretation of remote sensing images
can be performed in a visual and a digital way. Visual inter-
pretation offers more or less the same characteristics and
properties as visual photo interpretation. Until now, most
digital interpretation has been based solely on the per-pixel
multivariate data. These per-pixel classifications are limited
to the interpretation element "tone" as used in visual inter-
pretation. This limitation has two major implications:

o per-pixei classifications by definition yield spectral classes
mainly related to Iand cover, where land use is mainly deter-
mined from contextual and associative information. Campbell
(1987; p. 473) puts it as follows: "land cover designates the
visible evidence of land use, to include both vegetative and
nonvegetative features."

o per-pixel classifications yield thematic information per raster
element. When looking at a classification result, although one
can distinguish fields, for instance, it should be noted that
terrain objects as such are not explicitly stored. The raster
data derived from remote sensing should be considered as
point data that have a certain spatial extent.

Positional Accuracy
Definitions
By and large, positional accuracy of remote sensing data re-
fers to the accuracy of a geometrically rectified image. Recti-
fication includes registration to a reference coordinate system
together with a resampling procedure where in this context
the term georeferencing and geocoding are used (Irish, 1990).
Georeferencing means that a link between an image and a
reference coordinate system is established (registration). Geo-
coding implies that an image is also resampled into a new
raster format. We will use registration to indicate the geo-
metrical link between geodata stored in different coordinate
systems.

Accuracy assessment of the registration of images can
benefit from experiences already available in photogramme-
try. This discipline has led to the development of specific
measurement methods and has a characteribtic vocabularv.
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Precision relates to the exactness with which a certain coor-
dinate can be determined, for example, the explicitness of
"pointing precision," Precision depends on the method ap-
plied and the characteristics of the data. It is quantified by
giving an indication of the performance of a pirticular mea-
surement when several repetitions are required and is there-
fore usually defined in terms of standard error. Precision
does not reveal the absolute closeness to the "correct" coor-
dinate. This absolute closeness is indicated by accuracy. For
instance, if Ground Control Points (ccps) are used for regis-
tration, the accuracy is partly determined by the pointing
precision of the GCps in both the image and reference coordi-
nate system, Reliability desuibes the possibilities of statisti-
cal detection of gross and possibly systematic errors occuring
during a geometric correction (Molenaar, 1980). Internal and
external reliability refer to input and output data, respec-
tively.

Registration
In a registration, the row-column image data are related to
the coordinate system of another image data or to a particu-
Iar map projection system. This relationship can be deter-
mined in two ways:

o from the orbital parameters of the satellite, or
o by locating identical ground control points (ccrsJ in both the

image and reference coordinate system.

The latter non-parametric approach is generally accepted as
the most realistic option because the orbital geometry model
used to describe the errors is incomplete and causes geomet-
ric distortions (Mather, 1987; p. 130), The registration accu-
racy can be derived from the registration process itself
because the selection of ccps is performed in a relatively ob-
jective way.

cCPs are points that can be well identified in both the
image coordinate system (source coordinates r,il and in a ref-
erence coordinate system (reference coordinates &y). These
coordinate systems can be related by using polynomial equa-
tions. The complexity or order of these polynomials depends
on the geomehy of the image and the type of map projection.
A first-degree affine transformation is often sufficient for sat-
ellite images.

The polynomial is calculated by means of a minimiza-
tion of "the sum of squares." After determination of the opti-
mal solution, the resiiuals in both the x and y directions i6",
6") can be calculated. Then these residuals are used for accu-
racy assessment by calculating a root-mean-square (nvs) er-
ror or standard deviation. The RMS error in the x- direction is
calculated as

RMS* : 
[*;,u-,,'1'"

w-here 5., : the residual of the ith ccp and n = the number
ot GCPS.

The RMS error in the v direction is calculated similarlv
and subsequently the nrrls, and RMSy can be combined to "

yield one planimetric RMS error (nvs,oo):

R M S _ : [ R M * + R M q , ' ] 1 / 2

A statistically more sound estimation of the accuracy
would be to calculate a standard deviation. In this case the
sum of the residuals is divided by the redundancy (r) which
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depends on the degree of freedom
polynomial

f t "s-= l : )
L r  i _ 1

determined by the applied

fit2(a*,)rl

If a large number of ccps are used, then the RMS enor and
standard deviation will converge.

The meaning of the calculated accuracies can be under-
stood by constructing confidence limits. If the GCPs are inde-
pendently identified, one can construct confidence limits by
using a Gaussian approach, thereby assuming that the resid-
uals are distributed normally. An example is shown in Fig-
ure 1. The consequenses of positional uncertainty should not
be forgotten when overlay operations are performed, as with
cross tabulation or multi-temporal classification.

Accurate identification oi ccps is a prerequisite for ob-
taining an accurate registration. The derivation of these
points from maps can introduce an amount of uncertainty
because a map represents an idealization and generalization
of "reality." To eliminate this uncertainty, Global Positioning
System (cns) techniques could be used. Nevertheless, the
surplus value of these techniques for a more precise identifi-
cation is bound by the GCPs determined from the remote
sensing image. The identification possibilities are Iargely de-
termined by the spatial resolution of the applied scanner.

The residuals calculated in the registration can be used
for statistical testing. Buiten (1988) presented a variance-ratio
and data-snooping test. In the variance-ratio test the esti-
mated variances of the total number of ccps in the x- and y-
direction are tested against an a priori variance. This a priori
variance is determined by the identification, digitization, and
source accuracy of the GCps. The variance-ratio test evaluates
the hypothesis that the transformation model is relevant and
that no gross errors are introduced during the selection of
GCPs. If the hypothesis is rejected, the data-snooping test
evaluates the error for every single GCP.

Resampling
The registration process has been explained in the previous
section. After registration, the image can be combined with
other geo-information. Most often, the image is also resam-
pled into a new grid that corresponds to the x- and y-axis of
the chosen reference coordinate system.

Resampling can be performed for original spectral data
as well as for classified (nominal) data. There are three re-
sampling methods currently being used: nearest neighbor,
bilinear interpolation, and cubic convolution. The applied
resampling method should correspond to the character of the
data (continue or nominal) and the relationship of the origi-
nal to the resulting pixel size. Subsampling (resampled pixel
size smaller than original size) can give a future user wrong
ideas about the soatial resolution.

Resampling of spectral data, however, also means a
transformation of the feature space. Assumptions concerning
normal distribution of spectral classes should be checked
when spectral data are subsampled and subsequently classi-
fied. Smith and Kovalick (1985) compared the effects that
different resampling techniques have on classification re-
sults. They concluded that it does not make much difference
if nearest neighbor is performed before or after classification.

Observations and recommendations
The registration of satellite images is relatively straightfor-
ward. Positional accuracv defines the relationshio between
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Xtr$ Xp Xp*s(m)

Figure 1. The coordi-
nates for a geocoded
pixel are (Xp,Yp); the
pixel size is 30 by 30
m2. Registration
yielded standard devia-
tions of s, : 18 m
and sy : 23 m. The
hatched Dart indicates
the positions to which
the oixel center
(Xp,Yp; refers (confi-
dence level 95 per-
cent).

the registered image and the applied source data (map). The
spatial resolution of the present Iand observation satellites
circumscribes the identification precision of ccps and there-
fore the potential registration accuracy.

Preferably, a registered image should be Iabeled with in-
formation on the following items: source of reference cCPs,
number of ccps, type of transformation, RMs error or stan-
dard deviation, and, if necessary, resampling method.

Thematic Accuracy
Definitions
Thematic accuracy refers to the non-positional characteristics
of a spatial data entity, the so-called attributes (Chrisman,
1987). If the attribute permits some classification, this kind
of accuracy is often termed classification accuracy (Hord and
Brooner, 1976). In remote sensing classifications, this accu-
racy refers to the correspondence between the class label as-
signed to a pixel and the "true" class, The true class can be
observed in the field directly or indirectly; for example, from
a reference map,

Aronoff (1989) is right to emphasize the statistical mean-
ing of accuracy. Consequently, he defines classification accu-
racy as: "... the probability that the class assigned to a
location on the map is the class that would be found at that
location in the field .., ." Story and Congalton (1986) refer to
this accuracy as "user's accuracy" ot reliability, being a mea-
sure of the value of a map for a particular user,

Attribute precision is a somewhat less known quality of
spatial data and, therefore, it deserves some attention. Al-
though Aronoff (1989) considers precision to be a component
of positional accuracy, attribute precision refers to the re-
peatability of class assignments, i.e., the agreement of a se-
ries of repeated identifications of the same entity. In this
sense, automatic clustering (applying one parameter-set)
would yield a very precise classification result. In fact, "un-
certainty" might be a better name for the quality that Aronoff
distinguishes; if detail increases, the possibility of errors oc-
curring increases too, meaning more uncertain data,



Classified
Reference Data

Fgure 2, The error matrlx in a lay-out as presented by
Story and Congalton (1986). Numbers in the matrix
represent numbers of pixels. For each class the correct
percentage is added.

Data X z Row total Sorrect ("/")

X i::.?{l:!rii2 4 30 80

6 iiirSiii I 60 75

z 3 5 52 60 87

Column total 33 52 65 't50

Campbell (1987) defines attribute precision as "detail,"
or the number of classes identified durine a classification
procedure, It refers to the generalization ievel of the classifi-
cation, According to this definition, precision refers to only
one observation. However, the generally accepted meaning of
precision is related to the performance of a method (repeata-
bility), indicating the involvement of more observationi.

Methods Applied
The assessment of positional accuracy is based on analysis of
the residuals calculated in a registration. Likewise, the the-
matic accuracy of a classification could be based on the Eu-
clidian or statistical distances calculated in the classification
itself. However, the training stage in classification is very
subjective compared to the identification of ground control
points. Therefore, the distances calculated in a classification
cannot be considered independent and useful for accuracy
assessment.

Thematic accuracy is most often assessed by evaluating a
sample population of the classification result, The sample
should be taken randomly. In practice, however, due to time
and money constraints, random sampling proves to be a
problem, The classes that are determined by classification of
a remote sensilg image are compared to reference data origi-
nating from field survey, aerial photographs, or other digital
geodata. Comparison is made by establishing an "error ma-
trix," which yields information on the accuracy of individual
classes as well as the accuracy of the classification as a
whole. Congalton (1991) givei a review of methods for com-
parison of error matrices.

Sarrpr,rNc AND FrELD Sunvny
The sample to be drawn consists of a number of sampling
units. These sampling units can be points, lines, or areas,
The choice of the sampling unit is very important. For exam-
ple, areas are often used to evaluate land-cover "map" accu-
racy (Dicks and Lo, 1990). We would like to stress that
remote sensing data should be considered to be "point-sam-
pled" data, in which the points possess a certain spatial ex-
tent. From a theoretical point of view, individual pixels are
the most appropriate sampling units if a per-pixel classifica-
tion is performed. In some cases, e.g., when applying spatial
smoothing, a cluster-based sampling is most appropriate
(Todd and Gehring, 1980). Poor accessibility of the terrain
and limited budgets may also result in the application of
cluster-based sampling.

Preferably, stratified sampling should be used and
should be based on the distinguished classes. In practice,
there is often a time lapse between the acquisition date and
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the classification date, In these cases, onlv a spatial random
distribution can be used for sampling as ii cannot be based
on the distribution of the individual classes.

One has to decide whether or not to incorporate posi-
tional uncertainty in the field survey and subsequent cross-
tabulation of the reference and classified data. If one wants
to make a clear distinction between positional and thematic
accuracy, positional uncertainty shoirld be taken into ac-
count. This can be achieved by involving the contextual in-
formation in the identification of the true land-cover tvpe of
a pixel.

Without departing from the subject, it must be stated
that "truth" has a certain subjective dimension. A remote
sensing image is initially classified into spectral classes (land
cover), Of course, one can compare this result with geodata
based on land use (functionality) but at the same time it can
be expected that the remote sensing classification will yield
bad results.

Congalton (1988) stresses the importance of the deci-
sions made in the sampling procedure, After all, it is as-
sumed that these determine the value of the derived
accuracy as representative estimates of the accuracy of the
entire area under consideration. For a thorouqh discussion
on sampling techniques, readers are referred io Cochran
(7s77).

Ennon Mermx
The comparison or cross-tabulation of the classified land
cover to the actual Iand cover revealed by the sample sites
results in an error matrix, confusion matiix, contingency ta-
b1e (Story and Congalton, 1986), evaluation mofrir(Aronoff,
1984), or misclassification matrix (Chrisman, 1991). We will
use "error matrix" to indicate the summarized samnle re-
sults. Different measures and statistics can be derived from
the values in an error matrix. In this article, several ap-
proaches will be examined. The non-statistical measuies are
described in this section, while procedures based on the bi-
nomial distribution and those based on coefficients of asree-
ment are described in the previous sections.

Although the matrix ii simple in itself, there rs some
confusion regarding the "lay-out." This might seem rather
trivial, but the consequences can be considerable: different
meanings of rows and columns in matrices undoubtedly ob-
struct a straightforward interpretation. C/ossty'ed (Story and
Congalton, 1986; Mather, 7987), predicted (Hay, 1979), eval-
uoted (Campbell, 1987), interpreted (Van Genderen et al,,
1978), or obserued (Aronoff, 19BZb) data all indicate the
same concept. Similarly, do reference (Congalton ef a/., 1983;
Story and Congalton, 7986), verified (Aronoff, 19S2b), identi-
fied (Hay, 7979), known {Lillesand and Kiefer, 7987), or true
(Card, 1982) data or class. Curran (1985) and Aronoff (1982b)
even use the identical term (observefl to indicate reference
and classified data, respectivelyl The lay-out presented by
Story and Congalton (1986) in their description of the erior
matrix will be adopted here (Figure 2).

Once the error matrix is established, a number of accu-
racy measures can be derived. Again, authors use various
terms for the same error type. Most important is the meaning
of the calculated measure. The Proportion of pixels Conectly
Classified (rcc) (Veregin, 1989) is calculated by dividing the
number of correctly classified samples positioned at the, di-
agonal of the matrix (Figure 2) by the total number of pixels
checked. This value is a measure of the classification as a
whole. The PCC calculated from Figure 2 is (24 + 45 + 52)
divided by 150 equals 81 percent.
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Different measures of individual classes can be calcu-
lated using two approaches:

user's and producer's accuracy (Story and Congalton, 1986),
ano
errors of omission and commission,

The user's accuracy, calculated as the number of conectly
classified samples divided by the row total, provides the user
information about the accuracy of the land-cover data, A
user's accuracy of B0 percent for class X means that B0 per-
cent of the pixels classified as X are X in reality. Then, the
accuracy based on the sampled pixels is representative of the
total classification result. User's accuracy is sometimes called
"reliability."

Dividing the number of correctly classified samples by
the column total yields the producer's accuracy: it indicates
the percentage of samples of a certain (reference) class that
were correctly classified. There are many examples of remote
sensing studies in which these accuracies have been calcu-
Iated (e.g., Prisley and Smith, 1987; Felix and Binney, 1989).
Because both the user's and producer's accuracy can be of
interest for a certain user of the data, these terms are deceiv-
ing. Therefore, it seems favorable to express thematic accu-
racy in terms of "error of omission" and "error of
commission."

In Figure 3, it is explained how errors of omission and
commission are calculated. Erors of omission refer to the
samples of a certain class of the reference data that were not
classified as such. Errors of commission refer to the samples
of a certain class of the classified data that were wrongly
classified, Both types of errors are very important in the iter-
ative training stage because they indicate which categories
have unrepresentative distributions. Campbell (1987J gives a
rather extended explanation of the error matrix, but unfortu-
nately he does not set a good example; he calculates the er-
rors of commission by using the total number of samples
from the reference instead of those from the classificationl

As can be deduced from the above descriptions, the fol-
Iowing relationships are valid:

. user's accuracy (%) = 100 yo - effor of commission (o/oJ
o producer's accuracy (%j : 100 lo - enor of omission (o/o)

Pnocrnunrs Ba,snn oN THE BrNoMrAr, Drsrmnutrorv
In the previous section, the figures calculated are often taken
as representative of the total classification result. If appropri-
ate sampling is performed, confidence limits can be deter-
mined and hypothesis testing can be carried out. The
statistics can be calculated for both the individual categories
and the classification as a whole. The examples in this sec-
tion are based on the error matrix presented (Figure 2).

Some accuracy assessment methods use the binomial
distribution as an approximation to the hypergeometric dis-
tribution, which is exact for finite populations {the number
of pixels is always finite). The binomial model distinguishes
between correct and incorrect samples (e.g., Davis, 1986). Bi-
nomial probabilities can be calculated either from the binom-
ial probibility density function itself, or derived from the
normal approximation (Aronoff, 1982a).

Confidence Limits
Confidence intervals can be calculated for the PCC from the
sample size n, the number of correct classifications k, and
significance level a, The 95 percent confidence interval for
the PCC can be read from binomial nomograms as given in
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statistical handbooks, or calculated using the exact binomial
distribution. The upper and lower limit for the Pcc are 73,4
percent and 86.7 percent, respectively, for n = 750, k : 121,
and a :  0 .05.

In addition to the disoete binomial distribution, the
continuous normal approximation to the binomial has also
been used to calculate confidence Iimits of the estimated -
population - accuracy, Rosenfield and Melley (1980) describe
the correction required for this adjustment. This approxima-
tion is valid if the sample sizes are large; this prerequisite is
not always satisfied, as Ginevan (1979) noted, referring to
Hord and Brooner (1976). The latter describe a procedure by
which the 95 percent confidence interval can be derived,
given the sample size and PCC, and suggest that only the
Iower limit be used. Using Hord and Brooner's approach, one
would find a lower and upper limit for the Pcc of 73.9 per-
cent and 86.5 percent, respectively, for n : t l l , k : t21',
and a :  0 ,05.

The PCC confidence limits assessment shows that the
calculated PCC is the center of an interval in which the ac-
tual Pcc can be found with 1 - a confidence.

Hypothesis Testing
For some applications, the classification result should have a
minimum PcC. In these cases, hypothesis testing is most ap-
propriate. Hypothesis testing of a predetermined accuracy is
generally applied in quality control. Acceptance sampling is
a topic of quality control. The advantage of the acceptance
sampling approach is that the minimum sample size can be
determined if risks and predetermined accuracy are defined.
For a comprehensive treatise on topics on statistical quality
control in general and acceptance sampling in particular, see
Grant and Leavenworth (1988).

In hypothesis testing, the following parameters have to
be defined:

o null (Ho) and alternative (H.) hypothesis, and
o si8nificance level a.

The significance level defines the possibility of wrongly re-
jecting Ho (type I error). Optionally, the power of the test (1
B) can be defined as the possibility of wrongly accepting Ho
(type II error) for situations that are valid under Hr.

It should be realized that there is a certain asymmetry in
testing. Ho is accepted unless it is significantly proven that it
should be rejected. This mechanism is shown in the next

Reference Data

Figure 3. The derivation of errors of omission and commis-
sion from the error matrix. For class X the error of com-
mission is calculated as (a+b)/c and the error of omission
is calculated as (d + e)/f, Multiplication by 100 yields per-
centages.



two tests, both of which could be used to test a minimum
required accuracy of B0 percent:

Test Definition 1:
Ho: classification accuracy > : BO o/o
Hr: classification accuracy < BO yo

under the conditions of a : 0.05 and n : 150. The binomial
distribution can be used to calculate the critical values: the
outcomes of k that reject Ho. For this situation the critical
values are in the interval [0,111].

Test Definition 2:
Ho: classification accuracy < BOyo
Hr: classification accuracy > BOYI

under the conditions of. o. : 0.05 and n : 1b0. For this situ-
ation the critical values are in the interval [129,150].

If a person that ordered a remote sensing classification
wishes to get a result with a minimum accuracy, the second
test definition is the most effective. Then, the burden of evi-
dence is on the producer of the data to prove that the accu-
racy is at Ieast B0 percent.

In general, the terms consumer's and producer's risk
are used to indicate a and B, respectively. Obviously, the
consumer's risk defines the risk of wrongly accepting Ho,
which has the largest consequences for the consumer. Note
that the terms producer's and consumer's risk have a com-
pletely different meaning than do producer's and user's oc-
curacy.

Ginevan (1979) used the binomial probability density
function in an acceptance sampling procedure to calculate
the optimal sample size before actual sampling, thereby min-
imizing the field survey. Ginevan's approach is the follow-
ing: if the required accuracy and a and p are defined, the
optimal sample size n in combination with the maximum al-
lowable misclassifications can be calculated. Given a re-
quired accuracy of 85 percent, a consumer's risk of 0,05, and
a producer's risk of 0.043 (for a classification with an actual
accuracy of g5 percent), the optimal sample size is 93 with a
maximum ailowed number of misclassifications of B. Using
the same table, the optimal sample size of a classification
with an actual accuracy of 90 percent (same consumer's
risk), the optimal sample size *ould be much larger than
400. Minimizing the producer's risk can be clearly balanced
against the number of samples and the related field survey.
Because Ginevan {1979J did not present a table for a required
accuracy of B0 percent, it is impossible for us to elaborate
this approach on our example.

Aronoff (1982a) considered the procedure worked out
by Ginevan (1979) as statistically valid and emphasized the
importance of including both consumer's and producer's
risks in an accuracy assessment procedure. In fact, both
risks should be minimal, which is diff icult because of their
interdependency; a smaller producer's risk can be obtained
by increasing the consumer's risk or increasing the sample
size,

Aronoff (1985) introduced the minimum accuracy value.
During an accuracy test, instead of rejecting a classification
as insufficiently accurate, the highest accuracy for which the
number of misclassifications would indeed pass the test can
be assessed. Aronoffs approach is the following: given a re-
quired accuracy of B0 percent and a consumer's risk of 0.05,
we would find that our example (n : 150 and 29 misclassi-
fications, Figure 2) does not pass the test. At the same time,
it can be found that the minimum accuracy is 74.0 percent
and that the producer's risk is 0.04 for a classificati6n with
an actual accuracy of 90 percent, The minimum accuracy
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value is a useful index for comparing accuracy tests with dif-
ferent sample sizes.

Cornnrcrrrurs or Acnnrunxt
The measures described in previous sections reflect the
closeness of the result compared to the truth. Another objec-
tive of accuracy assessment can be to compare different clas-
sification results to test the effectiveness of a certain
classifier or the ancillary data applied. pCC values cannot be
compared in a straightforward way and therefore other meth-
ods are described. A solution would be to normalize the er-
ror matrices (Congalton ef o1., 1983).

Another approach is to calculate the Kappa-coefficient,
which may be used to compare different classification meth-
ods that are based on the same data (Congalton and Mead,
1983; Congalton et a1., 1983). Congalton et o/. (1983) intro-
duced the Kappa-coefficient of agreement as an accuracy mea-
sure for remote sensing classifications. Kappa takes the chance
agreement into account; as stated by Campbell (1987), Kappa:
",.. adjusts the percentage conect measure by subtracting the
estimated contribution of chance agreement ... ."

The Kappa-coefficient for the error matrix in Figure 2 re-
sults in a value of 0,70. This implies that the accuracv of the
classification is 70 percent bettei than the accuracy that
would result from a random assignment. Calculation of
Kappa involves the complete error matrix, including infor-
mation concerning errors of omission and commission. The
exact formulation is decribed by Hudson and Ramm (7987).
Rosenfield and Fitzpatrick-Lins (1986) suggest using Kappa
as a sort of standard measure of accuracv for thematic classi-
fications as a whole and propose a coefficient of conditional
Kappa for individual classes.

0bseruations and Recommendations
Especially in the assessment of thematic accuracy, we found
the terminology for error matrices, the derived types of error,
and the risks in hypothesis testing to be abundant. We think
that some standardization would be favorable.

If the error matrix is based on simple random sampling
of individual pixels, there are appropriate techniques, using
the binomial distribution, for determination of confidence
limits, hypothesis testing, or determination of the optimal
sample size, However, in a large number of remote sensing
studies, we discovered that no appropriate random sampling
had been applied or that the per-pixel classification results 

-

were compared to a database consisting of polygons. In the
latter case, point observations were compared to an interpre-
tation result that had been derived by genemlization and
idealization of the truth. It is not alwavs fullv understood
that this approach conceptually differi very inuch from point
sampling. Therefore, more attention should be given to the
characteristics of the method of sampling and its effect on
estimated accuracy.

Due to a number of reasons. accuracv assessment of the-
matic data differs from project to project. Therefore, it is im-
portant to give ample information-on the complete validation
procedure. An answer should be given to the following ques-
tions:

o which sarnpling strategy and which type of sampling units
were chosen ?

o is the positional uncertainty of remote sensing and reference
data taken into account?
and

o which error measures were calculated, which assumntion
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were made, and to what extent can they be held representa-
tive for the classification result as a whole?

Concluding Remarks
A large number of methods and definitions are used to des-
cibe the accuracy of land-cover data derived from remote
sensing data. Moreover, different methods have been devel-
oped for positional and thematic accuracy assesment because
registration and classification are completely independent,

The registration accuracy of satellite images can be based
on the residuals that were calculated during the registration.
Because of the relatively objective identification of ccps, the
residuals are suitable for this purpose. Although registration
can be more difficult for relieved terrains, the selection of
ccPs is rather objective and measures can be calculated from
the registration process itself.

The assessment of thematic accuracy is much more com-
plex. The training stage in a classification is very subjective.
Therefore, the distance measures as calculated during the
classification cannot be used for accuracy assessment. Be-
cause of this, thematic accuracy should be assessed by com-
paring a sample of the classification result with reference
data. In this article we suggested that results of a per-pixel
classification should be considered as point classifications,
and that validation should preferably be based on the sam-
pling of individual pixels. Because of the abundance of terms
in remote sensing literature on the subject of thematic accu-
racy, the meaning of the terms applied should be explicit.
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