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Abstract
Nearest-neighbor classifiers have not been widely used for
pixel assignment, probably because their computational rc-
quircments make them too slow for practical application to
Iarge images. Regardless, when properly specified, the neat-
est-neighbor classifier is a Bayesian classifier, and does not
rcquire conditions of multivariate normality as a prerequisite

for optimum pixel assignment. In this study, six nearest-
neighbor classifiers and four parametric classifers are ap'
plied to six Landsat images embracing a broad variety of
Tand cover. The accuracy of the parametric- and neighbor-
based methods is compared for significant differences in
the assignment of pixels to spectral classes. In a maiority of
hybrid experiments, classifers predicated on spectral neigh-
borhoods were significantly superior to parametric classifi-
ers for pixel assignment when training sample proportions
matched the true population proportions. In experiments
where this condition was violated, there was no clear ad-
vantage to choosing a neighbor-based classifier in prefer'
ence to a linear discriminant function employing priot
probabilities.

Introduction
In simple form, unsupervised spectral classification can be
condensed into four steps. As discussed by Campbell (1987),
these include (t) predetermining the range of spectral classes
desired from the clustering process, (2) selecting a clustering
algorithm, (3) assigning image pixels to the clusters through
application of the selected algorithm (i.e., partitioning), and
(4f placing the resulting clusters into an information class.
After the ffrst two steps are complete, there is Iittle interac-
tion between the analyst and the clustering algorithm, and
the results are an "objective" classification (Campbeil, 1s87).

In applications where the utility of a classification is
more important than its objectivity, simple unsupervised
classification may be conducted in three broad phases. As
shown in Figure 1., these phases include (1) partitioning the
entire image using a selected clustering algorithm, (2) statisti-
cally examining the clustering results, and (3) recoding the
final spectral classes into some project-driven set of informa-
tion classes. In practice, the partitioning and statistical exam-
ination phases might be performed several times in order to
find an acceptable solution.

However, because the correspondence between the spec-
tral classes and desired information classes is frequently low,
the practical value of a totally unsupervised clustering may

be inadequate for the problem under consideration. Further-
more, the computer time required to cluster large multiband
images makes repetition of the clustering phase time con-
suming, precluding a flexible exploratory approach involving
signifi cant analyst interaction.

Because true unsupervised classification can produce
unusable results, can be time consuming, and can limit ana-
lyst interaction, many researchers select a semisupervised or
hybrid approach in preference to the completely unsupervi-
sed method outlined above (Campbell, 1987). In one variant
of hybrid classification (see Figure 2), a random or system-
atic sample is extracted from the image and submitted to the
clustering algorithm. Descriptive statistics are calculated for
each resulting cluster, and a classifier such as maximum
likelihood is then used to assign all the pixels in the image
to a spectral class.

Speed of analysis, flexibility, and more potential for ana-
lyst-process interplay are the primary advantages of the hy-
brid approach over its general unsupervised counterpa.rt.
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Figure 1. The generic unsupervised classifi-
cation process. Repetitive experimentation in
the partitioning phase requires that the en-
tire image be clustered each time.
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Because a sample is being clustered instead of the entire im-
age, multiple iterations through the partitioning-examination
phases can be repeated more rapidly. In addition to the ex-
perimentation performed at the partitioning stage, experi-
mentation is also possible during the classifier training
phase. For example, clusters can be aggregated or split man-
ually and tentatively labeled. Several classifiers can be tested
and adjusted to determine which achieves the highest possi-
ble accuracy. Should this experimentation reveal a poor clus-
ter solution, the partitioning phase can be reconducted
without reclustering the entire image. Finally, even when
combined with the execution time reouired to extract and
cluster a sample, the time required to^classify an entire im-
age with a parametric classifier in the hybrid process is usu-
ally less than the time required to cluster the image in its
entirety.l Because of these advantages, nearly all commercial
software gives an analyst the option to perform unsupervised
classification using some hybrid method.

The comparison of hybrid classification with supervised
classification is inevitable because both utilize a pixel assign-
ment device at some stage of the classification process. How-
ever, the pixel assignment step of supervised classification is
maximized to insure the highest accuracy in the assignment
of image pixels to a priori informational classes, whereas the
goal of the pixel assignment step in hybrid classification is to
assign all the image pixels to spectral classes, leaving the is-
sue of final informational classes unresolved until later in
the project.

The most widely accepted pixel assignment device for
supervised and hybrid land-cover mapping projects is the
maximum-likelihood classifier. Parametric maximum-likeli-
hood classifiers are a family of methods which statistically
summarize the training data (or cluster classes) and assign
pixel labels through the application of probability theory. In
contrast to the popular maximum-likelihood classifier, non-
parametric classifiers predicated on spectral neighborhoods
have found little application in remote sensing. Unlike their
parametric counterparts, spectral neighborhood classifiers do
not summarize the training (or cluster) classes prior to the
pixel assignment step, but instead store all the training (or
cluster) pixel brightness values (Bvs) in memory. In the pixel
assignment step itself, an unlabeled pixel is given a class la-
bel by "taking a vote" among its nearest neighboring training
(or cluster) pixels in feature space.
'ln the author's experience, most clustering algorithms employed in
image classification execute in time approximately proportional to
k,vniwhere k, is a constant, rz represents the number of bands, n is
the number of pixels, and i ranges from 1 through 3. In contrast,
most parametric classifiers execute in time approximately propor-
tional to k vcn where k, is a constant, and c is the number of clas-
ses. It should also be noted that a clustering algorithm usually
requires multiple passes through a data set, whereas pixel assign-
ment requires only a single pass; hence, k, ) k. for identical values
of n. To summarize, one partitioning of a complete image would re-
quire execution time proportional to k,vN,. where N is the number of
pixels in the image. The hybrid approach would only require time
proportional lo k,vn"i + k vcN where n" is the number of pixels in
the extracted sample. In typical projects where c << n, << N, the
hybrid is faster. When an identical number of iterations are per-
formed during the clustering stages of both the hybrid and normal
unsupervised processes, the time required for clustering repetitions
rapidly overshadows the time required for the solitary pixel assign-
ment step, and the comparison effectively reduces to k,lV versus
k,n"' for the normal and hybrid methods, respectively. Given the ex-
ponential increase in execution time with a linear increase in n and
ihe usual condition that N>>n", the difference in execution times
between the two methods can be significant.
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figure 2. One approach to hybrid classifica
tion. lterative experimentation in the partition-
ing phase requires that the training sample
be clustered only during each iteration. User
experimentation is also possible in the classi-
fier training phase of the analysis.

This paper explores a simple question of hybrid classifi-
cation - do nonparametric nearest-neighbor classifiers assign
image pixels to spectral classes more accurately than the
common parametric alternatives? While the question is sim-
ple, given the variety of Earth landscapes and different ap-
proaches to image processing, a general answer is
impossible. Nevertheless, this paper presents the results of a
project to compare the pixel assignment accuracy of six near-
est-neighbor classifiers and four parametric classifiers across
six small Landsat images. The results reported in this paper
should encourage readers to examine nearest-neighbor classi-
fiers as alternatives to parametric methods for hybrid classifi-
cation, especially when training data sets are large and
parametric classification accuracy is low.

In the next section, a brief history of nearest-neighbor
classification will be presented so that this research can be
placed in its historical context. A brief discussion of para-
metric classifiers will follow. This section will focus primar-
ily on the statistical definitions of their discriminant
functions. and their statistical behavior. Several nearest-
neighbor classifiers will then be discussed. While a multi-



tude of nearest-neighbor classifiers can be formulated, the
discussion will be limited to six fundamental variants, In the
succeeding section the methodology of the comparative ex-
periments will be presented. Content of the six images will
be briefly described, the method used to generate the classifi-
cations will be outlined, and the statistical measures used to
compare the accuracy of the classification will be reviewed.
Results of the experiments will be discussed and a summary
will be offered in conclusion.

Historical Background
Nearest-neighbor classification has been studied for at least
four decades. Credit for the first formulation of nearest-neigh-
bor rules is given to Fix and Hodges (1951). These authors
developed the k nearest-neighbor rule as an outgronrth of
their research to model multivariate density functions non-
parametrically. In the context of pixel assignment, the k
nearest-neighbor rule would assign an unlabeled pixel to the
majority class represented by a prespecified number (i.e., k)
of training pixels spectrally adjacent to it. Sixteen years later,
Cover and Ha-rt (1967) theoretically examined the first near-
est-neighbor rule as a special case of this k nearest-neighbor
rule. As the name suggests, a pixel being labeled using the
first-nearest-neighbor rule would take the label of its closest
spectral neighbor among the training pixels. In 1970, Patrick
and Fischer proposed a new definition of neighborhood.
Rather than specifying a number of nearest neighbors, they
proposed to define a neighborhood as a hypersphere of fixed
radius centered on the query point.

According to Hardin and Thomson (1992), pixel assign-
ment based on spectral nearest neighbors has not been
widely reported in remote sensing, primarily because the
slow rate of pixel assignment precludes its practical use with
large multiband images. However, those authors review a
combination of data structures and algorithm advances
which make nearest-neighbor classifi ers practical alternatives
to parametric classifiers from a computational perspective.
While these classifiers may now be practical for remote sens-
ing from a computing viewpoint, the accuracy of their pixel
assignment has not been thoroughly examined. Ince (1987J
compared a multiple neighbor-based rule to a maximum-like-
lihood classifier for a agricultural scene of Turkey and found
it to be superior. More recently, Skidmore (t989) determined
the first nearest-neighbor rule to be poor in discriminating
between varieties of Australian eucalypt forest.

Parametdc Methods
As outlined by Jensen (1986), parametric classiffers assume
that the populations which provide training data are multi-
variate normal across all the selected features for each nomi-
nal class. The parameters typically utilized in parametric
classification include feature mean vectors (p), variance-co-
variance matrices ((), and prior probabilities (p) for each
class (/r) where h : 1, ..., g. According to Swain (1978),
when given a measurement vector (x) and the class condi-
tional probability for a given class p(x lft), the maximum-
likelihood decision rule demands we assign an unknown
observation to class ir if (A)p(x lh) > (p')p(x li) for all i * ft.
Some authors have applied the term "maximum-likelihood"
to classifiers whose prior probabilities are unspecified. In
these cases, the decision rule reduces to making the assign-
ment to class ?r if p(x lh) > p(x li) for all i # ft. While this
paper explores parametric classifiers using both decision
rules. the term "maximum-likelihood" is reserved for the
rule requiring prior probabilities.

PE&RS

Mahalanobis' Dlstance Function
The Mahalanobis' distance function (trlnr) is used for indi-
vidual pixel assignment by calculating the Mahalanobis'dis-
tance (D'z) from the unlabeled pixel to each training group
centroid and assigning the pixel to the group generating the
smallest Mahalanobis' distance. Specifically, the distance
from an unclassified pixel (/ to the centroid of group /r can
be expressed as

D?o : (x, - lrr,)t (-t (x, - po),

where ( is the pooled group variance-covariance matrix (or
common covariance matrix). The Mahalanobis' distance
measure can be thought of as a minimum-distance-to-means
classifier which (1) adjusts the Euclidean distance between a
pixel and a candidate class by the correlation between the
feature dimensions and (2) removes the bias introduced by
scale differences Ermong the features.

The MDF assigns pixels to classes without regard to class
prior probabilities and thus does not adjust decision bounda-
ries to minimize an overall error rate. For optimum classifi-
cation based on the Mop, the group covariance matrices must
be equal, and the data in each group must be multivariate
normal across all the features. As with other parametric clas-
sifiers, the consequences of violating these conditions is less
severe when interclass variances are smaller, intraclass dis-
tances are greater, or the query pixel is closer to the correct
class centroid.

Ihe Unear Dlscdmlnant Functlon
In social statistics, the general workhorse for discrimination
is Fisher's linear discriminant function (James, 1985). The
formula for determining the linear discriminant function
(ror) distance between pixel j and group h can be expressed
as

Fin:  t roT'x  -712 pI  ( - 'pr  + ln  (p6) .

Like the MDF, the LDF distance is calculated between the un-
labeled pixel and each group. The pixel is then assigned the
label of the group that generates the smallest discriminant
score. When the feature measurements are sampled ran-
domly from populations which are multivariate normal and
have identical covariance matrices, the LDF classifier qualifies
as a maximum-likelihood classifier.

Quadlatlc Dlscdmlnant Functlon
The previous two classifiers required that the group covari-
ance matrices be equal in order to maximize classification
accuracy. In contrast, this constraint can be relaxed when
quadratic discriminant functions are used. As shown in the
equation below, the individual group covariance matrices ((n)
rather than a pooled group covariance matrix are applied in
the classification to achieve this independence. If we desig-
nate the determinant of the covariance matrix for group h as
do, the equation for the quadratic discriminant function dis-
tance between pixel j and group 1r is given by

Qa : (xr - ttn)' (i(*i - Itn) + Bo'

where Bo : ln(dr) for the quadratic discriminant function
without priors (qnr) and B; : -ln (pr) + ln(dn) for the quad-
ratic form with prior probabilities (Qlp). Like the other clas-
sifiers, once the function calculations have been made for all
groups (ft : 1, ..., g), the pixel is assigned to the group
which generates the smallest score. Like its linear counter-
part, the quadratic discriminant function with priors can be
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derived from Bayes'rule, and is a true maximum-likelihood
classifier when the normality constraints are satisfied.

Nearest-Neighbor Methods
Nearest-neighbor methods are nonparametric - that is, no as-
sumptions are made regarding the shape of each group's
multivariate distribution. However, this does not imply that
sampling method or sample size can be disregarded for the
classifiers to operate effrciently. Neither does it mean that a
priori information is not required for optimizing classifier ac-
curacy.

Methods predicated on nearest neighbors have many po-
tential advantages. First, because they are non-parametric,
deviations from normality pose no hazard to the accuracy of
the pixel assignment. Second, because the entire training set
is used in the pixel assignment process, no information is
lost by generalizing the data distribution through use of
mean vectors or covariance matrices. Third, they are ex-
tremely flexible, and can be modified to support different
neighborhood definitions and various heuristic means of
class and distance weighting. Finally, some nearest-neighbor
classifiers can be derived from Bayes' formula, and are maxi-
mum-likelihood classifiers when the training set is properly
specified (see |ames, 1985).

Three components are common to all nearest-neighbor
classifiers. In the context of image processing, the first is a
definition of a query pixel's neighborhood. Typically, a
neighborhood is defined either as (1) a prespecified number
of training pixels closest to the query pixel's feature coordi-
nates or as (2) a radius centered on the query pixel's feature
coordinates. To limit the scope of this paper, only the first
definition will be utilized. The second component is a search
algorithm. For any given query pixel, this algorithm extracts
the training pixels which satisfy the neighborhood definition.
Finally, a decision criteria must be specified to label the
query pixel predicated on the classes represented in the ex-
tracted neighborhood.

The kNearest-ilelghbor Rule
As mentioned previously, Fix and Hodges (fSSf) developed
the k-nearest-neighbor (k-Nn) rule in an attempt to nonpara-
metrically model multivariate density functions. In thiJ rule,
a neighborhood is defined as a fixed number of pixels (k)
centered on the unlabeled pixel's coordinates (x) in feature
space . The class labels of these neighboring training pixels
are examined, and the class label represented most fre-
quently is given to the query pixel. in performing classifica-
tion with the k-NN rule, the practitioner must specify the
number of pixels to be utilized as a neighborhood, and the
manner in which ties in the "voting" will be resolved. In
Figure 3, the neighborhood for the query pixel is predefined
as its seven nearest neighbors. The unlabeled pixel is as-
signed to Class 2, because it constitutes a majority of the
seven pixels.

A substantial body of literature, collected and discussed
by Dasarathy (19S1), is devoted to an examination of the sta-
tistical characteristics of nearest-neighbor rules. Summarizing
a portion of this collection, when the proportion of pixels in
each training class is identical to the actual proportion of
each class in the population, the k-tlN rule is a maximum-
likelihood classifier.

The Fltst t{earest't{elglbor Rule
The simplest rule predicated on spectral neighborhoods is
the first nearest-neighbor (nNN) rule (see Cover and Hart,
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1967). In the context of pixel assignment, a first nearest
neighborhood would be defined as the single training pixel
with the shortest Euclidean distance'to the unlabeled pixel.
The unlabeled pixel is assigned to the class of this neaiest
neighbor. This criterion is a special case of the k-Ntt rule dis-
cussed above, yet it is considered separately because of its
great popularity in the social sciences and engineering. Like
the k-NN rule. the FNN rule is also a maximum-likelihood
classifier when the training class pixel proportions mirror the
population proportions. However, the FNl.t rule always re-
sults in an unambiguous decision - because only one vote is
taken to assign a query pixel to a class, no ties are possible.

The DlstanceWeighted Nearcst-l{elgflbor Rule
As a modification of the multiple nearest-neighbor rule, Du-
dani (1976) proposed that training samples closest to the
query coordinates should cast votes which have greater
weight than training samples more distant. In general, this
rule can be termed the distance-weighted nearest-neighbor
(nwu) rule. The DwN neighborhood is identical to the k-vN
neighborhood, but the decision criterion is quite different -
the unlabeled pixel is assigned to the class producing the
highest aggregate weight across the prespecified (i.e., k) train-
ing pixels. To employ the DVfN rule, the user must specify
the distance function for weighting as well as the number of
nearest neighbors to be polled. As discussed by Macleod ef
al. (1.987), the results of any classification are very dependent
on this weighting function. Consider the problem depicted in
Figure 3. If the vote cast for the query pixel by each of its
seven nearest neighbors was weighted by the inverse of its
intervening Euclidean distance, the unlabeled pixel would
again be assigned to Class 2,

'zSome practitioners in other scientific fields utilize Mahalanobis' dis-
tance rither than the Euclidean distance, put the practice does not
seem to be general in applications such as image processing where
extremely large data sets require classification.
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The Rank Welghted t{earest-lleighbor Rule
When employing the nwN classifier, the absolute metric dis-
tances are used in some weighting scheme to predict the
query pixel label. In contrast, the rank-weighted nearest-
neighbor (nwN) rule requires that weights be assigned to each
of the k nearest neighbors according to their relative (rather
than absolute) distances from the query pixel. Like the Dlvru
rule, neighbors closer to the query pixel would still be
weighted more heavily than neighbors more distant, and dif-
ferent weighting schemes could change the classification re-
sults substantially. For example, in classifying the query
pixel in Figure 3, the first neighbor might be weighted more
heavily than the other neighbors. It might also have been de-
cided that the combined votes of the second and third neigh-
bors should be equal to the first neighbor's vote. The same
general logic might be extended to the seventh neighbor. Us-
ing this logic, the query pixel in Figure 3 would again be
placed in Class 2.

The Clas+Welghted l{earest l{elghbor Rule
In projects where a different cost is associated with misas-
signment for each class, the k-nearest-neighbor decision cri-
teria can be roughly adjusted to account for it. For example,
we might assume that the goal of our hypothetical classifica-
tion project (i.e., shown in Figure 3) is to create a satellite-
derived map of possible wetlands to support a more
intensive low altitude non-riparian wetland detection proiect.
We may have also determined that Classes 3 and 4 repre-
sented non-riparian and riparian wetland, respectively, while
Classes '1. and 2 were land-cover types of lesser interest. In
order to avoid missing any possible non-riparian wetland, it
was decided to assign Classes 3 and 4 weights of 10 and 7,
respectively, while smaller weights were assigned to Classes
1 and 2. In devising this weighting scheme, we were willing
to risk overestimating wetland extent in order to facilitate the
project objectives. Given this scenario, the class-weighted
nearest-neighbor rule (cwtt) assigns the unlabeled pixel to
Class 3, even though Class 2 supplies the majority of the
seven neighboring pixels.

In cases where project goals do not suggest a class
weighting scheme, the CWN rule can still be useful. In an ini-
tial classification, the class weights are all set to 1,0, effec-
tively reducing the cwN rule to the k-ww rule. The weights
are then iteratively adjusted by the operator to compensate
for misassignment between various classes.

odyeslan Nearest.Neighbor Rule
As mentioned above. the k-NN rule is a maximum-likelihood
classifier when the training sample class proportions match
the class proportions in the population to be classified. How-
ever, when the training set violates this condition, the practi-
tioner can either discard training data until the condition is
satisfied, or adjust the k-wt'l voting scheme by utilizing
known prior probabilities.

It is common knowledge that Bayes'theorem takes the
form

p(ft lx/ - -p(x' I hxpr)

!  p(x, l i )p( i )

Assume a fixed number of pixels for application of the k
nearest-neighbor rule (k). As reviewed by James (1985), if &
is the number of nearest neighbors in class /r among this
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prespecified number k, an estimate of p(fr lx) derived from
Bayes'rule can be calculated by

P(/r lx) : +8t
2*n'

In classification, the unlabeled pixel would be assigned to
the class producing the highest probability p(fr lx). The ad-,
vantage of this Bayesian nearest-neighbor (nuN) rule over the
other neighbor-based rules is that the training sets do not
have to be gathered in proportions representative of their re-
spective populations in order to retain the desired Bayesian
behavior. Following the hypothetical wetlands example in-
troduced above, the prior probabilities of 0.20, 0.40, 0.10,
and 0.30 might reflect our estimates of the relative area cov-
ered by land-cover classes one through four, respectively. We
might also have training pixel total counts of 7s,25,23, and
25, respectively, for the same four classes. The training pixel
would be assigned to Class 2, because the a posteriorproba-
bility estimate (0.76) calculated for Class 2 exceeds that of
the competing classes.

Methodolog
The lmagery
The hybrid classification tests described below were per-
formed on six EOSAT images. These Somple Thematic Map-
per Floppy Disk Data Products were selected because they
provided a variety of land-cover combinations, were inex-
pensive, and would remain readily available to other re-
searchers. Adapting some segments from descriptions found
in the Eosof Landsat Products and Services guide, each of
the images will be characterized below.

Latour
The Latour image embraces an area of Mississippi River bot-
tomland near Helena, Arkansas, and is typical of a Missis-
sippi delta region where cotton, soybeans, and winter wheat
dominate the agricultural landscape. The river is the central
feature of the image, and the contrast between the silted
river and clear oxbow lakes on the image is striking. Given
the winter date (rg lanuary 1983), most variation in the sce-
ne's agricultural components can be attributed to soil mois-
ture, weed growth, and the vigor of some winter and
volunteer crops. In addition, large blocks of forested bottom-
land on the image appear near the river, and smaller blocks
are interspersed among the agricultural fields. Meander scars
and sand bars with high albedo are also conspicuous.

Mono Bay
This image, acquired by Landsat 5 on 19 November 1984,
shows Morro Bay, California and approximately 10,000 hec-
tares of the nearby Pacific Coast Range. Vegetation at the
lower mountain elevations can largely be described as chap-
arral. Hardwoods appear at higher elevations, and brightly
reflective areas of sparse vegetation are visible at all eleva-
tions. Some agricultural fields at various stages of production
are visible in the valleys, but these are spectrally similar to
adjacent golf courses and suburban lawns in the more popu-
lated areas. Infrared-bright wetlands are also clearly discerni-
ble in the image.

San loaquin
This Landsat 5 image, acquired on 5 September 1986, covers
a portion of high-value agricultural land in the San |oaquin
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Valley southwest of Bakersfield, California. A careful visual
inspection of the landscape betrays over a dozen different
classes, including secondary roads, Interstate 5, orchards,
pon.l"s,_and oil fields, but the largest component of spectral
variability is due to the variety of crops in various phases of
production. Bare soil with different moisture and color char-
acteristics also contributes to the spectral complexity of the
scene.

Little Colorado
This 24 August 1985 Landsat 5 image is centered on the con-
fluence of the Colorado and Little Colorado rivers in the
Grand Canyon of Arizona. Given the paucity of vegetation
and late summer date, most of the variation in thelmage can
be traced to surficial geology, and geologic exposures in the
canyon itself. Throughout the image, shadowing is strong,
and the dissection of the region is starkly apparent.

New Orleans
This image, acquired by Landsat E on24 March 1985, covers
the northern limits of New Orleans, Louisiana, along its
shoreline with Lake Pontchartrain. Very complex formations
of wetland vegetation are particularly conspicuous between
the Lake and a small portion of the silt laden Mississippi
River. The thermal band of this image is particularly usenrt
for demarcating the boundary between older urban areas and
the "cooler" surrounding environs.

Black Hills
This scene is a section of the northern Black Hills adiacent
to Lead, South Dakota (which appears in the southwest co{-
ner of the image). As the town nime implies, evidence of I
Iead mining is apparent, including stripped areas devoid of
veg_etation, and large areas of mine refuse in various stages of
reclamation or secondary regrowth. Taken in mid May of
f 0B-5 by Landsat 5, some small-grains agriculture (clearly
dryland rather than irrigated) is visible in the northwest-ern
quarter of the image. This is mixed with rangeland which
forms some patches within the main mountainous areas.:
Where mining has spared the higher mountain landscape,
ponderosa pine forests are visible.

Tralnlng and Testlng
The classification methodology was identical for each of the
six Landsat images. First, a random sample of 15,000 row
and column coordinate pairs were generated, and the corre-
sponding brightness values for all seven ru bands were ex-
tracted from the image. This sample was then partitioned
using the SPSSPC quick cluster routine where a 2O-cluster so-
lution was requested. The choice of 20 cluster classes was
arbitrarily selected as an upper limit which could be man-
aged efficiently in the accuracy assessment procedures de-
scribed below.

The SPSSPC quick-cluster routine was chosen because it
is readily available to researchers and performs partitioning
in a manner similar to many clustering routines in commei-
cial image processing software. As described in Norusis
(1988), this cluster routine is predicated on the sorting of
nearest centroids. In the context of this research, an initial
number of clusters (M) is first specified. A set of M well
spaced pixels in the data set are selected as initial cluster
centers. As pixels are sequentially processed and assigned to
the nearest cluster center, any pixel may supplant a particu-
lar cluster center if the interposing Euclidean distanct is
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larger than the distance between any pair of cluster centers.
Furthermore, any pixel will replace a current cluster center
if its Euclidean distance to the center is larger than the short-
est distance between the center and all other curtent cluster
centers. Once an initial pass through the data is complete, a
classification cluster centroid is calculated for each cluster
class from all its constituent pixels. A second pass through
the data then reassigns all the pixels to the closest classifica-
tion cluster centroid.

When this clustering of the 15,000 pixels was com-
pleted, all clusters with less than 60 pixels were discarded
from the analysis, resulting in a final cluster solution of be-
tween 8 and 18 clusters, depending on the image. The limit
of 60 pixels was chosen to ensure at least 30 pixels per clus-
ter would be used for both training and testing. Clusters
were not removed from the analysis for any other reason.

Using two methods, pixels within the retained clusters
were divided into training and verification sets. In the first
case, the pixels for each cluster were evenly split between
the two sets. This ensured that the proportion of pixels resi-
dent in each class of the verification set was equivalent to
pixel proportions in the training set, and satisfied the opti-
mum condition for classification with the nearest-neighbor
classifiers. The large size of the "fuII" training set also guar-
anteed accurate summary statistics for training the paramet-
ric classifiers. In the second case, there was a deliberate
attempt to severely violate the optimum condition for near-
est-neighbor classification - class proportions in the sample
matching those in the population. For a given image, the
cluster class with the lowest pixel count was identified, and
this same number of pixels was extracted from the remaining
clusters in the full training set to created a reduced training
set. When this subsampling was performed on each of the
six full training sets, it produced subsets containing only be-
tween 30 and 62 pixels per cluster.

Splitting the data set into training and verification sets
was a variation from the normal hybrid classification pro-
cess. In normal hybrid classification, once the clustering of
the sample is performed, statistics on each cluster class are
calculated and used to train a classifier. The classifier is then
used to place every image pixel into a predicted spectral
class. In this simulation, the training sets assume the role of
systematic or random samples, and the verification set is
analogous to the entire image to be classified. Sampling
15,000 pixels and clustering them into initial spectral classes
was performed because it permitted the pixel assignment ex-
periments to be conducted using a pixel population with a
known underlying spectral structure. In practical hybrid clas-
sification, this structure is unknown. However, with this
known spectral structure in the simulation, a definition of
"correct spectral class" could be formulated for accuracy as-
sessment of the pixel assignment step.

No other preprocessing, band selection, or standardiza-
tion was performed. The ten classifiers described above were
all trained separately using the full and reduced training
sets. They were then tested using the verification set to de-
termine how well the various classifiers could assign pixels
to their correct spectral class. A pixel's correct spectral class
was defined as the cluster class it was placed into by the
original clustering of the 15,000 pixels. Some other notes
about the classification shategy are listed below.

. For classiffers using prior probabilities, the actual class pro-
portions in the verification set were used.

o Seven neighbors were specified for all the classifiers requir-
ing multiple nearest neighbors.
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TneLE 1. TABLEwtsE KAppA VALUES FoR rHE Stx Tesr lnrcEs. TsesE CLlsstncnrtoN'ExpentuEvrs Uttuzro +tE Fut-t- (Ur.rneouceo) TmrnrNc DATA SErs. Txe Htexesr

Rnw Kmpn VALUE FoR Elcx lunee ls Sxowr.r By AN AsrERtsK. THE BoLD VALUES rN THE TABLE REPRESENT Keppl Vllues SnrtsrtctLv EQutvA|-eu ro rHE HIGHEST KAPPA.

Image

Classifer Latour
Morro
Bay

San
foaquin

Little
Colorado

New
Orleans

Black
Hills

Mahalanobis' Distance Function (MDF)
Linear Discriminant Function (LDF)

Quadratic Discriminant Function (QDF)

Quadratic Discriminant Function (QDP)
k - Nearest Neighbor (k-NN)
First Nearest Neighbor (FNN)
Distance weighted Neighbor (DWN)
Class Weighted Neighbor (CWN)
Bayesian Nearest Neighbor (BNN)
Rank Weighted Neighbor (RWN)

0.869
0.906
0.896
0.891
0.959
0.948
o.961r
o.958
o.959
0.956

0.880
0.920
o.872
0.896
0.960
0.941
o.961t
0.945
o.960
0.953

0.800
0.870
0.814
0.843
0.932
0.919
o.937'
o.s24
o.931
0.932

o.868
0.895
0.849
0.878
0.945
0.923
o.946*
0.944
o.944
0.936

0.838
0.886
0.840
0.866
0.960
0.946
o.961'
o.958
0.960
0.956

o.473
0.906
o.847
0.881
0.963
o.945
o.964*
o.950
o.963
o.960

o For the RwN classifier, the rank weights assigned for neigh-
bors 1 through 7 were 64,32,16,8,4,2, and 1, respectively'

o No external project criteria were specified for use with the
cwN classifier. Therefore, weights for the cwN classifier were
chosen after examining the results of the FNN classification in
order to minimize misclassification. Classes with high exclu-
sion error rates were weighted heavily, and, conversely, clas-
ses with high inclusion error rates were weighted lightly'
Only one attempt at this "fine tuning" was allowed.

o Each nearest neighboring pixel used in the DwN classification
was weighted according to the inverse of its squared distance
hom the unlabeled pixel.

o In all of the multiple nearest-neighbor classifiers, ties were
handled by assigning the pixel randomly to one of the tied
classes,

Acculacy Assessment
After the pixel assignment was complete, agreement between
the actuafclusters and the predicted clusters was presented
in confusion matrix form for accuracy assessment. The agree-
ment between the actual and predicted classes was measured
using Cohen's kappa. For a single image, the results of the
several classifiers were compared statistically on a pairwise
basis using the two-tailed. Z Iest for kappa described by Con-
galton et at. (rsas). An alpha level of 0.01 was chosen as the
icceptable level of significance - any Z with an absolute
value greater than 2.576 was considered to represent a signif-
icantly different pair of kappa accuracy rates.

/ R"rh", than showing the confusion matrices for each
classification (i.e., 72O matrices), the single parametric and
nonparamehic classifiers which produced the highest raw
kappa values were alone retained for further analysis. The
confusion matrices for these "winners" were first standard-
ized (see Congalton ef 01., 1983). The main diagonals from
these standardized matrices were next extracted and tabled
in column form. Because this standardization accounted for
differences in predicted group size, the best parametric and
nonparametric classification rates for each image could be
compared on a classwise basis.

A tablewise accuracy figure was also calculated by com-
puting the mean of the diagonal elements in the standardized
table. This figure, compared with the computed median of
the standardized diagonal elements, indicated whether high
(or low) overall classification accuracies were due to a few
well (or poorly) assigned classes with large numbers of pix-
els, or whether there was a consistent accuracy rate across
all the classes.

Results
The classification results for the six images are summarized
in Tables 1 and 2. Table 1 shows the results using the full
training set, while Table 2 shows the results from the re-
duced training set. The highest raw kappa for each image is
indicated by an asterisk. For each image, the bold values in
the column are statistically equivalent to the highest (aster-

TneLe 2. TnelEwrse KAppA VALUES ron rne Srx Test lrulees. Tnese Cussrncnrroru Expenruenrs UTTL|ZED rne Reouceo TRA|N|NG DATA SErs. Txe Htcxesr Rnw

Kappa VrluE ron ElcH IMAGE ls SHowH ay nH AsreRrsx. THE BoLD VALUES rN rxE Tralr REPRESENT Kppr Vruues Snrtsrtcnuv EQuvtelr ro rxe Htexesr
KAPPA.

Image

Classifer Latour
Morro
Bay

San

Ioaquin

Little
Colorado

New
Orleans

Black
HiIIs

Mahalanobis' Distance Function (MDF)
Linear Discriminant Function (LDF)

Quadratic Discriminant Function (QDF)

Quadratic Discriminant Function (QDP)
k-Nearest Neighbor (k-NN)
First Nearest Neighbor (FNN)
Distance Weighted Neighbor (DWN)
Class Weighted Neighbor (CWN)
Bayesian Nearest Neighbor (BNN)
Rank Weighted Neighbor (RWN)

0.850
o.894*
0 .813
0.838
0.864
0.87S
0.869
0.846
0.863
0.882

0.852
o.885
0.768
0.785
o,877
o.477
o.884
0.84s
o.874
o.890*

0.795
0.865*
o .797
0.820
0.845
0.846
o.855
0.839
0.846
0.859

o.877
0.861*
o.76r
o.7s3
0.832
0.852
0.837
0.805
0.830
0.846

0.831
o,870'
o.774
0.796
0.823
o.457
0.834
0.820
0.823
0.853

0.857
0.884*
o .757
o.782
0.867
0.868
o,875
o.872
0.873
0.873
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TABLE 3. A Suuumv or rne CusslRcATtoN ExpERtMENTs FoR THE Srx lulees

Image

Result Latour
Morro
Bay

San
foaquin

Little
Colorado

New
Orleans

Black
Hills

Number of classes retained
Total number of test pixels
Mean number of test pixels per class
Number of test pixels^in smillest class'
Number of test pixels in largest class

Best parametric classifier
Kappa of best parametric classifier
Mean/Median standardized accutacy
Best nonparametric classifier2
Kappa of best nonparametric classifier
Mean/Median standardized accuracy
Statistical difference between best 

-

parametric and best nonparametric kappas?

Best parametric classifter
Kappa of best parametric classifier
Mean/Median standardized accuracy
Best nonparametric classifi er2
Kappa of best nonparametric classifier
Mean/Median standardized accutacy
Statistical difference between best
parametric and best nonparametric kappas?

7 l
7469
679
49

2354

LDF
0.91

90/93
DWN
0.96

94/94
Yes

LDF
0.89

90/91
RWN
0.88

92/93
No

1 5
7457

470
30

7762

LDF
o.92

89/89
DlVN
0,96

97/92
Yes

LDF
0.89

87/85
RWN
0.89

88/88
No

1 8
7479
416
62

t258

' t2

7425
619

J /

2725

10
7458
746
3 1

2339

LDF
0.89

89/89
DWN
0.96

s5/94
Yes

LDF
o.87

88/90
FNN
0.86

90/90
No

8
7389
924
3 1

2519

LDF
0.91

89/89
DWN
o.97

96/95
Yes

LDF
0.89

88/90
DWN
0.88

97197
No

Using full training set
LDF LDF
0.86 0.90

86/88 97/91,
DWN D\AIII
0.94 0.95

Using reduced training set

92/92
Yes

LDF
o.87

87/88
RVYN
0.86

94/93
Yes

LDF
0.86

89/89
FNN
0.85

91/S1 90/90
No No

'fhese cells also indicate the number ofpixels in every class ofthe reduced training sets.'zAs measured by the highest raw kappa value. As meniioned in the text, rom" oth"."k"pla values were statistically equivalent.

isked) kappa. A summary
in Table 3.

Full Training Set Results

of the best classifications is recited images-, the RvfN classifier produced accuracies statistically
equivalent to the parametric LDF classifier. In the case of 

-

Moro Bay, the xWN classification accuracy was higher than
the accuracy achieved by the r,or classifiei, but the" differ-
ence was not significant.

When considered alone as a group, the results of the
nonparam_ebic classifications using the reduced training set
were much more inconsistent than the full training setie-

When the full training set was used (Table r), the neighbor_
based classifiers produced the highest accuracy for all"six
images. With exception of the rNN classification of all the
im.aqqs, a1d th_e CWN classification of three images, all the
neighbor-based classifiers produced significantl! higher accu_
racies than all the parametric classifieis - never was anv
parametric classifier statistically superior to any norrp""""m"_
tric classifier. However, disregarding the nine exceptions al_
ready cited, the accuracy differencei produced for^each
image among the neighbor-based clasiifiers alone were insis_
nificant (see the bold values in Table 1). As shown in TablJ
3, the DWN classifier consistently produced kappas with the
highest raw value.

., .4Torg_the parametrics, the LDF rule invariably yielded
the highest kappa values (see Table 3). In all casur. tiris,rr_
perior accuracy was significantly different from the other
parametric classifiers. With one exception, the eDr classifier
came in second place among the parametric classifiers.

Reduced Training Set Resutts
The results achieved with the reduced training set (see Table
2) were quite different from those produced w'ith the full
training set. With the exception of Morro Bay, the LDF classi_
fier produced higher raw klppa values than iny of the other
nine methods. Nevertheless, for all five of these images, there
were at least two nonparametric classifiers where thi"s differ-
ence proved statistically insignificant. For each of these five
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sults. Unexsults. Unexpectedly, the BNN classifier, designed to take into
account training pixel proportions not reflecting the popula-popula-
!Lq",-*el-9q-.,iv_alent to the highest kappa for orily one image
{Black Hills). The rtw classifier was alio expected to perfoim
well under full training set conditions but pborly und^er re-well under full training set conditions but pborlywell unoer rurr uarnrng set condttlons but poorly under re-
duced training set conditions. The opposite was-generallyuueou uouuu6 DvL LuuulLruuJ. I ltu uppustte was generarry
true - in four of the six images, it produced accuracies
equivalent to the highest accuracies when the reduced train-
ing-set was used, and never produced accuracies equivalent
to the highest in the full training set.

Although the relative performance of the LDF classifier,
when compqred to the other parametrics, was undeviating
under both full and reduced training set conditions, the {oe
classifier was replaced by the vOf classiffer as the second
place parametric under reduced training set conditions. The
San foaquin image was a single exception - the eDp classifier
remained superior to the MDF method, but was still inferior
to the LDF rule.

0ther 0bsenatlons
The informational classes corresponding to the spectral clas-
s-es produced in the clustering logically follow frbm the short
descriptions of each image offered earlier in the paper. A de-



tailed narrative of the information classes is not included
here, but is available from the author. In several instances,
multiple spectral classes corresponded to a single informa-
tional class. Likewise, some spectral classes were mixes of
various informational classes. To further shorten this paper,
the results of the matrix normalization were also removed.
Summarizing across the 12 experiments (six images by two
training sets), there were a total of 296 main diagonal cells in
24 normalized matrices representing the best parametric and
nonparametric classifiers for each image. The average accu-
racy difference among these 296 cells was approximately 3
percent (standardized), and in only two cells did the differ-
ence exceed 10 percent (standardized). No pattern of classifi-
cation difference was apparent - the classification behavior
difference between the best parametdc and nonparametrics
was independent of the individual classes involved. Using
the reduced training or the full training set was inconsequen-
tial. Furthermore, the closeness of the mean and median
standardized accuracy figures (see Table 3) indicated that the
high accuracies achieved were due to effective pixel assign-
ment in all the categories rather than iust a few of the largest
classes. No obvious difference in this relationship was re-
vealed when the reduced training set was employed.

The loss of accuracy experienced when using the re-
duced training set instead of the complete training was pEu-
ticularly noticeable among the nonparametric classifiers.
While the median decrease in accuracy between the full and
reduced training sets was only 0.02 for the LDr classifier (the
best parametric), the difference was 0.09 for the DWN classi-
fier (the best nonparametric). The QDP classifier was also
quite sensitive to the training set reduction, with an average
difference of 0.02. It appears that pooling the group covari-
ance matrices for use by the MDF and LDF classifiers renders
some robustness against the effects of small training pixel
counts. In contrast, while the QDP rule relaxes the prerequi-
site of having equal class covariance matrices, this advantage
is offset by this loss of robustness afforded by the pooling
process.

Summary
As summarized in Table 3, when the training data sets are
large, and contain the same class proportions as the popula-
tion to be classiffed, the neighbor-based classifiers, as a
group, are statistically superior to the best parametric classi-
fiers. The Dww classifier produced the highest accuracy val-
ues, but there were several other neighbor-based classifiers
which were equivalent. In all the experiments, the LDF classi-
fier was the superior parametric classifier. The nonparametric
classifiers suffered more accuracy loss than the parametric
classifiers when the reduced data set was used; however,
there was at least one nonparametric classifier that still per-
formed as well as the best parametric. The RlvN, FNN, and
DWN classifiers were the superior nonparametric classifiers
under reduced training set conditions.

Given hybrid classification problems similar to the ones
simulated in this project, what are the practical implications
of these results? First, whether or not the training class pro-
portions are equivalent to the true prior probabilities, the
maximum-likelihood rule utilizing a linear discriminant
function is probably a good classifier choice only if no neigh-
bor-based classifiers are available. Second, if the training
class proportions are severely different from the true prior
probabilities, there is likely no advantage to be gained by us-
ing a neighbor-based classifier over the linear discriminant
function - but neither will there be an accuracy penalty if
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the correct neighbor-based classifier is selected. Third,
whether or not training class proportions are equivalent to
the true prior probabilities, a distance-weighted neighbor
classifier may be expected to give excellent results, and if the
training class proportions are equivalent, D\ rN accuracy may
be superior to any of the tested parametric alternatives.
Fourth, when training class proportions are equivalent to
their population counterparts, several of the neighbor based
classifiers would be expected to perform equally well. Fi-
nally, theoretical advantages or disadvantages of certain clas-
sifiers such as the QDP, BNN, and FNN may disappear when
tested under practical conditions, and the analyst is well ad-
vised to experiment with several classifier options.

While the pupose of this research was not to compare
the parametric classifiers with each other, a single comment
will be offered. As mentioned previously, both the LDF and
the qor rules can be derived from Bayes' theorem, and are
maximum-likelihood classifiers. In these experiments, the
LDr classifier was superior in every instance to its quadratic
counterpart. Practitioners utilizing commercial remote sens-
ing software may want to determine which of the two maxi-
mum-likelihood classifiers are incorporated into their
software, and encourage vendors to implement the linear
classifier if not already available.

The results of this study should also encourage research-
ers utilizing supervised classification to study the benefit of
nearest-neighbor classifiers in their pixel assignment tasks.
As accurately portrayed by a reviewer, certainly the task of
placing image pixels in a priori information classes is more
challenging than placing image pixels in spectral classes, and
the potential for improving classification accuracies with
nearest-neighbor methods should not be ignored. This is
clearly an area of study which warants further research and
comparative experiments.
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