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Abstract

The use of fuzzy sets in map accuracy assessment expands
the amount of information that can be provided regarding
the nature, frequency, magnitude, and source of errors in a
thematic map. The need for using fuzzy sets arises from the
observation that all map locations do not fit unambiguously
in a single map category. Fuzzy sets allow for varying levels
of set membership for multiple map categories. A linguistic
measurement scale allows the kinds of comments commonly
made during map evaluations to be used to quantify map
accuracy. Four tables result from the use of fuzzy functions,
and when taken together they provide more information
than traditional confusion matrices. The use of a hypotheti-
cal dataset helps illustrate the benefits of the new methods.
It is hoped that the enhanced ability to evaluate maps re-
sulting from the use of fuzzy sets will improve our under-
standing of uncertainty in maps and facilitate improved
error modeling.

Introduction: The Assessment of Map Accuracy
Thematic (categorical) maps are made for a specific purpose
and portray information using some system of classification
for the landscape (soil taxonomy, vegetation classes, land
use, etc.). They are increasingly being used by a variety of
people involved in the management of land and resources.
The increase in their use is largely due to remote sensing
and geographic information systems (GIS). Remote sensing is
now used widely to produce thematic maps. GIS technology
both employs thematic maps as input data sources and cre-
ates new thematic maps utilizing the analysis of existing
maps and data.

The purpose of this paper is to present new methods for
assessing the accuracy of thematic maps based on fuzzy sets.
The intent of the new methods is to allow explicitly for the
possibility of ambiguity regarding the appropriate map label
at any location. In addition, expanded possibilities for error
analysis result from the use of fuzzy sets. The focus of this
paper is on the theory behind the approach and on a thor-
ough description of the methods. In another paper, these
methods are applied to assess the accuracy of a map of forest
vegetation, which helps illustrate the utility of the proposed
approach (Woodcock and Gopal, 1992).

Background

The difficulties associated with assessing the accuracy of
thematic maps are the result of the nature of thematic maps.
In thematic maps, each location on the ground has to be as-
signed to a category (or class). In essence, the continuum of
variation found in the landscape has to be divided into a fi-
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nite set of categories. Typically, the categories are easily dif-
ferentiable in their pure states, and become less readily
separable near the dividing lines between the categories. For
example, consider the difference between the vegetation cat-
egories conifer forest and hardwood forest. At their extremes
there is no question regarding the appropriate category. How-
ever, all degrees of mixing of coniferous and hardwood trees
may be found. When coniferous trees dominate, the appro-
priate label may still be coniferous forest, but what happens
as the mix approaches 50 percent of each? At that point the
decision becomes arbitrary and neither category is either en-
tirely right or entirely wrong. One solution is to add another
category to the map that is mixed forest. This new category
solves the problem in one case (the 50-50 mix), but now
there is a problem defining the break between mixed forest
and both hardwood forest and conifer forest.

One can argue that these problems of ambiguity concern-
ing the appropriate map label for a given location can be
solved by a precise set of specifications for the definitions of
each of the map categories, and for these categories to cover
all possible situations found on the ground, and for the cate-
gories to be mutually exclusive. In fact, these kinds of defini-
tions for map categories would minimize the ambiguity.
Most mapping projects, however, are not conducted with an
extensive system of breakpoints defining the differences be-
tween categories. Accurate and precise measurements of the
required parameters on the ground are often either difficult
or impossible. Take, for example, the difference between a
meadow category and a grassland category, which may be
primarily a function of annual water balance and may not be
measurable at a single visit to a site, or even from measure-
ments from a single year. Beyond the problem of category
definitions and measurement difficulties, map categories are
frequently constructs that do not lend themselves to physical
measurement, Examples might be maps of land or residential
cost or habitat suitability. There are often descriptions for
these categories, but rarely definitions that can be used to
make unambiguous decisions for individual sites. The prob-
lem that makes accuracy assessment difficult is that there is
ambiguity regarding the appropriate map label for some loca-
tions. The situation of one category being exactly right and
all other categories being equally and exactly wrong often
does not exist.

The representation of map categories also depends on
scale, as scale generally implies a degree of spatial generali-
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zation and a minimum mapping unit (Woodcock and Har-
ward, 1992). The minimum mapping unit is defined as the
size of the smallest object to be represented on the map. If an
object is below the minimum mapping unit, then it is
merged with its surroundings. However, if the size of the
minimum mapping unit changes, the object may be rep-
resented on the map.

There are two primary motivations for assessing the ac-
curacy of a map. The first one concerns trying to understand
the errors in the map. Both producers and users of thematic
maps are interested in this kind of information. Producers
can improve methods of making the maps and of presenting
the information on accuracy and errors to the end user. In-
formation about the errors in the map, in turn, can help map
users to interpret and use the map more effectively. The sec-
ond motivation for assessing the accuracy of maps is to pro-
vide an overall assessment that can be used as an indication
of the general reliability of a map. For example, one use of
such an overall assessment would be to compare two maps
in order to determine which is better.

The four kinds of information that are desired from an
accuracy assessment about the errors in a map are their na-
ture, frequency, magnitude, and source.The nature of the er-
rors concerns which categories are confused in the map,
meaning between which categories are there mismatches be-
tween the category assigned in the map and the reality at the
ground location. In the simple case discussed previously, are
there situations where conifer trees have been assigned map
labels of hardwood forest, and vice versa? Frequency refers
to how often these mismatched situations between the map
and the ground occur. A more subtle concept concerns the
magnitude of errors. At one level, certain kinds of mis-
matches can be considered greater in error than others. For
example, assigning a map label of water to an area of conifer-
ous trees might be considered a larger error than assigning it
a map label of hardwood forest. At a second level, assigning
an area of 100 percent coniferous trees a hardwood forest la-
bel might be a more serious error than assigning the same la-
bel to an area that is 60 percent coniferous trees and 40
percent hardwood trees. The last kind of information desired
is the source of errors, which is less well defined and pri-
marily of concern to the people who make maps. Essentially,
what is desired is any information about the conditions in
which errors tend to be made that can help reduce the likeli-
hood of the same kinds of errors being made in the future.

Traditional Methods of Assessing Accuracy

Traditionally, the accuracy of a thematic map is determined
empirically by comparing the map with corresponding refer-
ence or ground data. The results are tabulated in the form of
a square matrix whose columns usually represent the ground
data (i.e., assumed correct) and rows indicate the mapped
data. Each element in the matrix gives the number of areas
on the map assigned to a particular category relative to the
ground data. The elements of the principal diagonal of the
matrix represent the correct matches and the remaining ele-
ments, mismatches, This matrix is popularly known as an er-
ror or confusion matrix (Card, 1982) and forms the basis for
a series of descriptive and analytical statistical techniques
(Congalton, 1991; Hoffer and Fleming, 1978; Rosenfield and
Fitzpatrick-Lins, 1986).

The ideal situation in map accuracy is represented by a
diagonal matrix where only principal diagonal elements have
non-zero values; all areas on the map have been correctly
classified (van Genderen and Lock, 1977; Mead and Szajgin,
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1982; Congalton et al, 1983). This situation is rarely the case.
A distinction is often made between producer's and user's
accuracy. Producer’s accuracy indicates the probability of a
test or reference location known to belong to category C is
accurately labeled as category C. It is a measure of omission
error. This accuracy measure is obtained by dividing the to-
tal number of correct entries in a category (i.e., diagonal ele-
ment) by the total number of entries of that category as
derived from the reference data, i.e., the column total, On the
other hand, user’s accuracy indicates the probability that a
test or reference location labeled as category C belongs to
category C (Story and Congalton, 1986). This is a measure of
commission error. It is estimated by dividing the total num-
ber of correct entries in a category by the total number of en-
tries that were classified in that category, i.e., the row total.

One advantage of these methods is that they yield a sin-
gle overall map accuracy index, usually presented as a per-
cent correct. This measure can simply be the sum of the
major diagonal divided by the total number of samples, or
the accuracies of each category in the map can be weighted
by its area in the map and these values summed (Card,
1982). Similarly, a statistic, kappa, can be calculated that
provides a measure of difference between the observed agree-
ment between two maps and agreement that is contributed
by chance (Congalton and Mead, 1983; Rosenfield and Fi-
tzpatrick-Lin, 1986; Rosenfield, 1981). Conditional kappa
coefficients can also be calculated for individual map cate-
gories. For those interested readers, Congalton has recently
provided a thorough review of methods for assessing accu-
racy of thematic maps and the relevant current research
(Congalton, 1991).

The traditional methods of assessing accuracy, outlined
above, suffer from a number of limitations:

(1) It is assumed that each area in the map can be unambigu-
ously assigned to a single map category. In assessing ground
truth for map accuracy, the expert has to resolve this issue
by selecting a single category for each ground location and
matching this against the map value.

Information on the magnitude of errors is limited to noting
the pattern of mismatches between categories in the map.
Data concerning the magnitude or seriousness of these mis-
matches as indicated by the conditions of the ground site
cannot be used.

Third, the user needs to be provided with more complete
and interpretable information about the map than is cur-
rently practiced (Aronoff, 1982a; 1982b). Detailed informa-
tion on errors will help the users to check if the map can be
used for a particular purpose.

(2

(3

The methods presented in this paper provide informa-
tion about thematic maps and the errors in those maps perti-
nent to the three issues outline above. The intention is to
improve the utility of thematic maps through a better under-
standing of their errors.

Fuzzy Sets

This section provides some essential background on fuzzy
sets and a description of the use of fuzzy sets in the context
of map accuracy assessment. The concept of a fuzzy set was
introduced by Zadeh (1965, 1973) to describe imprecision
that is characteristic of much of human reasoning, particu-
larly in domains such as pattern recognition, communication
of information, and abstraction. Zadeh (1965; 1973) and oth-
ers (Dubois and Prade, 1980; Kaufmann, 1975; Goguen, 1969)
have outlined quantitative techniques for dealing with
vagueness in complex systems.

PE&RS



PEER-REVIEWED ARTICLE

Formally, a fuzzy set can be defined as follows:

Let X be a universe of points (or objects) with a generic
element of X being denoted by x. A fuzzy set of X, labeled 4,
is characterized by a membership or characteristic function,
ua, which associates with each point in X a real number in
the closed interval (0,1). The value of pa(x) at x represents
the grade of membership of x in A. This can be designated as

A = {xpalx) | x € X

Note that the nearer the value of wa(x) to 1.0, the higher
the grade of membership of x in A.

The assumption underlying fuzzy set theory is that the
transition from membership to nonmembership is seldom a
step function. Rather, there is a gradual but specifiable
change from membership to nonmembership. In (classical)
set theory, a membership function, ua(x) has only two values
0, 1. In particular,

4 1 ifxeX
BalX) =19  ifxeX

Fuzzy sets have been used in remote sensing for image
interpretation and image classification. While interpreting an
image, experts express their assessment using qualitative lin-
guistic values. Fuzzy sets in this context can be used to
mathematize these linguistic values and to obtain a consen-
sus if the experts provide different (linguistic) values. Thus,
they provide a consistent way to measure and model qualita-
tive values that is useful for subsequent decision-making
(Hadipriono et al.,1991). Current methods of classification
employed in remote sensing generally assume that each pixel
belongs to one class only. A classification algorithm based on
fuzzy representation (such as Fuzzy C-Means classifier) has
been shown to be useful in extracting more information from
remotely sensed images than conventional algorithms (Tri-
vedi and Bezdek, 1986; Wang, 1990) as well as in generating
“hard classification” (Kent and Mardia, 1988), The amount
of land cover within a pixel is reflected in the fuzzy mem-
bership value derived from the fuzzy classifier (Fisher and
Pathirana, 1990).

Fuzzy set theory can also be used in GIS applications.
More specifically, it can be used to represent uncertainty in
spatial databases and manipulate uncertainty as data are
transformed by various GIS functions (Robinson and Strahler,
1984; Leung, 1988; Robinson 1988). For example, a map
overlay function results in the creation of a composite map
that contains uncertainty and errors. Using fuzzy sets, it is
possible to compute the uncertainty in the composite map if
the membership values of sites in each cover class were
known for each map layer (Veregin, 1989). Fuzzy sets can
also be used to estimate similarity and other relationships.
Fuzzy relational databases, like FRSIS (Kollias and Voliotis,
1991), can handle imprecision in data representation and
manipulation and allow for individualization of data. There
are also other examples from land survey (Wang et al., 1990),
soil analysis (Burrough, 1988), and representation of
viewsheds derived from a DEM (Fisher, 1991; 1992).

Fuzzy Sets in the Context of Map Accuracy Assessment

We define some terms and notations in order to describe
how fuzzy sets can be used to analyze the accuracy of the-
matic maps. Let X be the finite universe of discourse, which
in the present context is a set of sites (or polygons) rep-
resented in the map. Let € denote the (finite) set of classes
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(or categories) assigned to sites in X; let m be the number of
categories |¢| =m. For each site x € X, we define X(x] to be
the class assigned to x in the map. The set

M = {(x,x(x) | x € X}

defines the map data.
For the evaluation of map accuracy, usually a subset S C
X of n sample sites is used. A fuzzy set

Ac = {(x.pc(x)) | x € S}

is associated with each class C € € where p(x) is the char-
acteristic or membership function of C. Membership func-
tions are derived from the linguistic values provided by the
experts in the process of evaluating map accuracy (described
below). Thus, the data set used for the fuzzy analysis is an n
by m matrix of membership functions, denoted as <#. The
test sites are the rows of =4 and the classes are the columns
of o4 Abusing the notation slightly, we will also use A¢ to
denote the column of =4 corresponding to the class C. See
Table 1 for a hypothetical example using a 40 by 4 matrix.
This table also includes two additional columns representing
sample site numbers, x = 1, ..., 40, or S and the label as-
signed to the polygon in question, or x(x). The different
classes A, B, C, and D are in the set ¢; x(x) denotes the map
label: and w.(x) denotes the expert evaluation for category A
at site (x), us(x) for a category B, and so on.

Construction of a Linguistic Scale

The methodology presented here was developed based on
the observation that experts most often use linguistic con-
structs to describe map accuracy. It has been the observation
of the authors over 10 years of evaluating the accuracy of
maps that qualitative, linguistic terms are generally used to
evaluate the quality of various map labels for individual sites
when visited in the field. Verbal reports of a group of experts
during map accuracy assessment were collected and ana-
lyzed using the protocol analysis techniques described in Er-
icsson and Simon (1984). It revealed that experts are not
only able to distinguish “absolutely right” from “absolutely
wrong” values but are also able to identify intermediate values
between these two extremes. At least three different intermedi-
ate values are clearly distinguished by all of the experts. Based
on this analysis, a five-point membership scale ranging from
“absolutely right” to “absolutely wrong” values was developed.
The linguistic values and the descriptions used by the experts
to evaluate a map class at a site are:

(1) Absolutely Wrong: This answer is absolutely unacceptable.
Very Wrong.

(2) Understandable but Wrong: Not a good answer. There is
something about the site that makes the answer understand-
able but there is clearly a better answer. This answer would
pose a problem for users of the map. Not Right.

(3) Reasonable or Acceptable Answer: Maybe not the best pos-
sible answer but it is acceptable; this answer does not pose
a problem to the user if it is seen on the map. Right.

(4) Good Answer: Would be happy to find this answer given on
the map. Very Right.

(5) Absolutely Right: No doubt about the match. Perfect.

The following procedure is used to obtain the linguistic
membership scale. The expert's job is to evaluate each land-
use class at each site and then choose the most suitable lin-
guistic value to describe his/her perception of the nature of
match between each map category and the ground truth. The
expert does not know what the map class is prior to or dur-
ing the evaluation procedure. Linguistic values obtained
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TaBLE 1. A HypoTHETICAL EXAMPLE; n = 40, m = 4, anD C = {A, B, C, D}. THE COLUMNS (us(%), pa(X), ite(X), po(%)) FORM THE 40 X 4 MaTrix A. TABLES 2
T0 5 ARE DERIVED FROM THE DATA PRESENTED IN THIS TABLE.

Site Map Site Map
No. Label Expert Evaluation (A) No. Label Expert Evaluation (A)

x X(x) Halx] s(x) Belx) (X x x(x) Balx) s(x) Kelx) Holx)
1 D 1 4 1 4 21 B 1 1 4 1
2 A 5 1 1 1 22 A 5 1 1 1
3 C 1 1 3 4 23 D 1 1 3 1
4 B 1 5 1 1 24 Cc 1 1 3 4
5 D 1 4 1 4 25 D 1 1 4 3
6 A 9 1 1 1 26 B 1 2 3 1
7 D 1 4 2 4 27 A 5 1 1 1
8 A 5 1 1 1 28 Cc 1 1 4 1
9 B 3 4 1 1 29 D 1 2 1 5

10 C 1 3 4 2 30 A 5 1 1 1
11 A 5 1 1 1 31 B 1 2 3 1
12 B 1 3 3 1 32 C 1 5 3 1
13 Cc 1 3 2 3 33 A 5 2 1 1

14 D 1 3 3 2 34 D 1 1 1 4

15 B 1 4 4 1 35 B 1 1 5 1

16 A 5 1 1 1 36 C 1 3 4 1

17 B 1 4 1 2 37 B 2 5 2 1

18 C 1 1 5 3 38 D 1 4 2 4
19 C 1 2 3 4 39 A 4 3 1 1
20 D 1 4 1 3 40 C 1 3 1 3

from the expert for each class at every site form the input
data to Table 1.

For the sake of convenience, the linguistic values are
converted into a numerical scale ranging from 1 to 5. Thus,
instead of a continuously measured membership function
ranging between the usual 0 — 1 used in fuzzy sets, the
membership scale used in the present research is discrete
and is based on the five linguistic levels. Each membership
function A¢ in Table 1 is in the numerical format ranging be-
tween 1 and 5.

One of the differences between the traditional and pro-
posed procedure is worth noting, Because each map category is
evaluated at each test site, the experts can recognize the hetero-
geneity of ground cover and ambiguity of map classes and use
it to describe the degree of match between each map class and
ground data. For example, they might use linguistic values
such as “absolutely right” or “reasonably right” to describe the
nature of the match. The expert is not limited to a single match
for a site or bound to the existence of a perfect match for each
site. On the other hand, the traditional method allows only for
a “yes” (match) or “no” (mismatch) condition.

Accuracy Assessment Using Fuzzy Operators

A series of measures have been developed based on fuzzy
functions that provide indications about the quality of a map
and its categories (Zadeh, 1965; 1973; 1975; Goguen, 1969;
Dubois and Prade, 1980; Kaufman, 1975). The results of
these functions are four tables which, when taken together,
give more overall information than is possible from a tradi-
tional confusion matrix. The use of these functions and the
tables they produce are presented in the context of an exam-
ple using the linguistic scale previously described. The data
used for the example is hypothetical, but is designed to in-
clude some of the properties we have found in our initial
tests using this approach for map accuracy assessment
(Woodcock and Gopal, 1992). Each table is evaluated in
terms of its contribution to understanding the nature, fre-
quency, magnitude, and source of errors in a thematic map.
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Frequency of Matches and Mismatches

In this subsection a procedure is described that measures the
accuracy of the map in terms of the frequency of matches
and mismatches between the sample map data and the ex-
pert data, i.e., between =11 and 4 The procedure divides the
traditional question of “how accurate is the map?” into the
following two more precise questions:

® How frequently is the category assigned in the map the best
choice for the site?

® How frequently is the category assigned in the map accepta-
ble?

Define a Boolean function o that returns a result of zero or
one based on whether x belongs to the class C with respect to
the matrix &£ This evaluation of sample site x from the set S (x
€ S) and map category ¢ depends on the criteria used to define
o. That is, o (x,C) = 1 if the x “belongs” to C, and o{x,C) = 0
if x does not “belong” to C. The definition of “belong” de-
pends on o. We will consider two different definitions of o
(see below for details). If o{x,x(x)) = 1, then we say that there
is a match between the map data and the expert data at site x,
and if o (x, x(x)) = 0, then there is a mismatch.

For each map category C € ¢, we compute two quantities

wc = {x € S| x(x) = C and o(x,C) = 1}|
@c = {x € S| x(x) = C and o(x,C) = 0}].

That is, we count the number of sites x with x(x) = C in
terms of matches (wc) and mismatches (@.).

We now define two functions which can be used as o.
One of them, called MAX, is defined as follows:

MAK(KE] {; if pe(x) 2 pe(x) forall C' € ¢,
otherwise.
That is, MAX (x,C) is 1 if the value of the membership func-
tion for x in category C (u¢ (x)), is maximum among all map
categories {uq(x)).
The other function that we define is called RIGHT. It is
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TasLE 2. NATURE AND DISTRIBUTION OF ERRORS USING MAX AND RIGHT

Expert Evaluation

MAX(M) RIGHT(R)

Map Improvement
Label Sites Match(we) Mismatch(we) Match(we) Mismatch(wg) R - M)

Class A 10 10 (100.00%) 0 ( 0.00%) 10 (100.009) 0 ( 0.00%) 0 ( 0.00%)
Class B 10 6 ( 60.00%) 4 (40.00%) 6 ( 60.00%) 4 (40.00%) 0 ( 0.00%)
Class C 10 4 ( 40.00%) 6 (60.00%) 8 ( 80.00%) 2 (20.00%) 4 (40.00%)
Class D 10 6 ( 60.00%) 4 (40.00%) 8 ( 80.00%) 2 (20.00%) 2 (20.00%)
Total 40 26 ( 65.00%) 14 (35.00%) 32 ( 80.00%) 8 (20.00%) 6 (15.00%)

defined with respect to some prespecified threshold value 7,
where 7 is one value in the linguistic scale or a specified
value in the membership function. A site x “belongs” to a
category C if its membership function, pc(x) = 7. Formally,

1 ifpex) =7
RIGHT(%,C) = {0 otherwise.

The threshold value 7 in the present research equals any
degree of right that is a value = 3 in the linguistic scale de-
scribed before.

Table 2 is derived from the hypothetical data set shown
in Table 1, using the MAX and the RIGHT functions. The first
column shows the map category or label for purposes of
comparison and the second column shows the total number
of sites under each map category. The matches (&c) and mis-
matches (@) using the two functions are given both in
counts and in percentages in columns 3 to 6 of the table. The
last column of the table shows the improvement in accuracy
associated with using the RIGHT function instead of the MAX
function.

Typically the MAX function is more conservative than
the RIGHT function, but that is not always the case. It is pos-
sible for a site not to have any map categories that fit the
RIGHT function, but still have a highest score. Using our lin-
guistic scale, this situation would occur for a site whose
highest score was 2.

Traditional confusion matrices usually follow the ap-
proach of either the MAX or the RIGHT function. The MAX
function would apply when the confusion matrix comes
from blind samples (i.e., when prior knowledge of the map
label is not used at the time of the evaluation of the site),
and the RIGHT function when the map label is known during
its evaluation. Often, information about the level of knowl-
edge of the map label at the time of its evaluation is not pro-
vided with a confusion matrix. By explicitly separating the

TasLe 3. RESULTS OF THE DIFFERENCE OPERATOR, WHICH SHOWS BOTH THE
MAGNITUDE AND FREQUENCY OF ERRORS ACROSS CATEGORIES

Mismatches Matches

Map Arithmetic
Label Sites -4 -3 -2 -1 0 2 3 4 Mean
Class A 10 0 0 0 0 0 1 0 1 8 3.60
Class B 10 : | 1 0 2 2 1 0 2 1 0.20
ClassC 10 0 0 2 4 0 2 110 -0.10
ClassD 10 0 0 1 34 0 0 2 O 0.10
Total 40 1 1 3 9 6 4 1 6 9 0.95
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results for the MAX and RIGHT function, no confusion in this
regard is possible.

Data from the MAX and RIGHT functions taken together
are more useful than either taken separately. In this regard,
the results in Table 2 for Class C are interesting. If just the
MAX function were used, it would indicate Class C to be a
major problem for the map. However, the results for the
RIGHT function indicate that the impact on the user might
not be as severe as the MAX function indicates. Class C is
clearly a poor class, where the best answer is usually not
provided, but an acceptable answer is given 80 percent of the
time. Similarly, the strength of the result for Class A indi-
cated by the RIGHT function is enhanced by the knowledge
of its results for the MAX function.

Magnitude of Errors

One of the main benefits of the methods presented here
based on fuzzy sets is the ability to evaluate the magnitude
or seriousness of errors. In order to measure the magnitude
of error, a function A § — Z is introduced. For a given site x,
A(x) measures the difference between the score of the map
category x(x) of x and the highest score given to x among all
other categories of ¢. Formally, A(x) is defined as

A(x) = pyx(x) — max pc(x). (1)
cee

C#X(x)

In the present study the linguistic values range between
1 and 5, so —4 < A(x) = 4. For the ideal case, where the
mapped category is perfectly right (score 5) and all other cat-
egories are absolutely wrong (score 1), the above defined
function, called the DIFFERENCE function, yields 4. All sites
that are matches using the MAX function have DIFFERENCE
values greater than or equal to 0 and all mismatches are neg-
ative. A mismatch with a DIFFERENCE value of —1 would cor-
respond to a case where the map label received a score only
one less than the highest score given. Clearly, this kind of
error is not as troublesome as those where a —4 is found.
The results of the use of this function are dependent on the
manner in which values are assigned for the membership
functions. In our example, we have used a simple linear
function to convert linguistic answers to values in a member-
ship function, but there are many other possibilities. This
approach lends to the situation where using this function, a
difference of —2, produced when the mapped category re-
ceived a score of 3 and the maximum score is 5 at a site, is
equivalent to a situation in which the mapped category re-
ceived a value of 2 and the maximum score is 4.

For each category C € € and integer —4 <1 < 4, we
compute the quantity D! the number of sites x such that x(x)
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Tasle 4.  Ser MEMBERSHIPS ACROSS CATEGORIES USING MAX (SEE TEXT)

MEMBERSHIP (x)

0 1 2

Ma

Label Sites T M N T M N T M N
Class A 10 0 0 0 9 9 0 1 1 0
Class B 10 0 0 0 6 3 3 4 3 1
Class C 10 0 0 0 1 1 0 9 3 6
Class D 10 0 0 0 3 2 1 7 4 3
Total 40 0 0 0 19 15 4 21 1% 10

= C and A(x) = i. Table 3 illustrates the results of the DIF-
FERENCE function for the hypothetical test dataset of Table 1.
The computed values D! are shown under matches and mis-
matches (using the MAX function) columns in Table 3. Sev-
eral trends are interesting to note. First, Classes B and D,
which have similar frequencies of errors as shown by the
MAX function, have quite different magnitudes for their er-
rors, Class B generally has errors of higher magnitude than
those in Class D. But Class D has a larger number of zero dif-
ferences (sites where there is no difference between the map
category and other categories). Also, as one might expect,
Class A tends to have high positive DIFFERENCE values, while
Class C rarely has large positive DIFFERENCE values. As the
results from Table 3 imply, Class C has frequent negative dif-
ference values.

The last column shows the arithmetic mean of all scores
for each class. It can be used as an indicator of the quality of
a class, For example, the most accurate class, Class A, shows
the higher positive arithmetic mean. Class B and D have
lower arithmetic means. Class C has a negative arithmetic
mean, indicating the larger number of errors in this class.
The use of composite values for map categories based on
these DIFFERENCE values may provide useful indices. It may
even be appropriate to use a weighting scheme of some kind
to accentuate the effects of the negative values. One possibil-
ity might be to average only the negative values to produce
something like an error magnitude index for each category.
The use of the DIFFERENCE function is dependent on the link
between the linguistic scale used in evaluating map sites and
the set membership function. In this paper, a simple discrete
membership function is used, with unit differences between
each level in the linguistic scale. Clearly, other possibilities
exist for relating linguistic scales to set membership func-
tions (Zadeh et al., 1975; Lakoff, 1973) and future research in
this area is warranted.

Source of Errors

Categorical errors in thematic maps frequently arise due to
the heterogeneous nature of ground composition. This aspect
of errors can be examined using a MEMBERSHIP function A : N
— Z which measures the representation of multiple cover
classes at each site as evaluated by the expert. The function
selects those categories whose p. (x) is = 7. Formally, it is
defined as follows:

Alx) = {C| C € ¢ and pc(x) = 7Y, (2)

where 7 is the threshold value defined in the section on Fre-
quency of Matches and Mismatches. In the example de-
scribed in Table 1, |C| = 4, so A(x) ranges between 0 and 4.
(Note that A(x) can equal 0 if 7 > p.(x) for all &)

The MEMBERSHIP function provides data on the frequency
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of set memberships at each site. One of the strengths of fuzzy
sets is the ability to recognize multiple set memberships and
grades of set membership. The five linguistic levels given rep-
resent degrees of set membership. The MEMBERSHIP function
calculates the frequency of set membership for individual sites.
In this case, some degree of right (i.e., values greater than or
equal to 3) constitutes set membership.

For each category C € ¢ and integer 1 < i < 4, we com-
pute the number of sites such that x(x) = C and A(x) = i.
These are estimated for the hypothetical data of Table 1 and
shown in Table 4. A one-member site has a membership
value greater than 7 for only one category while a multiple-
member site has membership values for two or more cate-
gories. The total number of sites (T) in each group is further
distinguished into matched (M) and mismatched sites (N)
using MAX. Nine out of a total of ten sites in Class A are sin-
gle-member sites. All nine single-member sites are correctly
matched as shown in the second data column marked “M"
in the table, as is the two-member site. On the other hand,
the least correct category, Class C, shows the following pat-
tern. It has the least single-member sites. Its only single-
member site is correctly matched (see column “M" under set
membership 1). Class C has nine two-member sites. Six of
these sites are mismatched, meaning that some other class
has been given a higher score than C in these sites. The re-
maining cover classes, Class B and D, fall between the two
extremes A and C (see Table 4). Neither zero membership
nor three or four membership sites occur in this dataset.

The intent of the MEMBERSHIP function is to explore the
possible sources of error in maps, which can be indicated in
the frequency of matches and mismatches for the different
numbers of set memberships. In the example presented, the
proportion of matches is higher for the single membership
sites than the multiple membership sites. This pattern is the
opposite of what would be expected due to random effects,
While the dataset used is hypothetical, the results mirror
those found in our initial tests of this approach (Woodcock
and Gopal, 1992). The use of the table is in giving some indi-
cation of the environmental conditions in which errors are
being made. If there are significant numbers of mismatches
(errors) in the single membership sites, then the mapping
process is breaking down in the unambiguous locations, If
the mismatches are concentrated in the multiple membership
sites, efforts to improve the mapping methods should focus
on the areas of heterogeneous cover and relative ambiguity
between categories. Also, notice that the frequency of multi-
ple memberships is not the same between categories. The
high frequency of occurrence of multiple set memberships or
the lack thereof can be an indication of the character of a
map category to the users of a map.

If all sites had single set memberships, there would not
be any need for the use of fuzzy sets and the methods pre-
sented in this paper. For those sites there is one unambigu-
ous right answer. Thus, the frequency of multiple
membership sites gives some indication of the need for the
use of fuzzy sets,

Nature of Errors

One important kind of information is the categorical nature
of the errors, or between which categories is their confusion.
In a traditional analysis, this information is contained in the
off-diagonal elements of an error or confusion matrix. Similar
tables can be constructed using the CONFUSION and AMBIGU-
ITY functions and fuzzy sets. The CONFUSION function ¢: N
— 2¢ identifies categories with a rating greater than the
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mapped category. In particular, for a site x, {(x) computes the
set of categories whose membership values are greater than
the membership value assigned to the map category x(x).

{(x) = {C| C € Cand pc(x) > pyn(X)}

It is identical to a traditional confusion matrix except for
the fact that more than one category can have a rating (uc)
higher than the mapped category (u,. (X)) at a single site (x).
For each (distinct) pair of categories C, C' € ¢ we compute
the quantity {cc, the number of sites x such that x(x) = C
and pe(x) > pc(x). The values of this CONFUSION function
are the first values given in each cell of Table 5.

The AMBIGUITY function 7 : N— 2¢ identifies categories
with the same rating as the mapped category. Formally:

n(x) = {C| C € Cand pc(x) = pyw(x)}

For each pair of (distinct) categories C, C' € € we compute
the quantity 7cc, the number of sites x such that {x) = C
and pe(x) = uc(x). The values for the AMBIGUITY function
are given in the second column of each category in Table 5.
The results are presented only where the membership values
are some degree of right (values greater or equal to 3). The
information on the equally rated or ambiguous categories
will be particularly interesting for users of the maps if the
matrix is not symmetric. The asymmetries indicate which
categories more frequently include sites whose membership is
ambiguous. From our example, Class D includes many sites
rated equally with Class B, but Class B does not include any
sites rated equally with Class D. The conclusion for a user of
the map would be to expect sites in the ambiguous areas be-
tween Classes B and D to have been mapped as Class D.

Discussion

To summarize, the proposed methods have several advan-
tages over the traditional approach in assessing the accuracy
of thematic maps. Some of the improvements are in the form
of additional information about errors of the kind provided
from traditional analyses. For frequency of errors, the com-
bined use of the MAX and RIGHT functions constitutes an im-
provement, Similarly, using the CONFUSION and AMBIGUITY
functions provides additional information on the nature of
errors, There are also benefits obtained in the form of new
kinds of information about errors. The DIFFERENCE measure
yields information on the magnitude of errors, of a kind
unobtainable from traditional approaches. The benefits asso-
ciated with the use of the DIFFERENCE function may prove
valuable in understanding the distribution of errors. The
MEMBERSHIP function also provides information outside the
domain possible using classical set theory. The MEMBERSHIP
function provides indications of the kinds of environments
in which errors are concentrated, which may help isolate the
sources of errors in maps.

There are many issues and questions that remain to be
addressed regarding the use of fuzzy sets in map accuracy
assessment. Our hope is that this paper will stimulate inter-
est in the use of fuzzy sets and that others will expand on
our ideas. One area that needs attention concerns the ability
to use these methods for the purposes of map comparison.
Most of the information in the tables presented in this paper
relates to the problem of understanding the errors in a single
map. For comparing maps, additional research is needed on
a couple of topics. First, a method of distilling the results to
a single measure or index of map accuracy may be required
as well as a way to produce a kappa-like statistic. A related
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TABLE 5. CONFUSION AND AMBIGUITY FUNCTIONS (SEE TEXT FOR DETAILS)
E t Evaluati
xXper uation No. of
Map Class A ClassB ClassC  Class D mismatches
Label ltee Moo fec Mee fec Mec e Mee lec TNee
ClassA X X 0 0 0 0 0 0 0 0
ClassB 0 0 X 4 2 0 4 2
ClassC 0 0 3 0 X X 5 0 8 0
ClassD 0 0 2 1 3 0 X X 5 4
Total 0 0 5 4 7 2 5 0 17 B

concern is a way to standardize results from different ex-
perts. Some experts will be more lenient in the number of
multiple set memberships given, and this factor will need to
be taken into account. Another dimension of needed research
concerns the ability to derive global estimates for map cate-
gories along the lines of the approaches given by Hay (1988)
and Jupp (1989). Their methods could be used by simply re-
constructing a traditional error matrix using the fuzzy data,
but a method that took advantage of the additional informa-
tion would be preferable.

The issue of errors and inaccuracy in a spatial database
is an important research topic in GIS. Decisions made using
the end products of GIS analysis are dependent on how errors
propagate through the system. This research is concerned
with one type of error — categorical or thematic error. The
methods outlined in this paper describe how magnitude, na-
ture, and source of these errors can be identified and mea-
sured using fuzzy sets. It fits into Level I and II of the
“hierarchy of needs” model of GIS proposed by Veregin
(1989). Until recently, error modeling has not received much
attention (Goodchild et al., 1992; Lanter and Veregin, 1992).
Understanding the nature and distribution of errors in a map
is a step in this direction. The paper has described various
measures that can be used to analyze errors in greater detail.
This research has implications in the area of error modeling
and developing a model of error propagation in the GIS con-
text, as its results can be easily incorporated to produce bet-
ter and more predictive error models.

Spatial data is often imprecise and cannot be captured
by boolean logic. The proposed methodology can cope with
imprecise or ambiguous data. It permits subjective evaluation
of experts to be incorporated into the design. The results of
this research can be incorporated into error modeling and
conveyed to the map user.

Conclusion
Categorical maps are commonly produced to represent com-
plex geographical patterns. As such, it is essential that
greater efforts be made to deal explicitly with the measure-
ment of errors in categorical maps. This paper describes a
new approach to assess the accuracy of a thematic map
based on fuzzy sets. The suitability of fuzzy sets in the map
accuracy context is demonstrated by deriving a set of mea-
sures to analyze the nature, frequency, source, and magni-
tude of errors. The approach is illustrated using a simple
example, and the results obtained from it are compared with
those of the traditional approach. The feasibility of the ap-
proach is further discussed using empirical data (Woodcock
and Gopal, 1992).

The results of the analysis provide useful information to
both the producer and user of thematic maps. Producers can
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improve methods of making the maps and presenting the in-
formation on accuracy and errors to the end user. Use of the-
matic maps will be enhanced by an improved understanding
of their reliability.
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