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Spatial Composition of Spectral Classes:
A Structural Approach for Image Analysis
of Heterogeneous Land-Use and
Land-Cover Types

Tung Fung and King-chung Chan

Abstract

Spectral classes generated from image classification are con-
ventional output in land-use and land-cover (LU/LC] mapping
with digital remotely sensed data. The spatial composition
of these spectral classes within a certain spatial range, or
window, can be useful information for image analysis. In
this study, the concept of spatial composition of spectral
classes (Scsc) was developed and examined. It was found
that LU/LC types did exhibit different characteristics of SCSC.
Ranges of Scsc were used for post-classification labeling to
identify different LU/LC types. Results showed that a 7 by 7
window size was suitable for Hong Kong at Level-II classifi-
cation.

Introduction
Remotely sensed data have been widely used to generate
land-use and land-cover (LU/LC) maps. High spatial resolu-
tion satellite imagery acquired by Landsat Thematic Mapper
and SPOT HRV have provided spatial details for image analy-
sis so that high frequency features can be identified. How-
ever, for many ground scenes, conventional per-pixel digital
image classification techniques may not be appropriate be-
cause of spectral heterogeneity of features on the ground
(Woodcock and Strahler, 1987). Spectral heterogeneity is re-
lated to high frequency features which are the joint effect of
improved sensor resolution and complexity of ground fea-
tures. High frequency features are especially pronounced in
high density urban areas where various land-cover types
tend to be intermingled with or occur adjacent to each other,
and appear as a composite. To enhance our understanding of
the structure of these features in images and to improve clas-
sification results, various attempts have been devised.

Texture has been widely used to characterize the spatial
variation of radiance values in a neighborhood of pixels.
Haralick (1979) reviewed commonly used textural measures,
including those derived from spatial statistics, grey-level co-
occurrence probabilities, and power spectrum. Conners and
Harlow (1980) examined and compared different textural al-
gorithms based on the amount of texture-context information
obtained. Woodcock and Strahler (1987) used local variance
to measure the spatial structure of images as a function of
spatial resolution. Textural measures have also been incorpo-
rated into multispectral data for classification (Franklin and

Department of Geography, The Chinese University of Hong
Kong, Shatin, NT, Hong Kong.

PE&RS

Peddle, 1989; Gong and Howarth, 1990) and change detec-
tion (Fung and LeDrew, 1987).

There have been studies in the use of semivariograms to
analyze the spatial information inherent in digital images
(Curran, 1988; Woodcock et al., 1988a; 1988b). Semivario-
grams have been applied to image resampling problems
(Ramstein and Raffy, 1989), to develop procedures for sam-
pling of remote sensing data (Atkinson et al., 1990), and to
study forest canopy structure (Cohen et al., 1990).

More recently, the application of fuzzy set theory has
been found to have potential in enhancing classification re-
sults. Fisher and Pathirana (1990) found the fuzzy classifier
helped extract information of both individual pixels as well
as subpixels. Wang (1990) also found that the fuzzy member-
ship of pixels offered information about the component cover
classes of mixed pixels.

These studies reveal two basic issues associated with
high frequency features, First, mixed pixels appear as each
pixel records the radiant energy reflected by a composite of
ground features. The resultant pixel does not record the
spectral reflectance of one particular feature but is a
weighted sum of reflectances of various features.

Second, given an area or polygon of a particular LULC,
e.g., residential land, a high variation of spectral reflectance
is found as each pixel may record reflectances of different
ground features. For instance, residential land is composed
of buildings, shadows of the buildings, trees, roads, etc.
Spectral reflectances of these features differ, giving rise to a
situation where two adjacent pixels may record reflectances
from two different features (e.g., buildings and grass lawns).
The result is a great spatial variation of spectral reflectances
within the area of residential land. Applying a per-pixel clas-
sification will most likely generate several spectral classes
for this LU/LC. This effect is critical if the high resolution
data (e.g., SPOT HRV) is used to map general LU/LC types
(Level-I classification) such as urban land. The same effect
perpetuates in more detailed LU/LC types (Level-II classifica-
tion) such as low density residential land, high density resi-
dential land, or industrial land.

In this paper, we attempt to investigate this second issue
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of spatial variation of spectral information. Most remote
sensing studies apply radiance values recorded by sensors
for analyses. To investigate spatial variation of spectral data,
textural analysis is commonly used. We adopt a different and
simplified approach. Instead of studying the raw radiance
values, spectral classes yielded from unsupervised classifica-
tion are examined in terms of their composition in a spatial
context. The objectives are to investigate (1) whether the spa-
tial composition of spectral classes (SCSC) can be useful in-
formation for characterizing LU/LC types, particularly those
heterogeneous ones; and (2) whether this information can be
used for post-classification labeling, or as a means for map
generalization, particularly for the general LU/LC types at
Level-II classification in Hong Kong.

Spatial Composition of Spectral Classes

Any per-pixel image classification yields a number of
classes. These classes are called spectral classes because they
are derived directly from partitioning data in the spectral do-
main according to certain decision rules (Richards, 1986).
These spectral classes are meaningful when they can be di-
rectly associated with a particular type of LU/LC.

A high frequency feature or a feature of high spectral
heterogeneity exhibits a high local variance (Woodcock and
Strahler, 1987). Suppose a per-pixel image classification is
performed on this feature; it will most likely be represented
by several spectral classes. This means that heterogeneity is
indeed reflected by a composite of spectral classes. For in-
stance, spectral classes within a high density residential land
may represent narrow roads, buildings, shadows of these
buildings together with a distribution of vegetation planted
along roads or in parks. Some of the spectral classes derived
may not be meaningful. For instance, building shadow is not
a real land-cover type but an artifact of tall buildings and the
image acquisition process. The per-pixel based classification
may not easily provide information about this LU/LC of inter-
est. However, the spectral classes generated may shed new
light on characterizing this type of heterogeneous LU/LC.

In other words, in addition to radiance values, we can
investigate the SCSC of LU/LC types. We can define any LU/LC
type according to the following:

Ly, = f{sc,, SC,, ..., SC,} (1)

where LU; is the LU/LC type i and SC,, SC,, ..., SC, are spectral
classes derived from a per-pixel classification.

A spectrally heterogeneous LU/LC is, therefore, a compos-
ite of several spectral classes. It does not necessarily include
every spectral class produced from the original image classi-
fication. But there exist several (or one) predominate spectral
classes which characterize it. A homogeneous LU/LC type is,
therefore,

LU, = f{SCy} )

where the homogeneity of this type is reflected by the repre-
sentation of one and only one spectral class, K.

A similar study using cover-frequency with a minimum-
city-block classifier was carried out by Gong and Howarth
(1992) which result indicated a significant improvement over
supervised maximum-likelihood classification. Janssen et al.
(1990) used a different approach in which the composition of
spectral classes was derived based on object boundaries of
GIS data. The label of each object was determined based on
the largest frequency within the object boundary. They found
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A: Mongkok

B: Kowloon Tong

C: Victoria Harbour
D: Container Terminal

Figure 1. Area covered by 512 by 512 pixels of SPOT image
used in the Study.

that the resultant overall accuracy increased over 10 percent
as compared with that of per-pixel classification.

Methodology

Data Description

A SPOT HRV multispectral (xs) image of Hong Kong acquired
on 14 January 1987 was used for this study. A study site of
512 by 512 pixels centered at 22°20’N, 114°10’E covering the
Kowloon Peninsula and northern part of the metropolitan
area of Hong Kong Island (Figure 1) was extracted for image
processing.

With reference to the 20-m spatial resolution of SPOT
HRV data, LU/LC types at Levels-I (e.g., urban land) and II
(e.g., high density residential land, low density residential
land, and industrial land) in this area exhibit a wide range of
spectral heterogeneity. A relatively homogeneous class is
water. As an important port in East Asia, water constitutes a
large proportion of the area in Hong Kong. In Victoria Har-
bour, however, homogeneity does decrease with the presence
of vessels and ferries. As a contrast, many other LU/LC types
are characterized with a high degree of spectral heterogene-
ity. In the highly dense mixed residential and commercial
district of Mongkok, multi-story buildings of various heights
ranging from 10 m to 70 m, together with their shadows, give
rise to great ranges of grey tone in all three multispectral
bands. In another low density high class residential district
of Kowloon Tong, buildings of 2 to 4 stories are intermingled
with road networks and a luxurious growth of vegetation in
lawns and gardens. The great variation in spectral heteroge-
neity makes this site a suitable area for examining the SCSC
of various LU/LC types in Hong Kong,

Generation of Spectral Classes

The first step towards an analysis of spectral composition is
the derivation of spectral classes. An unsupervised classifica-
tion based on a K-means clustering with a maximum-likeli-
hood classification routine was performed. A total of 40
spectral classes was derived. A bi-spectral plot of mean vec-
tors (Figure 2) of these spectral classes was plotted for a
cross examination together with the classified image (Figure
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Figure 2. Bi-spectral plot of spectral classes derived from
unsupervised classification.

3). They were then categorized and labeled into eight spec-
tral classes. They are

The classified image was subjected to accuracy assessment.

water

high density urban land

low density urban land
open space/bare soil
grass

woodland and scrub
coniferous woodland

woodland on shadowed slope

Reference information includes color aerial photographs
taken in 1986 and 1988, 1:5,000- and 1:20,000-scale topo-
graphic maps, land-use maps, and field surveys. Owing to
the extensive coverage of water in the study area, sampling
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was taken based on test sites. According to the nature of
spectral classes, two to three test sites were selected for each
class. Random samples were taken within each site, resulting
in a total of 2327 sample pixels for the eight classes. These
pixels were checked against the reference information to gen-
erate a reference image for accuracy assessment of the classi-
fied image. An error matrix together with the overall
accuracy and Kappa coefficient of agreement were computed
(Congalton, 1991).

SCSCin Test Sites

To investigate the SCSC of various LU/LC types, 20 test sites
were identified based on a cross examination of the reference
information. These sites represented various LU/LC types of
the study area and were independently selected from those
chosen for accuracy assessment. They were delineated as
polygons on the image with their sizes ranging from 24 to
147 hectares (Table 1). Each site was studied in terms of

® its overall composition of spectral classes and
e the variation of SCscC along selected transects.

Frequencies of the spectral classes were computed for each
test site from which proportions of them within the sites
were generated. Figure 4 illustrates the SCSC of the 20 test
sites. Table 1 shows the description of these sites.*

It should be noted that SCSC extracted from the test sites
is a generalized statistic. Great local variations exist within
some of the sites. To study their internal variation, transects
were selected from the image for each site. These transects
were selected manually such that they were the longest pos-
sible transects within the corresponding test sites. Each tran-

*For clarity, spectral classes in the paper are printed in lowercase
(e.g., water) whereas LU/LC types are printed in UPPERCASE (e.g.,
WATER).

Figure 3.

Classified image from per-pixel unsupervised classification.

walter

high density urban land

low density urban land

JOEN

open space/bare soil

grass

woodland and scrub

coniferous woodland

woodland on shadowed slope
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Tasle 1. Description oF THE 20 TesST SiEs

Area

Site (in hec-

No. Description tares)
1 turbid water 54.1
2 clear water 147.4
3 water/boat shelter 37.2
4 reservoir 30.7
5 low density high class residential land 45.9
6 public housing estates 36.9
7 high density mixed residential and commercial 68.2

lan
8 high density mixed residential and commercial 33.0
land

9 commercial land 26.5
10 squatters 24.0
11 public housing estates 37.0
12 industrial estates 81.8
13 industrial area/container terminals 61.3
14 reclamation area 24.8
15 airport 27.7
16 airport/runway 73.0
17 woodland/scrub 30.6
18 woodland/scrub 30.6
19 coniferous woodland 56.5
20 grass 60.8

sect stretched from one boundary, passing through the center
and reached another boundary of the test site. Thus, varia-
tion of SCSC can be examined from the boundary to the cen-
ter of transects.

Along each transect, moving windows were used to ex-
tract the SCSC information for each pixel. Window sizes of 3
by 3, 5by 5, 7 by 7, 9 by 9, and 11 by 11 were used. Using
different window sizes helps to explore at which size the
window will be most suitable to characterize the LU/LC types
based on the SCSC information. For illustration, Figures 5a
and 5b show the variation of SCSC along transects for the test
sites of (a) LOW DENSITY HIGH CLASS RESIDENTIAL LAND (Site
No. 5) and (b) HIGH DENSITY MIXED RESIDENTIAL AND COMMER-
CIAL LAND (Site No. 7) with window sizes from 3 by 3 to 9
by 9. From these transects, it is possible to extract the ranges
of scsc of the LU/LC types. These ranges of SCSC can also be
compared with the exact proportion obtained from the entire
test sites (Figure 4).

Application in Post-Classification Labeling

From the analysis of spectral composition of different LU/LC
types, it is possible to derive simple rules for post-classifica-
tion labeling. For a given window size w by w, we can iden-
tify a pixel x; as belonging to LU/LC i if the composition of
various spectral classes falls within certain ranges: i.e.,

I'w[SCm] < pw[SCn{X.i]] < Fw[scnh]
Ik ar e B
1,,(5C11) < pu(SCilx]) < 1,.(SCin)

where p,,(SC,[x;]) is the proportional composition of spectral
class n for pixel x; within a window size of w by w, and
r,(SC,) and r,,(SC,;) denote the lower and upper limits of the
range of composition for spectral class n derived from data
analysis of the test sites. This process resembles the use of a
simple parallelepiped classifier.

176

1005 S
Il w. shadow
8 i = c. wood
E 0% O woodsscrub
2 | B s
E\ 108 B open space
0% % 1. urban
1 hud. urban
0%

123 4567 8 9101112131415 16 17 18 19 20 | M waser

Test Sites (refer 1o Table 1 for description)

Figure 4. Spatial composition of spectral classes of the 20
test sites.

Because most LU/LC types need not be characterized by
all the spectral classes, decision rules can be designed using
the most predominate spectral class(es) only. In reverse, we
can identify a pixel x; as belonging to LU/AC i if its SCSC does
not include spectral class ¢: i.e.,

if {p(sC.lx]) = 0.0} (4)

Decision rules may also be structured based on a ratio of dif-
ferent spectral classes. For instance,

.o [ 2Pu(SCalx;])
f
l {a,pw[scl[x,]} g k} i

where a,, a,, and k are constants.

To implement the rules, they were designed in a hierar-
chical structure which helped simplify the classification
process. In the initial stage, vegetation related spectral
classes were used as criteria to differentiate vegetative fea-
tures from those not covered by vegetation, More detailed
decision rules were then set to classify specific LULC types.
The rules derived for post-classification labeling with a win-
dow size of 7 by 7 were listed in Figure 6.

Ten Level-II LU/LC types were used for post-classification
labeling, They are

® WATER

e HIGH DENSITY MIXED RESIDENTIAL/COMMERCIAL LAND
LOW DENSITY HIGH CLASS RESIDENTIAL LAND

PUBLIC HOUSING ESTATES

INDUSTRIAL LAND

OPEN SPACE

GRASS

WOODLAND AND SCRUBLAND

CONIFEROUS WOODLAND

WOODLAND ON SHADOWED SLOPES

Five post-classified images were produced based on 3 by 3, 5
by 5, 7 by 7, 9 by 9, and 11 by 11 window sizes. Figure 7
illustrates the post-classified image using a window size of 7
by 7. Table 2 illustrates the overall accuracies and Kappa
coefficients of agreement of the classifications,

X EI

X EI

Results and Discussion

Unsupervised Classification Result

The unsupervised classified image (Figure 3) generated with
eight spectral classes has an overall accuracy of 84.4 percent
and a Kappa coefficient of 81.9. Spectral classes are inter-
mingled together due to the complexity of LULC in the study
area. In heterogeneous LU/LC areas such as HIGH DENSITY
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if(pV=0.) then
if(pl>07)
if(pl<04)and(p2>04)
H(04<pli<08)and(pd<0.7)
if(pd>07)

else if (0. <pV < 0.5) then
if(pi=2*p2)
if(p4<07)and(p5<03)

else if (p¥ > 0.5 ) then
if(ps>0.5)
if(p6>0.6)and(p7<03)
f(p7>0.7)
if(p8>0.5)

where

pl = proportion of water

p2 = proportion of high density urban land

p3 = proportion of low density urban land

p4 = proportion of open space/bare soil

pS = proportion of grass

pb = proportion of woodland and scrub

p7 = proportion of conif dlind

pé = proportion of woodland shadow

pV = proportion of vegetation = p5 + p6 + p7 + p8

ThyT.

Figure 6. Decision rules for post-classification labeling with a window size of

LULC € WATER

LU/LC € MIXED RESIDENTIAL/COMMERCIAL LAND
LU/LC € INDUSTRIAL LAND

LUMLC € OPEN SPACE

LU/LC € HIGH CLASS RESIDENTIAL LAND
LU/LC € PUBLIC HOUSING ESTATES

LUALC € GRASS

LU/LC € WOODLAND AND SCRUBLAND
LU/LC € CONIFEROUS WOODLAND

LUAC € WOODLAND ON SHADOWED SLOPE

Figure 7. Post-classification labeled image based on ranges of scsc with a window size of 7 by 7.

- WATER

m HIGH DENSITY MIXED RESIDENTIAL/COMMERCIAL LAND
LOW DENSITY HIGH CLASS RESIDENTIAL LAND

D PUBLIC HOUSING ESTATES

|:| INDUSTRIAL LAND

C‘ OPEN SPACE

- GRASS

- WOODLAND AND SCRUBLAND
Bl covirerous woonLanp

- WOODLAND ON SHADOWED SLOPES

For INDUSTRIAL LAND, Site No. 12 consists of newly de-
veloped industrial estates with large building blocks and lit-
tle vegetation. Its composition includes 0.8 percent of water,
16.9 percent of high density urban land, 47.3 percent of low
density urban land, 33.2 percent of open space, and 1.8 per-
cent of grass. No spectral class predominates but the high

proportions of low density urban land and open space spec-
tral classes make it distinctive from other LU/LC types.

On the other hand, some LU/LC types do exhibit a high
degree of homogeneity. For instance, Site Nos. 1 and 2 are
two test sites of WATER which are composed of over 99 per-
cent of water.
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TaBLE 2. ACCURACY OF POST-CLASSIFICATION LABELED IMAGES

Overall Kappa
Classification Methods Accuracy (%) Coefficient
Spectral Composition (3 by 3) 69.8 66.9
Spectral Composition (5 by 5) 73.1 70.4
Spectral Composition (7 by 7) 74.8 72.2
Spectral Composition (9 by 9) 73.7 71.0
Spectral Composition (11 by 11) 72.0 69.0

Clearly, the degree of heterogeneity varies significantly
among different LU/LC types. Also, different LU/LC types do
possess unique SCSC. This structural information can be a
valuable source of information for further analysis. However,
it is important to determine whether SCSC varies significantly
within a particular LU/LC type. The variation of SCSC is thus
examined.

Variation of SCSC

SCSC may vary in different parts of an LU/LC type. An analy-
sis of selected transects reveals the variability of SCSC. For
instance, the proportion of low density urban land in LOW
DENSITY HIGH CLASS RESIDENTIAL LAND ranges from 44 per-
cent to 88 percent with a window size of 5 by 5 (Figures 5a).
Other spectral classes also vary with different proportional
ranges. It is found that overall SCSC extracted from the entire
test sites tends to fall within ranges of SCsC derived from
moving windows along selected transects. There is no clear
distinction between SCSC at the center and those at the
boundary.

With a small window size of 3 by 3, changes in SCSC
along the transect tend to be relatively abrupt. There are in-
dividual pixels with their surrounding eight pixels all be-
longing to the same spectral class, while in other locations
along the transect, the composition may drop to less than 40
percent for the same spectral class. With a larger window
size, this type of change is rarely found. Variation in SCSC
tends to be smoother as more pixels are included. This effect
resembles the use of a low pass filter with a large template
size which tends to yield a smooth but blurred image.

A small window size also means that a small number of
pixels is used to generate the SCSC information. Minor spec-
tral classes may not be included. For instance, for LOW DEN-
SITY HIGH CLASS RESIDENTIAL LAND, grass is not found along
any part of the transect when using a 3 by 3 window size
(Figure 5a). As a contrast, it is included everywhere along
the transect if a large window size is used.

From the two examples, it is also found that, as window
size increases, the range of variation in SCSC tends to de-
crease. The only exception is high density urban land in LOW
DENSITY HIGH CLASS RESIDENTIAL LAND. This is found to be
related to the inclusion of pixels lying on the boundary of
the test site.

In general, a small window size may not be able to cap-
ture sufficient data to describe the scsc. It tends to yield a
great variation, which also causes problems in characterizing
LU/LC types. In contrast, too large a window size tends to in-
clude extra spectral classes. This effect also produces prob-
lems because wrong information is generated. To examine
which window size is optimal for characterizing the LULC
types in the study area, the results from post-classification
labeling are analyzed.
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Post-Classification Labeling Results

On the whole, the post-classification labeling process tends
to generalize the classification result (Figure 7). The larger
the window size, the greater the level of generalization.
Boundaries between LU/LC types become clearer. However,
too large a window size tends to overgeneralize, leading to a
loss of details, particularly the shape of LU/AC areas.

LU/LC types with similar ground features can be charac-
terized based on the composition of these features. For in-
stance, identification of INDUSTRIAL LAND based on per-pixel
classification of raw radiance values is difficult due to its
spectral similarity with other urban LU/LC types. Using SCSC,
one is able to locate the major industrial areas in Hong Kong.

The overall accuracies using ten LU/LC types range from
69.8 to 74.8 percent. Error is mainly found among the urban
LU/LC types. Most PUBLIC HOUSING ESTATES are identified as
LOW DENSITY HIGH CLASS RESIDENTIAL LAND. Along the
boundary between WOODLAND and WATER, misclassification
occurs because in the original unsupervised classification
mixed pixels of land and water were classified as low den-
sity urban land or high density urban land. This error propa-
gates in the post-classification labeling process resulting in
an erroneous ring of LOW DENSITY HIGH CLASS RESIDENTIAL
LAND surrounding a reservior (WATER) and an island covered
with WOODLAND AND SCRUBLAND.

The most accurate image was produced from classifica-
tion with a window size of 7 by 7. Overall accuracy de-
creases with a decreasing or increasing window size. This
result suggests that a window size of 7 by 7 is most appro-
priate in describing the spectral heterogeneity of LULC types
in Hong Kong at Level-II classification. It also confirms the
results derived from the analysis of variation of SCSC using
various window sizes. A small window size is not able to
fully describe the heterogeneity of SCSC whereas too large a
window size tends to incorporate features located outside the
LU/LC type. A poorer result is thus produced.

Conclusion

With the use of high spatial resolution data, spectral hetero-
geneity poses serious limitations to conventional per-pixel
based techniques. The concept of SCSC proposes to use spa-
tial and structural data for image analysis. The results indi-
cated that SCSC can provide a useful information in the study
of structural composition of heterogeneous LU/LC. Its main
advantage is that different LU/LC types possess different SCSC.
This information assists in identifying LU/LC types which are
heterogeneous and whose spectral properties are similar. Its
disadvantage is that it is in essence a generalization process.
The output from post-classification labeling is generalized
and loses the details in shape.

Further research should focus on the number of spectral
classes used to typify the LU/LC categories. In this paper, the
original number (40) of spectral classes was generalized into
eight classes. Intuitively, they can be further generalized into
three classes of water, bare soil, and vegetation. Would this
be sufficient to characterize different LU/LC types? Using a
larger number of spectral classes may provide more details,
but at the expense of being trivial as many spectral classes
may only occupy a small proportion.

It should be noted that SCSC as proportional data is in
fact imprecise and inexact. As shown in the analysis, propor-
tion of SCSC may vary significantly within LULC types. The
range is used because it is the most convenient means to
characterize the LU/LC types. With an inexact proportion,
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these data are also suitable for applying fuzzy set theory to
define the LU/LC types and to classify them. A better classifi-

cation result may perhaps be attained.

References

Atkinson, P.M., P.]. Curran, and R. Webster, 1990, Sampling Re-
motely Sensed Imagery for Storage, Retrieval, and Reconstruc-

tion, Professional Geographer, 42(3):345— -353.

Cohen, W.B., T.A. Spies, and G.A. Bradshaw, 1990. Semivariograms
of Digital Imagery for Analysis of Conifer Canopy Structure, Re-

mote Sensing of Environment, 34:167—178.

Congalton, R.G., 1991. A Review of Assessing the Accuracy of Clas-
sifications of Remotely Sensed Data, Remote Sensing of Environ-

ment, 37:35-46.

Conners, R.W., and C.A. Harlow, 1980. A Theoretical Comparison of
Texture Algorithms, LE.E.E. Transactions on Pattern Analysis

and Machine Intelligence, PAMI-2:204-222,

Curran, P.]., 1988. The semivariogram in Remote Sensing: An Intro-

duction, Remote Sensing of Environment, 24:493 — -507.

Fisher, P.F., and S. Pathirana, 1990. The Evaluation of Fuzzy Mem-
bership of Land Cover Classes in the Suburban Zone, Remote

Sensing of Environment, 34:121-132.

Franklin, S.E., and D.R. Peddle, 1989, Spectral Texture for Improved
Class Discrimination in Complex Terrain, International Journal

of Remote Sensing, 10(8):1437-1443.

Gong, P., and P.]. Howarth, 1990. The Use of Structural Information
for Improving Land-Cover Classification Accuracies at the Rural-
Urban Fringe, Photogrammetric Engineering & Remote Sensing,
56(1):67-73.

. 1992. Land-Use Classification of SPOT HRV Data Using a
Cover-Frequency Method, International Journal of Remote Sens-
ing, 13(8):1459-1471.

Haralick, R.M., 1979. Statistical and Structural Approaches to Tex-
ture, Proceedings of IEEE, 67(5):786—804.

Janssen L.L.F., M.N. Jaarsma, and E.T.M. van der Linden, 1990. Inte-
grating Topographic Data with Remote Sensing for Land-Cover
Classification, Photogrammetric Engineering & Remote Sensing,
56(11):1503-1506.

Ramstein, G., and M. Raffy, 1989. Analysis of the Structure of Radio-
metric Remote-Sensed Images, International Journal of Remote
Sensing, 10(6):1049-1073.

Richards, J.A., 1986. Remote Sensing Digital Image Analysis, Sprin-
ger-Verlag, Berlin.

Wang, F., 1990. Fuzzy Supervised Classification of Remote Sensing
Images, .E.E.E. Transactions on Geoscience and Remote Sens-
ing, 29(2):194-201.

Woodcock, C.E., and A.H. Strahler, 1987. The Factor of Scale in Re-
mote Sensing, Remote Sensing of Environment, 21:311— -332.

Woodcock, C.E., A.H. Strahler, and D.L.B. Jupp, 1988a. The Use of
Variogram in Remote Sensing I: Scene Models and Simulated

Images, Remote Sensing of Environment, 25:323-348.

, 1988b. The Use of Variogram in Remote Sensing II: Real Dig-
ital Images, Remote Sensing of Environment, 25: 349-379.

Fung, T., and E.F. LeDrew, 1987. Land Cover Change Detection with
Thematic Mapper Spectral/Textural Data at the Rural-Urban
Fringe, Proceedings of the 21st International Symposium on Re-
mote Sensing of Environment, Ann Arbor, Michigan, pp. 783- (Received 13 April 1992; revised and accepted 15 December 1992;
789. revised 13 January 1993)

Call for Papers

PE&RS ANNUAL GEOGRAPHIC INFORMATION SYSTEMS ISSUE

The American Society for Photogrammetry and Remote Sensing will publish its Ninth Annual Geographic
Information Systems issue of PE&RS in November 1994. Special Guest Editors are Ann Maclean of the Michigan
Technological University and Gordon Maclean of Maclean Consultants, Ltd. This issue will contain both invited and
contributed articles.

Authors are especially encouraged so submit manuscripts on the following types: = Spatial modeling of natural
resources ® Assessing spatial accuracy of GIS information ® Use of GIS in remote sensing activities ® Economic
issues of GIS utilization by local and county governments ® Applications of digital orthoimagery in GIS =
Integration of GIS and decision support systems ® Use of GPS in GIS =

All manuscripts, invited and contributed will be peer-reviewed in accordance with established ASPRS policy for
publication in PE&RS. Authors who wish to contribute papers for this special issue are invited to mail five copies of
their manuscript to:

Dr. Ann Maclean

School of Forestry and Wood Products
Michigan Technological University
1400 Townsend Drive.

Houghton, M] 49931-1295
906-487-2030; fax 906-487-2915

Dr. Gordon A. Maclean
Maclean Consultants, Ltd.
P.O. Box 655

Houghton, MI 49931-0566
906-482-9692

Manuscripts must be received by 1 February 1994 in order to be considered for publication in this special issue.

180 PE&RS




