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Abstract
Spectral c,lasses generated from image classification are con-
ventional output in land-use and land-cover (LUILC) mapping
with digital remotely sensed data. The spatial composition
of these spectral c/asses within a certain spatial ronge, or
window, can be useful information for image analysis. In
this study, the concept of spatial composition of spectral
c,lasses (scsc) was developed and examined. It was found
that LUILC types did exhibit different characteristics of scsc.
Ranges of scsc were used for post-classification labeling to
identify different LUILC Wes. ffesulfs showed that a 7 by 7
window size was suitable for Hong Kong at Level-II classifi'
cation.

lntroduction
Remotely sensed data have been widely used to generate
Iand-use and land-cover (LU&C) maps. High spatial resolu-
tion satellite imagery acquired by Landsat Thematic Mapper
and spot HRV have provided spatial details for image analy-
sis so that high frequency features can be identified. How-
ever, for many ground scenes, conventional per-pixel digital
image classification techniques may not be appropriate be-
cause of spectral heterogeneity of features on the ground
(Woodcock and Strahler, 1987). Spectral heterogeneity is re-
lated to high frequency features which are the joint effect of
improved sensor resolution and complexity of ground fea-
tures. High frequency features are especially pronounced in
high density urban areas where various land-cover types
tend to be intermingled with or occur adjacent to each other,
and appear as a composite, To enhance our understanding of
the stiucture of these features in images and to improve clas-
sification results, various attempts have been devised.

Texture has been widely used to characterize the spatial
variation of radiance values in a neighborhood of pixels.
Haralick (1979) reviewed commonly used textural measures,
including those derived from spatial statistics, grey-level co-
occurrence probabilities, and power spectrum. Conners and
Harlow (f OaOl examined and compared different textural al-
gorithms based on the amount of texture-context information
obtained, Woodcock and Strahler (1987) used local variance
to measure the spatial structure of images as a function of
spatial resolution. Textural measures have also been incorpo-
rited into multispectral data for classification [Franklin and

Peddle, 1989; Gong and Howarth, 1s90) and change detec-
tion (Fung and LeDrew, 1987).

There have been studies in the use of semivariograms to
analyze the spatial information inherent in digital images
(Curian, 1988; Woodcock ef o/., 19BBa; 1gBBb)' Semivario-
grams have been applied to image resampling-problems
(Ramstein and Raffy, 1989), to develop procedures for sam-
pling of remote senling data (Atkinson et aI., 1990), and to
study forest canopy structure (Cohen ef o/', 1990),

sults. Fisher and Pathirana (1990) tound the tuzzy classitiel
helped extract information of both individL il pixels as well
as iubpixels. Wang (1990) also found that the fuzzy member-
ship of pixels offered information about the component covet
classes of mixed pixels.

These studie! reveal two basic issues associated with
high frequency features. First, mixed pixels appear as each^
piiel records ihe radiant energy reflected by a composite of

lround features. The resultant pixel does not record the
ipectral reflectance of one particular feature but is a
vieighted sum of reflectancbs of various features.-Second, 

given an area or polygon of a particular LUILC,
e.g., residential land, a high variation of spectral reflectance
is found as each pixel may record reflectances of different
ground features. i'or instahce, residential land is composed
of buildings, shadows of the buildings, trees, roads, etc.
Spectral reflectances of these features differ, giving-rise to a
situation where two adjacent pixels may record reflectances
from two different features (e,g., buildings and grass lawns)'
The result is a great spatial variation of spectral reflectances
within the area of residential land' Applying a per-pixel clas-
sification will most likely generate several spectral classes
for this lu&c. This effect is critical if the high resolution
data (e.g., sPoT HRV) is used to map ggneral LU/LC t]?es-
(Levei-Illassification) such as urban land. The same effect
perpetuates in more detailed LU/LC types JL-eve-l-II classifica-
iion; such as low density residential land, high density resi-
dential land, or industrial land.

In this paper, we attempt to investigate this second issue
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of spatial variation of spectral information. Most remote
sensing studies apply radiance values recorded by sensors
for analyses. To investigate spatial variation of spectral data,
textural analysis is commonly used. We adopt a different and
simplified approach. Instead of studying the raw radiance
values, spectral classes yielded from unsupervised classifica-
tion are examined in terms of their composition in a spatial
context. The objectives are to investigate (1) whether the spa-
tial composition of spectral classes (Scsc) can be useful in-
formation for characteri zing LU lLc types, particularly those
heterogeneous ones; and (Z) whether this information can be
used for post-classification labeling, or as a means for map
generalization, particularly for the general LU&c types at
Level-II classification in Hong Kong.

Spatial Composition ol Spectral Classes
Any per-pixel image classification yields a number of
classes. These classes are called spectral classes because they
are derived directly from partitioning data in the spectral do-
main according to certain decision rules (Richards, 1986).
These spectral classes are meaningful when they can be di-
rectly associated with a particular type of lu[c.

A high frequency feature or a feature of high spectral
heterogeneity exhibits a high local variance (Woodcock and
Strahler, 1987). Suppose a per-pixel image classification is
performed on this feature; it will most likely be represented
by several spectral classes. This means that heterogeneity is
indeed reflected by a composite of spectral classes. For in-
stance, spectral classes within a high density residential land
may represent narow roads, buildings, shadows of these
buildings together with a distribution of vegetation planted
along roads or in parks. Some of the spectral classes derived
may not be meaningful. For instance, building shadow is not
a real land-cover type but an artifact of tall buildings and the
image acquisition process. The per-pixel based classification
may not easily provide information about this LU/LC of inter-
est. However, the spectral classes generated may shed new
light on characterizing this type of heterogeneous LU/LC.

In other words, in addition to radiance values. we can
investigate the ScsC of lu&c types. We can define any LUILC
type according to the following:

LUi : f{SC" SC'' "" SC"} (1)

where LU, is the LUILC type i and Sc1, Scz, ..., Sc, are spectral
classes derived from a per-pixel classification.

A spectrally heterogeneous LUlLc is, therefore, a compos-
ite of several spectral classes. It does not necessarily include
every spectral class produced from the original image classi-
fication. But there exist several (or one) predominate spectral
classes which characterize it. A homogeneous LU/I-C type is,
therefore,

LU" : f {scK} Q)

where the homogeneity of this type is reflected by the repre-
sentation of one and only one spectral class, K.

A similar study using cover-frequency with a minimum-
city-block classifier was carried out by Gong and Howarth
(1992) which result indicated a significant improvement over
supervised maximum-likelihood classification. fanssen ef o/.
(1990) used a different approach in which the composition of
spectral classes was derived based on object boundaries of
cls data. The label of each object was determined based on
the largest frequency within the object boundary. They found
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that the resultant overall accuracy increased over 10 percent
as compared with that of per-pixel classification.

Methodology
Data Descriptlon
A sPoT Hnv multispectral (xs) image of Hong Kong acquired
on 14 |anuary 1987 was used for this study. A study site of
572by 512 pixels centered at 22'20'N, 114"10'E covering the
Kowloon Peninsula and northern part of the metropolitan
area of Hong Kong Island (Figure 1) was extracted for image
processing.

With reference to the 20-m spatial resolution of spor
HRV data, LU/LC types at Levels-I (e.g., urban land) and II
(e.g., high density residential land, low density residential
land, and industrial land) in this area exhibit a wide range of
spectral heterogeneity. A relatively homogeneous class is
water. As an important port in East Asia, water constitutes a
large proportion of the area in Hong Kong. In Victoria Har-
bour, however, homogeneity does decrease with the presence
of vessels and ferries. As a contrast, many other LU/LC types
are characterized with a high degree of spectral heterogene-
ity. In the highly dense mixed residential and commercial
district of Mongkok, multi-story buildings of various heights
ranging from 10 m to 70 m, together with their shadows, give
rise to great ranges of grey tone in all three multispectral
bands. In another low density high class residential district
of Kowloon Tong, buildings of 2 to 4 stories are intermingled
with road networks and a luxurious growth of vegetation in
lawns and gardens. The great variation in spectral heteroge-
neity makes this site a suitable area for examining the SCSC
of various LU/LC types in Hong Kong.

Generation of Spectral Classes
The first step towards an analysis of spectral composition is
the derivation of spectral classes. An unsupervised classifica-
tion based on a K-means clustering with a maximumlikeli-
hood classification routine was performed. A total of e0
spectral classes was derived. A bispectral plot of mean vec-
tors (Figure 2) of these spectral classes was plotted for a
cross examination together with the classified image (Figure
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Figure 1. Area covered by 5L2 by 5L2 pixels of spoT image
used in the Study.
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figure 2. Bi-spectral plot of spectral classes derived from
unsuoervised classifi cation.
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3). They were then categorized and labeled into eight spec-
tral classes, They are

o water
o high density urban land
o Iow density urban land
o open space/bare soil
a grass
r woodland and scrub
. coniferous woodland
o woodland on shadowed slope

The classified image was subiected to accuracy assessment'
Reference information includes color aerial photographs

taken in 19BO and 1988, 1:5,000- and 1:20,000-scale topo-
graphic maps, land-use maps, and field surveys. Owing to
the extensive coverage of water in the study area, sampling

was taken based on test sites. According to the nature of
sDectral classes, two to three test sites were selected for each
ciass. Random samples were taken within each site, resulting
in a total of 2327 sample pixels for the eight classes' These
pixels were checked against the reference information to gen-
erate a reference image for accuracy assessment of the classi-
fied image. An error matrix together with the overall
accuracy and Kappa coefficient of agreement were computed
(Congalton, 1991).

SCSC in Test Sites
To investigate the SCSC of various LU/LC types, 20 test sites
were identified based on a cross examination of the reference
information. These sites represented various LU&c types of
the study area and were independently selected from those
chosen for accuracy assessment. They were delineated as
polygons on the image with their sizes ranging from 24 to
iez hectares (Table i). Each site was studied in terms of

o its overall composition of spectral classes and
o the variation of scsc along selected transects.

Frequencies of the spectral classes were computed for each
testlite from which proportions of them within the sites
were generated. Figuie a illustrates the SCSc of the 20 test
sites. Table 1 shows the description of these sites.*

It should be noted that scsc extracted from the test sites
is a generalized statistic. Great local variations exist within
some of the sites. To study their internal variation, transects
were selected from the image for each site. These transects
were selected manually such that they were the longes-t pos-
sible transects within the corresponding test sites, Each tran-

*For clarity, spectral classes in the paper are printed in lowercase
(e.g., water) whereas LU/LC types are printed in UPPERCASE (e.8.,
WATER),

I 
water

WI hie} densiry urban lond

l--l low rtensity urbm land

l**l open spm./bare mil

m s*t

I 
wocdland and xnb

f 
coniferous wffilland

! wodltnd on shadowed sloP*

Figure 3. Classified image from per-pixel unsupervised classification.



TeeLE 1, Descnrrrroru or rne 20 Tesr SnEs

Site
No. Description

Area
(in hec-

tares)

L

5
o

o

Y

1 0
1 1
t 2
1 3
74
I J

I O

t 7
18
1 9
20

54.1
t47.4
37.2
30.7
45.9
36.9
68.2

33.0

26.5
24.O
37.0
81.8
61.3
24.8

73.O
30.6
30.6
56.5
60.8

sect stretched from one boundary, passing through the center
and reached another boundary of the test site. Thus, varia-
tion of Scsc can be examined from the boundarv to the cen-
ter of transects.

Along each transect, moving windows were used to ex-
tract the SCSC information for each pixel. Window sizes of 3
by 3, 5 by 5,7 by 7,9 by 9, and 11 by 11 were used. Using
different window sizes helps to explore at which size the
window will be most suitable to characterize the Lullc types
based on the Scsc information. For illustration, Figures 5a
and 5b show the variation of scsc along transects for the test
sites of (a) row DENSITY HIGH cLASs RESrDEhrrnr, LAND (Site
No. 5) and (b) slcs DENsrry MrxED RESTDENTTAL AND coMMER-
CIAL l-{ND (Site No. 7) with window sizes from 3 by 3 to 9
by 9. From these transects, it is possible to extract the ranges
of scsc of the LU/LC types. These ranges of scsc can also be
compared with the exact proportion obtained from the entire
test sites (Figure 4).

Appllcation in Post.Glasslfication Labellng
From the analysis of spectral composition of different LUIC
types, it is possible to derive simple rules for post-classifica-
tion labeling. For a given window size wby w, we can iden-
tify a pixel 4 as belonging to LU/LC j if the composition of
various spectral classes falls within certain ranges: i,e.,

x r c i

< p*(sc,[xr]) < r-(SC"r,)
< p-(scr[4]) < r-(sc,n)

< p-(sq[xrJ) < r-(scrr,J

where p-(SC.[x/) is the proportional composition of spectral
class n for pixel x; within a window size of wby w, and
r-(sc"r) and r*(sc"n) denote the lower and upper limits of the
range of composition for spectral class n derived from data
analysis of the test sites. This process resembles the use of a
simple parallelepiped classifier.
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turbid water
clear water
water/boat shelter
resewoit
Iow density high class residential land
public housing estates
high density mixed residential and commercial

land
high density mixed residential and commercial

land
commercial land
squatters
public housing estates
industrial estates
industrial area,/container terminals
reclamation area
airport
airporVrunway
woodland./scrub
woodland/scrub
coniferous woodland
grass

Because most LU&C types need not be characterized by
all the spectral classes, decision rules can be designed using
the most predominate spectral class(es) only. In reverse, we
can identify a pixel x, as belonging to LUILC i if its scsc does
not include spectral class c: i,e.,

' ' {
)
)

l

r*(sc,l
'-(t9:.'
r-(SC'

I
l (3)
I
t

x, € i if {p*(sc.[4]) : 0.0]

Decision rules may also be structured based on a ratio of dif-
ferent spectral classes. For instance,

x,e i  u{ ry4. -E j l ] l ' r }  (E)- 
[ orp-(sc,[x;]) 

--r

where or, cr, and k are constants.
To implement the rules, they were designed in a hierar-

chical structure which helped simplify the classification
process. In the initial stage, vegetation related spectral
classes were used as criteria to differentiate vegetative fea-
tures from those not covered by vegetation. More detailed
decision rules were then set to classify specific LU[,C types.
The rules derived for post-classification labeling with a win-
dow size of. 7 by 7 were listed in Figure 6.

Ten Level-II LU&c types were used for post-classification
labeling. They are

. WA.IER

. HIGH DENSITY MIXED RESIDENTIAUCOMMERCIAL LAND

. LOW DENSITY HIGH CLASS RESIDENTIAL I-AND

. PUBLIC HOUSING ESTATES

. INDUSTRIAL LAND

. OPEN SPACE

. GRASS

. WOODI"{ND AND SCRUBI.AND
O CONIFEROUS WOODLAND
. WOODLAND ON SHADOWED SLOPES

Five post-classified images were produced based on 3 by 3, S
by 5,7 by 7,9 by 9, and 11 by 11 window sizes. Figure 7
illustrates the post-classified image using a window size of. 7
by 7. Table 2 illustrates the overall accuracies and Kappa
coefficients of agreement of the classifications.

Results and Discussion
Unsupervised Glassification Result
The unsupervised classified image (Figure 3) generated with
eight spectral classes has an overall accuracy of B4.q percent
and a Kappa coefficient of et.g. Spectral classes are inter-
mingled together due to the complexity of LU/LC in the study
area. In heterogeneous LU&C areas such as HIGH DENSITY

lIIl w. shado*

ffi wmd/srub

I grass

ffi op"n.p"""

U2 rc.urt*

! t.o. uo-

I .as|  2  3  4  5  6  7  8  9  l 0 l l  t 2 1 3 1 4 1 5 1 6 l 7 1 8 1 9 2 0

Tesl Sitcs (refer @ Table 1 for de$ription)

Figpre 4. Spatial composition of spectral classes of the 20
test sites.
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MIXED RESIDENTAUCOMMERCIAL IAND, a mixture of high den-
sitv urban land, low density urban land, and water is found.
Water appears in this rull,i as it resembles the reflectance
values of building shadow. This problem is related to spec-
tral confusion and is difficult to solve based on per-pixel
classification alone. As spectral classes are land-cover based,
urban LUTLC types with similar ground features are difficult
to differentiaie. It is only possible to categorize the spectral
classes as high density urban land and low density urban
land only. This again illustrates a pitfall of the land-cover-
based per-pixel classification,

SCSC ot Test Sites
Figure 4 illustrates that most test sites are characterized with
a certain degree of spectral heterogeneity. Highly complex
LU/LC types such as HIGH DENSITY MIXED RESIDENTIAL AND
COMMERCIAL l,ANn in Mongkok (Site No. 7) comprises 15.8

PE&R5

percent of water, 75.9 percent of high 4ensity urban land, 7.7
percent of low density urban land, and O.S-percent of open
ipace. Clearly, this LU&c type is dominated by the most
likely spectral class, i.e., high density_urban land. The ap-
pearinie of water is Iargely associated with the building
shado*r while spectral classes of low density urban Iand
and open space are related to road networks in this area.

In CONtTASI, LOW DENSITY HIGH CLASS RESIDENTIAL LAND
(Site No. 5) is composed of 5.t percent of hi8h density urban
iand, 64.4 percentbf low density urban land, 6.9 percent of
open space-, 23.2 percent of grass, and 0.5 percent of conifer-
oirs woodland, Siinilarlv, this run c is dominated by the
most likely spectral clais, i'e., low density urban land' The
high propbrtion of vegetation spectral clas-ses {over 20 per-
ceit) forms a very distinctive contrast with other urban LU/LC
twes in the study area. A low building height also character-
iles this luAC aithe spectral class of water is not included.
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figure 7. Post-classification labeled image based on ranges of scsc with a window size of 7 by 7.

For INDUSTRIAL lurn, Site No. 12 consists of newly de-
veloped industrial estates with large building blocks and lit-
tle vegetation. Its composition includes 0.8 percent of water,
16.9 percent of high density urban land, 47.3 percent of low
density urban land, 33.2 percent of open space, and 1.8 per-
cent of grass. No spectral class predominates but the high
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proportions of low density urban land and open space spec-
tral classes make it distinctive from other LU/LC types.

On the other hand, some LU/Lc types do exhibit a high
degree of homogeneity. For instance, Site Nos. 1 and 2 are
two test sites of WATER which are composed of over gg oer-
cent of water.

PE&RS



Classification Methods
Overall Kappa

Accuracy (%) Coefficient

Trele 2. AccuRAcy or Posr-CusstrtcATloN LABELED IMAGES PoshOlassification Labeling Results
On the whole, the post-classification labeling process tends
to generalize the clissification result-(FiSure 7)'-The larger
thJwindow size, the greater the level of generalization.
Boundaries between LU[-C types become clearer. However,
too larse a window size tends to overgeneralize, leading to a
loss of-details, particularly the shape of LU/LC areas'

LUtLc typeJ with similar Sround featur-es can be charac-
terized based on the composition of these features, For in-
stance, identification of wousrmar LaNn based on per-pixel
classification of raw radiance values is difficult due to its
spectral similarity with other urban LUILC types' Using SCSC'
one is able to locate the maior industrial areas in Hong Kong'

The overall accuracies using ten LU[c types range from
69.8 to 74.8 percent. Error is miinly found among the u-rban
LU/LC types. Most PUBLIC HOUSING ESTATES are identified as
LOw DENSITY HIGH CLASS RESIDENTIAL LaNo. Along the
boundary between wooDLAND and wAtER, misclassification
occurs because in the original unsupervised classification
mixed pixels of land and water were classified as low den-
sity ur6an land or high density urban land. This error propa-
ea[es in the post-clasiification labeling process resulting in
in 

".toneoui 
ring of Low DENSITY HIGH cLASS RESIDENTIAL

tAND surrounding a reservior (WATER) and an island covered
with WOODHND AND SCRUBT.AND.

The most accurate image was produced from classifica-
tion with a window size of.7 by 7. Overall accuracy de-
creases with a decreasing or increasing window size. This
result susqests that a window size of 7 by 7 is most appro-
oriate in?"escribing the spectral heterogeneity of tullc types
in Hone Kons at Level-II tlassification. It also confirms the
resultsierivJd from the analysis of variation of scsc using
various window sizes. A small window size is not able to
fullv describe the heterogeneitv of scsC whereas too Iarge a
window size tends to indorporate features located outside the
LUlLc type. A poorer result is thus produced.

Conclusion
With the use of high spatial resolution data, spectral hetero-
eeneitv poses serio=us limitations to conventional per-pixel
Sasediechniques. The concept of scsc proposes to gse sp-a-
tial and struciural data for image analysis. The results indi-
cated that SCSC can provide a useful information in the study
of structural composition of heterogeneous LU&C. Its main
advantage is that different LUILC types possess different SCSC'
This inf6rmation assists in identifying LU&c types which are
heterogeneous and whose spectral properties-.are similar. Its
disadvintage is that it is in essence a generalization process'
The output'from post-classification labeling is generalized
and loses the details in shaPe.

Further research should focus on the number of spectral
classes used to typify the LU/LC cateSories. In this p-aper, the
original number-(eO) of spectral classes was generalized into
eigit classes. Intuitively,-they can be further generalized into
thiee classes of water, bare soil, and vegetation' Would this
be sufficient to characterize different LU&C types? Using a
Iarser number of spectral classes may provide more details,
buiat the expense-of being trivial as many spectral classes
may only occupy a small proportion.'It 

should be noted that sbsc as proportional data is in
fact imprecise and inexact' As shown in the analysis, propor-
tion of icsc may vary significantly within LUILC types. The
range is used because it is the most convenient means to
chaiacterize the LU&C types. With an inexact proportion,

Spectral Composition (3 by 3)
Spectral Composition (s by s)
Spectral Composition (z by z)
Spectral Composition (9 by 9)
Spectral Composition (11 by 11)

69.8
73.7
74.8
a a  a

7 2 . O

66.9

72.2
77.O
69.0

Clearly, the degree of heterogeneity varies significantly
among different LU/LC types. Also, different LU/LC types do
posseis unique scsc. This structural information can be a
valuable source of information for further analysis. However,
it is important to determine whether SCSC varies signific-antly
within a particular LUIC type. The variation of scsc is thus
examined.

Variation of SCSC
Scsc may vary in different parts of an LU/LC type. An analy-
sis of selected transects reveals the variability of scsc' For
instance, the proportion of low density urban land in Low
DENSITY HIGH CLASS RESIDENTIAL LAND ranges from 44 per-
cent to BB percent with a window size of 5 by 5 (Figures 5a).
Other spectral classes also vary with different proportional
ranges. lt is found that overall scsc extracted from the entire
tesisites tends to fall within ranges of scsc derived from
moving windows along selected transects' There is no clear
distinclion between scsc at the center and those at the
boundary.

With a small window size of 3 by 3, changes in SCSC
along the transect tend to be relatively abrupt, There are in-
dividual pixels with their surroundingeight pixels aII be-
Ionging to the same spectral class, while in other Iocations
aloig t-he transect, the composition may drop to less than 40
percent for the same spectral class. With a larger window
iize, this type of change is rarely found. Variation in scsC
tends to be lmoother as more pixels are included. This effect
resembles the use of a low pass filter with a large template
size which tends to yield a smooth but blurred image.

A small window size also means that a small number of
pixels is used to generate the scSC information. Minor spec-
iral classes mav not be included. For instance, for tow onN-
SITY HIGH CLAS-S RESIDENTIAL LAND, grass is not found along
any part of the transect when using g 3 by 3 window size
(Figure 5a). As a contrast, it is included everywhere along
the transect if a large window size is used.

From the two examples, it is also found that, as window
size increases, the range of variation in ScsC tends to de-
crease. The only exception is high density urban land in Low
DENSITY HIGH CLq,SS RESIDENTIAI I,ANO. ThiS iS fOUNd tO bE

related to the inclusion of pixels lying on the boundary of
the test site.

In general, a small window size may not be able tq 9up-
ture sufficient data to describe the scsc. It tends to yield a
great variation, which also causes problems in characterizing
iu[,c types. In contrast, too large a window size tends to in-
clude eitra spectral classes. This effect also produces prob-
Iems because wrong information is generated. To examine
which window size is optimal for characterizing the LUILC
types in the study area, the results from post-classification
labeling are analyzed.
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these data are also suitable for applying fuzzy set theory to
define the LUiT,c types and to classify them. A better classifi-
cation result may perhaps be attained.
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