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Abstract
Error propagation modeling in layer-based Gts is based on
explicit mathematical modeJs representrng the mechonisms
whereby errors in source layers are modified by GIS data
transformation functions. For many c,lasses of data transfor-
mation functions, however, Iittle is cunentlv known about
errot piopagation mechanisms. Srmulation'modeling is an
attro.ctive o.Iternative in such coses, cs it con be applied
whether or not a formal euor model has been developed.
However, due to its computationally intensive character,
simulation modeling is not practical in the rcalm of applied
GIS, and tlrus serves primarily as a soutce of informal, anec'
dotal information about the dangers inherent in GlS-bosed
spatial analysis when input data are of imperfect quality.
This paper explores a methodologr for enhancing the utility
of the information derived from simulation modeling for as-
sessing the quality of cts derived data. The methodologt is
based on the integration of simulation modeling and error
propagation. Using the buffer operation as an example, sim-
ulation modeling js used to derive a formal mathematical
expression describing how enor is propagated through the
operation from the soutce layer to the derived buffer. This
expression is based on information about the source layer
that is relatively easy to obtain, and can be used in an ap-
plied environment to estimate derived buffer accuracy with-
out the need to perform sensitivity analysis.

Introduction
Error propagation modeling in a cls focuses on the dynamic
processes whereby errors in source data are modified by cls
data transformation functions and then passed to derived
data. Due to the importance of issues of database accuracy
and quality assurance for Gts-based spatial analysis, error
propagation has long been a subject of concern in the GIS re-
search community. However, it has only been relatively re-
cently that researchers have been able to construct automated
systems to perform error propagation in real-time for selected
subsets of data transformation functions (e.g., Heuvelink ef
o/., 19Bg; Lanter and Veregin, 1990; Carver, 1991J. This is a
reflection of the complexity of emor propagation modeling in
a cls context and the lack of theoretical knowledge about er-
ror propagation mechanisms for all but the slimmest collec-
tion of data transformation functions.

Error propagation modeling involves the application of
formal mathematical models that describe the mechanisms
whereby specific types of source errors are modified by par-
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ticular data transformation functions. Error models have been
derived from statistical theory applied to error analysis (e.g.,
Taylor, 1982; Burrough, 1986), probabil ity theory (Newcomer
and Szajgin, 1984; Veregin, 1989a), and approximation by
Taylor series expansion (Heuvelink et aL.,1989; Wesseiing
and Heuvelink, 1991). For many classes of Gls data transfor-
mation functions, however, little is known about the theory
of error propagation, and error propagation models corre-
sponding to these functions remain to be developed. Despite
fgreat deal of research into the issue of database accuracy
(see Veregin, 198gb), error propagation mechanisms are not
well-understood for all but a handful of Gts data transforma-
tion functions. Formal specification of error propagation
functions in a cls applications environment is also problem-
atic given the difficulty of meeting the controlled conditions
that are often assumed to exist in the theoretical realm.

Given such limitations, alternatives to formal error prop-
agation modeling have received considerable attention in the
literature. One such alternative is Monte Carlo simulation
modeling. This method is based on random introduction of
error into source data to create a set of "realizations" reflect-
ing some assumptions about the nature and level of error
present. These realizations are then passed through a partic-
ular sequence of data transformation functions multiple
times to compute summary statistics for a particular set of
assumptions about the nature and level of error' Simulation
modeling has been used to examine the effects of errors in
suitabil ity analysis procedures (Lodwick, 1989), classification
methods (Goodchild and Wang, 1989), land valuation based
on land use and soil information (Fisher, 1991a), and
viewshed calculations from digital elevation models (Fisher,
1991b;  F isher ,  1992).

Unfortunately, while the results of simulation modeling
are often of great practical importance, the technique itself
has limited utility in an applied cls environment. The tech-
nique is often too computationally intensive to be practical
as a means of assessing derived data quality when human,
computer, and financial resources are limited. Simulation
mod-eling therefore serves primarily as a source of informal,
anecdotal evidence about the errors that might result from
the application of a particular data transformation function
when source data are of imperfect quality. One unfortunate
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Figure 1. Cartographic model to
identi! areas in which wildfowl
habitat is at risk from agricul-
ture.
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a GIS database as "objects" (Moellering, 1.992). These objects
acquire meaning once they have been attributed with the-
matic information, or "attributes." An attribute value is a
measurement of a specific attribute for a particular object in
a database. Through the association of attributes with objects,
a database achieves a representation of the multiplicity of re-
Iations among real-world entities. However, the attributes
stored in a database necessarily represent only a small subset
of the attributes associated with the corresponding real-world
entities. Any cIS database is therefore an abstraction of the
real world, an incomplete generalization designed for some
specific purpose.

A cts database may be organized following a variety of
models, Among the more common models are

. Least Common Geographical Units (Lccus) or Integrated Ter-
rain Units (lrus),

o obiects, and
. Iayers (Lanter, 1992).

LCGU-based models collapse all geographical data into a sin-
gle integrated record. Object-oriented models define individ-
ual features and their associated attributes as semantically
meaningful objects with inheritable properties (Lanter, 1992)'
In layer-based approaches, data are organized in a set of co-
registered thematic map separations known as "layers." Each
layer is a collection of objects and the corresponding values
for a selected attribute. Co-registered layers have the same
spatial and temporal coordinates; only their thematic content
varies. Alternatively, space and theme may be held constant
while time varies, as in databases constructed for performing
change detection.

The layer-based model is the basis for a formal method
of representing data transformations in GIS, known as "carto-
graphic modeling" (Tomlin and Berry, 1979; Tomlin, 1990).
A cartographic model depicts a flow of data from source lay-
ers through derived layers for a specific sequence of cts data
transformation functions. The data transformation functions
and source Iayers used to produce a given derived layer ef-
fectively define the meaning of that layer in the context of
the database. A cartographic model is thus a representation
of a transformation of selected components of a database in
order to make explicit a set of relationships that are implicit
in the data encoded in the source layers (Lanter, 1992).

Figure 1 shows a cartographic model for a simple GIS ap-
plication designed to identify areas in which wildfowl habi-
tats are at risk from agricultural activity. These areas are
delineated as Iocations that meet the following two criteria:

. they are classified as agricultural land, and
o they are in close proximity to water (a surrogate for wildfowl

habitatl.

The cartographic model depicted in Figure 1 can also be rep-
resented as nested set of data transformation functions, i.e.,

ArRisk : Intersect (Reclassify (LondUseJ, Bujter (vetlonds))

This functional form represents the propagation of data
through a sequence of data transformation functions, such
that the final derived layer (AtRisk) depends only on the two
source layers (LondUse and ve[onds). This facilitates error
propagation modeling, as described below. (Note that the la-
bels used to designate the GIS data transformation functions
in this example are generic. The exact implementation of this
example would depend on the specific characteristics of the
system that was employed.)

Error propagation in layer-based GIS exactly mirrors the
process of data propagation depicted in the functional repre-

implication is that the knowledge gained from simulation
*odeli.tg is probably not being applied in a way that maxi-
mizes itJ utility or significantly enhances the quality of the
results of cts-based spatial analysis.

This paper explores a methodology for enhancing tlre
utility of fne intormation derived from simulation mo-deling
for aisessing the quality of cts derived data' The methodol-
ogy is based on thi integration of simulation modeling with
aTormal error propagation paradigm in the context of the
buffer (or proximityloperation. The buffer operation involves
the delineition of a geometric zone of. specified width
around a set of input features.

The operation is frequently applied in GtS-based spatial
analysis involving site selection, suitability analysis, and-en-
vironmental modeling (Star and Estes, 1990). In this study, -
simulation modeling is used to derive a formal mathematical
expression describing how error is propagated through the
buTfer operation from the source data to the derived buffer.
This expression can then be used to estimate buffer accuracy
directlabased on characteristics of the input data-and pa-
rameters defining how the buffer operation is applied.

Error Propagation Modeling in Layer-Based GIS
Error propigalion modeling in layer-based cts is based on a
formalism often referred to as the "geographic data matrix."
According to this formalism, geographical data are defined in
terms of three domains -- space, time, and theme -- such that
any observation can be located in a three-dimensional coor-
dinate system based on its spatial, temporal, and thematic
coordinites (Berry, 1964). By convention, the spatial domain
is decomposed into horizontal dimensions (usually denoted
by 'x and y'') and a vertical dimension (usually denoted by
"2"). Time (usually denoted by "t") and theme are conven-
tionally referred to as the "aspatial" domains'

Geographical features are real-world entities encoded in
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sentation above. In error propagation, each layer is replaced
with an accuracy index value corresponding to the layer, and
each data transformation function is replaced with a iorre-
sponding error propagation function thit models the mecha-
nisms whereby the accuracy index is modified by the data
transformation function. Any error propagation function is,
therefore, specific to

o a particular accuracy index, and
o a particular data transformation function.

In many cases, it may also be important to consider factors
such-as the spatial distribution of error or the degree to
which errors on different data layers coincide (Lanter and
Veregin, 1992), because etror propagation models do not typ-
ically emulate error propagation mechanisms perfectly.

Integration of Simulation Modeling and Error
Propagation
The main limitation of the error propagation paradigm de-
scribed above is the lack of theoretiial"kno*lbdge oi rr.o.
propagation mechanisms for all but the slimmest subset of
GIS data transformation functions. As noted above, systems
that have been built to perform euor propagation in ieal time
are able to accommodate only a limited number of data
transformation functions and rely on simplifying assump-
tions about the mechanisms of error propagation. This basic
deficiency in knowledge reflects the complexity of error
measurement and propagation in a cIS context. Given this
limitation, alternatives to formal error propagation modeling
have received considerable attention iri the fterature. Mont6
Carlo simulation modeling is one such alternative. Its main
attraction lies in the fact that it can be universally applied to
any data transformation function, whether or not a formal er-
ror model has been developed for that function (Openshaw,
19BS l .

Simulation modeling involves six basic steps, as detailed
below.

Step 1. Make assumptions regarding error characteristics
(e.9., error type, level, spatial distribution, etc.) for the source
layer,

Step 2. Randomly introduce error into the source layer
based on the error characteristics assumed to exist for that
Iayer. A source layer perturbed in this way represents a "re-
alization" of the error characteristics assumed to exist for
that layer.

Step 3. Apply a GIS data transformation function, or a se-
1l'ence of such functions, to the perturbed source Iayer to
obtain a desired derived layer.

Step 4. Compare the derived layer to a "reference" layer
derived from an unperturbed source.

Step 5. Repeat Steps 2, 3, and 4, M times. The value of
M depends on the data, error characteristics, and spatial data
transformation functions under consideration.

Step 6. Compute statistics summarizing the characteris-
tics of the errors present in the set of M derived layers.

These statistics contain information about the net effects
of applying the particular data transformation functions to
input data with the assumed error characteristics.

Like error propagation modeling, simulation modeling is
concerned with the implications of source errors for the
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quality of the data derived through the application of cls
data transformation functions. However, simulation modeling
is typically too computationally intensive to permit the accu-
racy of derived data to be assessed in real time. This study
demonstrates that the utility of simulation modeling can be
enhanced through its integration with a formal error model-
ing paradigm. This integration is achieved through the deri-
vation of emnirical relationships from simulation model
results. These relationships are then used to estimate output
accuracy directly based on characteristics of the input data
and the GIS data transformation function under considera-
tion.

This study uses the buffer operation as an example to
document the manner in which simulation modeling and er-
ror propagation can be integrated. A simulation-based ap-
proach is used to derive a mathematical expression
describing how error is propagated through the buffer opera-
tion. This expression is then used to obtain an estimate of
buffer accuracy for a simple GIS application based on charac-
teristics of the input data. Although the primary purpose of
this paper is to describe and document how empirical rela-
tionshi-ps derived from simulation modeling may be used to
define error propagation functions, readers may also be inter-
ested in the empirical results themselves, and their implica-
tions for data quality and error propagation in the context of
the buffer operation.

Propagation of Error in the Butler Operation
The buffer operation is a basic cIS data transformation
function in which a buffer of some specified width is de-
lineated around a set of features in an inout laver. The
buffer consists of the set of locations for which the dis-
tance from the set of features is no greater than some speci-
fied distance threshold. The buffer operation mav be
applied to either raster or vector data. For vectoidata, the
buffer is a geometric object encompassing the set of loca-
tions within the distance threshold. For raster data, the
buffer comprises the set of cells within the distance thresh-
old from a set of "feature cells" that define the features
around which the buffer is to be generated.

Error propagation for the buffer operation is often as-
sumed to refer to the conseouences of errors in feature loca-
tions. This is consistent with the vector reDresentation of a
buffer as a geometric object. However, theriratic error is rele-
vant in the context of the buffer operation, particularly for
that class of geographical data for which the spatial compo-
nent (feature location) is a function of the thematic compo-
nent (categorical attribute value). This class of data, often
encountered in environmental modeling applications, is
sometimes refened to as "area class data" (Chrisman, 1989;
Goodchild and Dubuc, 1987). Such data are often derived in
remote sensing using image classification methods that iden-
tify nominal cover t1pes based on pixel reflectance values.
Cover type "polygons" can be defined as groups of contig-
uous pixels with the same cover type assignment. If the
cover type assignments change, the locations of the bounda-
ries between polygons also change. This class of data is dis-
tinct from another major class of geographical data for which
polygon boundary locations are defined a priori as the basis
for sampling and data collection (e.g., census tracts).

This study focuses on the propagation of thematic error
through the buffer operation for area class data. The study
employs raster data in the simulation modeling procedures,
due to the amenability of raster data to the measurement of
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Figure 2. Representation of the
buffer operation.

thematic error. A representation of the buffer operation for
raster data is shown in Figure 2, The techniques described in
the study are not generally applicable to vector data. Mea-
sures of error that are integral to the application of the simu-
Iation model (e,g., the particular error index used, the
definitions given for feature geometry, and the spatial distri-
bution of error) are poorly-defined in the case of vector data.
The buffer operation is also qualitatively different for vector
data, as it involves explicit geometrical identification of the
features around which buffers are constructed. The study
also assumes that buffer size is a constant value for any
layer, rather than a variable quantity related to the nature of
the features to be buffered (e,g., class of road or stream).

Thematic error, as defined here, refers to an incorrect as-
signment of an attribute value to a cell in a raster layer. Two
kinds of thematic errors affect error propagation for the
buffer operation:

c Error of Omission. This corresponds to a situation in which a
cell that actually is an element of the set of features around
which the buffer is to be generated has been assigned a value
indicating that it is not a member of this set.

. Error of Commission This corresponds to a situation in
which a cell has been assigned a value indicating that it is a
membei of the set of features around which the buffer is to be
generated, when in fact the cel] is not a member of this set.

Propagation of error through the buffer operation is de-
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picted in Figures 3 and 4. Each of the rectangies in these fig-
ures represents a layer, while the shaded areas on each layer
represent features. The rows of layers depict buffers of in-
creasing size (i.e,, increasing distance threshold). The first
column (labeled "actual") represents the true Iocation of fea-
tures, which in practice will be unknown. The second col-
umn (labeled "estimated") represents the location of features
as denicted in the database. This second column contains er-
rors, *hich are shown in the third column (labeled "errors").
The relative accuracy of the buffer for any given buffer size
is easily interpreted in terms of the number of error cells.

Figure 3 depicts the propagation of errors of omission.
For any given buffer size, a portion of the actual buffer is
missing due to incomplete specification of the set of features
around which the buffer is to be generated. The figure de-
picts an example in which the buffer constructed around the
correctly represented feature cells tends to over-ride the in-
accuracies in the buffer introduced by errors of omission.
The magnitude of this effect, however, is dependent on the
configuration of the features in a layer, and does not occur in
all situations.

Figure 4 depicts the propagation of errors of commis-
sion, A commission error results in a buffer being con-
structed around a set of features that do not actually exist at
that particular location. As buffer size increases, errors of
commission tend to spread out over space, thereby increas-
ing the amount of error introduced.

Figure 4 depicts an important effect associated with er-
ror propagation for the buffer operation. Following an initial
decrease in the accuracy of the derived buffer layer, further
increases in buffer size result in an accuracy increase. This
can be seen in the decline in the number of error cells be-
tween the last two rows of Figure 4. The buffer has become
so larqe that it saturates the entire iaver, such that differ-
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ences between the actual and estimated buffers are less oro-
nounced, This saturation effect depends on the likelihood
that a given cell wiil be within the threshold distance of
more than one feature cell. The tendency for this to occur is
driven upwards as buffer size increases. (It is also dependent
on the number and spatial distribution of feature cel[, as de-
scribed below.) If a cell becomes a member of the set of
buffer cells by virtue of its proximity to more than one fea-

ture cell, then an error in any one of these feature cells will
have no impact on the accuracy of the buffer.

The tendency for this saturation effect to occur implies
that, especially when buffer sizes are large, the derived
buffer layer may actually be more accurate than the source
Iayer used to construct it. Indeed, in situations where the
buffer encompasses nearly the entire derived layer, the accu-
racy of the layer may be close to 100 percent (although the
information content of the layer would be relatively low in
this case). This contradicts the prevailing "weakest link" ar-
gument that derived data in cIS can never be any more accu-
rate than the sources used to derive them (e.g., Walsh el o/.,
1987). Other GIS data transformation functions have also
been shown to be associated with an accuracy increase in
certain circumstances (Veregin, 1989a; Lanter and Veregin,
1992J .

Simulation Modeling for the Buffer 0peration
Simulation modeling of error propagation for the buffer oper-
ation follows the procedure outl ined in Figure 5. This proce-
dure is based on a comoarison of a reference buffer that is
assumed to be completely accurate rvith a perturbed buffer
into rvhich error has been introduced. The reference buffer is
derived from a reference layer that contains what is assumed
to be an accurate representation of the set of features around
which the buffer is to be eenerated. Various realizations of
the degree and spatial dlslribution of error are derived from
the reference layer to produce a perturbed layer, which is
then used to construct the perturbed buffer.

Comparison of the reference and perturbed buffers yields
information on the degree of error present in the perturbed
buffer layer. This information is summarized using the famil-
iar pcc (proportion correctly classified) index (see Congalton
(1991) for a more detailed discussion). The pcc index, often
used in classification accuracy assessment in remote sensing,
is a measure of the probabil ity that a given cell on a layer
has been assigned to the correct cover type. The "output
PCC" index in Figure 5 refers to the proportion of cells that
have been assigned the same cover type on both the refer-
ence buffer and perturbed buffer layers. In this case, there
are only two cover types, which define whether or not a
given cell is a member of the set of buffer cells,

It is expected that output PCc wiil be affected by charac-
teristics describing the source data and defining how the
buffer operation iJ applied. These characteristiCs are summa-
rized below.

. Input pcc refers to the probability that the cells in the per-
turbed Iayer are correcily classified as either feature or non-
feature cells. A positive relationship should exist between in-
put PCC and output PCC, indicating that the higher the accu-
racy of the input data, the more accurate the derived buffer
will be. The procedure employed here assumes that input PCc
is the same for feature and non-feature cells.

o Buffer size refers to the width of the buffer around the feature
cells as a function of the distance threshold value selected.
Buffer size should have an impact on the accuracy of the de-
rived buffer, but this impact depends on two competing
forces. In one sense, a larger buffer implies less accuracy, be-
cause errors, whether commission or omission, grow in direct
proportion to the rvidth of the buffer. This effect is offset by
the tendency for saturation to occur. As described above, sat-
uration implies that a buffer size may be reached at which
further buffer size increases will be associated with an in-
crease in buffer accuracy.

. Featurc probability refers to the proportion of cells in the
perturbed layer that are defined as feature cells. In general, a
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higher probability implies a higher buffer accuracy, d^ue to,
th6 enhinced tendeniv for saturation to occur, even for rela'
tively small buffer sizes. The procedure gmployed here en-
surei that the feature probability is equal for the reference
and perturbed layers.

o Featire geometry refets to the degree to which feature cells
tend to ;luster in space. There should be a general tendency
for less clustered distributions to be associated with more ac-
curate buffers. For any given feature probability, a more dis-
persed set of feature iells will result in a Ereater number of
Luffer cells, which will in turn result in an enhanced pro-
pensity for saturation. The procedure employed here does not
Insure that feature geometry will be identical for the refer-
ence and perturbed layers. Measurements of feature geometry

used in the procedure.refer to the perturbed layer, as the ref-
erence layer is typically unknown in applied contexts. Fea-
ture Seometry is computed using a 1-1 joins count to measure
autoiorrelation (Cliffind Ord, r-gzg; Congalton, 1988)' This
statistic is based on the propensity of feature cells to be
neighbors. Neighbors are defined in terms of rook's case (i'e',
ont! cells thatihare a border of non-zero length are consid-
ered neighbors). Other measures of autocorrelation could, of
course, also be used.

o Error distribution refers to the degree to which misclassified
cells tend to cluster in space. A higher degree of clustering
should be associated with a lower level of error in the de-
rived buffer. If misclassified cells tend to cluster in space,
then the number of misclassified buffer cells that will be pro-
duced for a given buffer size will be minimized, Like feature
geometry, erior distribution is defined in terms of a 1-1 joins-

Iount. In this case, the statistic is based on the propensity of
misclassified cells to be neighbors.

o Grid size is defined as the square root of the number of cells
in the input layer. For square grids, grid size will be equal to
the number ofiows or columns' Grid size should mitigate the
effects of many of the factors identified above, e.g.,- the rela-
tive significante of buffer size and the qropelsity for satura-
tion to-occur. Grid size is identical for the reference and
perturbed layers, as well as the reference and perturbed buff-

Results
The program described above was run for 150 iterations for
grid i izes ranging from 25 to 125 cells on a side (i.e.' 625-to-
Isozs cellsl. I first-order polynomial regression was applied
to the output data, using output PCC as- the dependent varia-
ble. Explanatory variables were derived from the factors ex-
pectedio affecibuffer accuracy' as documented above' Final
iesults, consisting of the set of all significant explanatory
variables, are presented in Table 1.

Results indicate a close fit 6' = 0'9BB) between derived
buffer accuracy and a set of explanatoryvariables that in-
cludes input r-cc, buffer size, feature probability, feature ge-
ometry, a;d the spatial distribution of error. None of the
interaltion terms in the polynomial model is significant, and
only one squared term iJ significant (feature probability). The
Iinear model (obtained by excluding the squared feature
probabil itv term) vields an R'z of 0.984.

Of the set of variables expected to affect output PCC, as
documented above, only grid size appears to be insignificant'
For the range of grid siiei examined here, this variable
seems to ex-ert n; significant effect on output PCC either-by
itself or through mitlgation of the effects of other variables'
The same res;lt was 

-obtained 
for a separate polynomial

regression model in which the inverse of grid size was em-
nloved.

Regression results suggest the following- interpretation of
the effects of the various explanatory variables:
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TaeLE 1. REGRESSIoN REsuLTs.

Coefficient Estimate Std. Error t-value p-value

Input PCC
Buffer size
Feature probability
Feature geometry
Error distribution
Feature probabilityz

0 .485
6 .928  x  10 -2
2.164

-2 .438x10 -3

1 .414  x  10 -3
- 2.605

3 . 0 3 6  x  1 0 - '
6 . 7 3 2 x 1 0 - 3
0.202
4.727x70-4
4.409 x  10-4
U . J V 3

15.97  <  0 .001
1 0 . 2 9  < 0 . 0 0 1
70.72 <0.oo7

-  5 . 1 6  < 0 . 0 0 1
3.21  0 .002

-  6 .60  <  0 .001

o Input PCc. As expected, a positive relatiorlship exists between
input Pcc and output pcc. Thus, derived buffers tend to be
more accurate when the input layer is more accurate.

o Buffer Size. A positive relationship exists between buffer size
and output PCa. Thus, derived buffers tend to be more accu-
rate when buffer size is large. As noted previously, the effects
of buffer size on output rcC depend on two competing forces,
the first being the tendency for thematic errors to grow in di-
rect proportiJn to the widih of the buffer, and the second
bein! tlie tendency for saturation to occur for }arge buffer
sizes. The positive relationship observed in the regression re-
sults indicites that it is the second of these two forces that is
more important.

. Feature itrobability. The relationship between feature proba-
bility and output PCc is slightly more complicated than ex-
pect-ed. the fact that the squaro of this probability is
iignificant in the regression results suSgests that a simple lin-
eai relationship, in which a higher probability implies a - -
higher buffer accuracy, does not exist' Rather,-the signs of the
relression coefficient estimates for feature probability.and
sq:uared feature probability indicate that, as the probability
co-ntinues to increase, a point is reached at which output PCC
will begin to decline. Thi exact cause of this effect is uncer-
tain.

. Feature Geometry. As expected, an inverse relationship exists
between feature geometry (the degree of clustering of featurP
cells) and outpuiecc' The less clustered the feature cells, the
more accurate the derived buffer' This is due to the propens-
ity for a dispersed set of feature cells to produce a-Sreater
number of buffer cells, which in turn is associated with an
enhanced propensity for saturation.

. Effor Distribuiion. As expected, a positive relationship exists
between the error distribution (degree of clustering of mis-
classified cells) and output Pcc. The less clustered the mis-
classified cells, the less accurate the derived buffer.
Clustering of misclassified cells tends to minimize the num-
ber of miiclassified buffer cells that will be produced for a
given buffer size,

The regression results define a simple expression that can be

used tJ estimate the accuracy of a derived buffer layer.-The

appropriate equation, derived from Table 1, is given below.

R'z :  0.988 F-value = 1919.13 df = 6,1a4 p-value < 0.001

Output PcC : 0.485 x Input PCC
+ 6,928 x 1O-2 x Buffer Size
+ 2.764 X Feature ProbabilitY
- 2.438x10-3 x Feature GeometrY
+ 7.41.4x 1O-3 x Error distribution
- 2.605 x Feature ProbabilitY'z

For illustrative purposes, this equation has been incorporated
into an er.or pr^opagation conteit based on the cartographic
model depicted in Figute 1. Error propagation models for the
Reclassify and lntersect operations are derived from Lanter
and Vei6gin (1992). Parameter values used in the error prop-
agation aie defined in Table 2. (Values are necessarily some-.
r.rihat arbitrary, as this example is hypothetical.) It is assumed
that a buffer size of 2 cells is used. For the Intersect opera-
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Tnau 2. PARAMFTERS ron Pnop,qcn'rroru or EnRon, tion functions. Simulation modeling results can be used in
formal modeling of error propagation mechanisms, and can
thus be incorporated explicitly in a GIS applications environ-
ment, where they should have the Breatest impact and util-
ity.

On a more prosaic level, this study also has implications
for the propagation of thematic error through the buffer oper-
ation, Simulation model results indicate a close fit between
derived buffer layer accuracy and a set of explanatory varia-
bles that include input PCC, buffer size, feature probability,
feature geometry, and the distribution of error. More accurate
buffers are associated with an accurate input layer, a large
buffer size, a dispersed spatial distribution of feature cells,
and a clustered spatial distribution of thematic errors. Fea-
ture probability - the proportion of cells in the input layer
that are defined as feature cells -- also exerts a significant
impact, but the direction of this impact is somewhat ambigu-
ous.
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Appendix

Description of Program and Associated Algorithms
The program for performing the simulations described in this
study was written in C. The code segments documented be-
low use C-based syntax, but their meaning should be clear
even to those unfamiliar with the language. The following
notes will assist interpretation:

o All statements end with a semi-colon.
. Statements within a loop or dependent on some condition are

enclosed in braces.
. Functions are denoted by a pair of empty parentheses. Argu-

ments that need to be passed to these functions are omitted.
. Array subscripts are enclosed in square brackets.
. Array subscripts begin at 0 (rather than 1 as in FORTMNJ.
o Two-dimensional arrays corresponding to raster layers (grids)

are treated as one-dimensional arrays for computational sim-
plicity.

o Generaliy, all procedures assume that arrays have previously
been initialized to zero.

. Statements enclosed within the symbols /* and *lare com-
ments.

Step 1. Randomly select a grid size based on user-defined
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minimum and maximum values. For the ourooses of
the simulations, the grid size selected is issumed to
represent the number of rows or the number of col-
umns (i.e., a square grid is assumedl. This is easily
modifiable to account for rectangular grids.

Step 2. Randomly select a "feature probability" between 0 and
1. This value indicates the probability that a cell will
be a member of the set of feature cells.

Step 3. Randomly select a Pcc (proportion correctly classified)
between 0 and t. This value indicates the probability
that a cell is correctly classified.

Step 4. Randomly select a target level of autocorrelation for
feature geometry. The target level is expressed as a
standard normal deviate, based on a mean and stan-
dard deviation computed as a function of grid size and
the feature probability selected in Step 2.

Step 5. Randomly select a target level of autocorrelation for
the error distribution. The target level is expressed as
a standard normal deviate, based on a mean and stan-
dard deviation computed as a function of grid size and
the Pcc selected in Step 3.

Step 6. Randomly select a buffer size. Because large buffers
can quickly saturate a layer, especially when grid size
is small and autocorrelation in features is low, the
range of buffer sizes is restricted to be less than the
grid size.

Step 7. Randomly assign cells to the set of features to be buff-
ered, This is achieved by assigning individual cells
based on the feature probability selected in Step 2.
The following statement is applied to each cell t in
turn.

CellVolue[l] = fl oo(rondomo + FeorureProboblliry);

For each cell, a random number function is used that
returns values uniformly distributed between 0 and 1.
The number returned bv this function is then added to
the feature probability ielected in Step 2. A floor func-
tion is then used to obtain the largest integer not
greater than this sum, and this value is assigned to the
cell. A cell value of 1 indicates that the cell is a mem-
ber of the set of feature cells, and a value of 0 indi-
cates that is cell is not a member of this set.

Step 8, Iterate to obtain the target level of autocorrelation, se-
lected in Step 4, for the feature cells. This procedure
is based on the swapping algorithm described by
Goodchild and Wang (19S9). The algorithm simply
swaps two cell values at random, and, if the swap re-
sults in a level of autocorrelation closer to the target,
the swap is retained. The procedure is repeated while
the difference between the computed and target auto'
correlation levels (NewDtfference) is greater than sorne
user-defined threshold value (Threshold). Threshold must
be greater than 0 or the program may continue looping
in search of a perfect match, which may be unobtaina-
ble,
The following code segment documents the procedure
more precisely.

/t Compute lhe 1-1 joins counr ond stondord normol deviote. */

JoinsCount = Comoutejoins( );
SfdjoinsCounl = (JoinsCounr - JoinsMeon) / JoinsStdDev;

/* Beginning of loop. */

do{

/" Select two cells using o rondom number function rhot rerurns volues unl-

formly dlstrlbuted between 0 ond o number lorger thon the number of
cells. Use the modulus operotor (denoted by fhe symbol %) fo dertue o
cell number between 0 ond one less thon he number of cells. '/

cell l  = LorgeRondom0% NumCells;

cell2 = LorgeRondomo % NumCells;

/" Inlflollze NewDlfference for end of looo. */
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NewDlfference = 2.0 * Ihreshold;

/* Contlnue only if the swop will result In o chonge, t.e., only If the volues
for he fwo seleced cells ore different. */

if (CellVoluetcellll l= CellVoluetcell2lX

/* Store volues ossocloted wlfh the cells to be swopped. */

Oldcellvoluel = CellVoluelcellll;
OldCellVolue2 = CellVoluelcel12l;
OldJoinscounl = JolnsCount;
OId5tdjolnsCount - StdJolnsCount;

/* Subrrocf jolns ossocloted wth cells to be swopped. */

Jolnscounr = SubtroctJolnso;

/* Perform swopplng. r/

Cellvoluelcellll = OldCellVolue2;
CellVoluelcell2l = OldCellVoluel;

/* Add new jolns resuhlng from the swop, "/

Jolnscou^t = AddJolnso;

/" Recompute stondord normol devlofe. */

StdJolnscount = 0olnscount - Jolnsfleon) / JoiosStdDev;

/' Compute obsolute volues of dlfferences between johs count ond ior-
get for su/opped ond pre-swopped coses. */

NewDlfference = obs(StdjotnsCount - JolnsTorget);
OldDlfference = obs(Oldstdjolnscount - JolosTorget);

,/* lf rhe swopped cose is forrher frorn the rorget thon rhe pre-swopped
cose, reset the pre-swopped volues. "/

lf (NewDifference > = OldDtfferencex
CellVoluelcellll = OIdCellVolue'l;
Cellvoluelcell2l = OldCellVolue2;
JoinsCount = OldJolnsCount;
StdJolnsCount = OldsidjoinsCount;

I

I
] while (NewDifference > Threshold);

It is sometimes the case, especially when dealing with
small grids or a high target autoconelation, that the
procedure will cycle through the loop infinitely, trying
to achieve a target autocouelation.that it cannot meet.
Thus, it may be necessary to include an alternative
stopping criterion for the loop.

Step L Randomly assign errors. This is achieved by assigning
a value of 1 (effor) or 0 (correct) to individual cells
based on the PCC selected in Step 3. The orocedure ex-

actly parallels that performed to randomly assign cells
to the set of features to be buffered (Step z).

Step 10. Iterate to obtain the target level of autocorrelation for
the errors, as defined in Step 5. This procedure is
based on the same swapping algorithm described
above, except that an array called Enors is processed to
create a layer depicting cells that are misclassified.

Step 11. Construct the perturbed layer by merging the reference
layer (Cellvolue) and the layer of misclassifications (Er
rors). This is achieved using a bitwise XOR (exclusive
OR) operator (denoted by the symbolJ to flip the val-
ues in the Cetlvolue array whenever an error occurs in
the corresponding cell of the Enon array, i.e.,

PerurbedVoluelil = CellVolue [t] ̂  Erorslll;

The array calied Perturbedvolue represents the perturbed
rayer.

Step 12, Compute the level of autocorrelation for the feature
cells in the perturbed layer.

Step 13. Buffer the reference and perturbed layers based on the
buffer size selected in Step 6. This will create two ad-
ditional arrays, CellBuffer and Penurbed0uner, which rep-
resent tle reference and perturbed buffer layers,
respectively. A cell is included in the buffer if its dis-
tance from a feature cell is less than or equal to the
buffer size selected in Step 6.

Step 14, Compute the output Pcc in terms of the discrepancies
between the reference and buffer layers. The following
statement

lf (CellButfer tll != Perrurbed0uffer{ll) NumEnor+ +:

is evaluated for each cell I in turn, If the condition is
true (i.e., there is a discrepancy) then ttre variable
NumEnors is incremented by one. Once each cell has
been evaluated, the output PCC is computed as follows:

Outputrcc = 1.0 - NumEnors/ Numcells;

Step 15. Repeat the steps for another realization.

Howard Veregin
Howard Veregin holds the BA [Hons,) and
MA degrees in Geography from the Univer-
sity of Manitoba. He received the PhD de-
gree in Geography from the University of
California, Santa Barbara, in 1991. He is
currently Assistant Professor of Geography

at Kent State University, His main research interests in
crs lie in spatial database accuracy, quality assurance,
error propagation, and uncertainty in simulation model-
ing'

FOR MEMBERS ONLY!
Show your pride in your profession. ASPRS jewelry is an appropriate
accessory from casual to dress up.

Gold Fitled
Sterling
Bronze

Lapel Tacks, Pins, and Charms
$ss
$3s
$25

TO ORDER, SBE THE ASPRS STORE rN TI{IS JOURNAL


