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Recognition and Reduction of Systematic
Error in Elevation and Derivative Surfaces
from 71/2-Minute DEMs

Daniel G. Brown and Thaddeus J. Bara

Abstract

The presence of systematic errors was observed in digital el-
evation data obtained from the USGS as 7¥z-minute quadran-
gle maps within a study area including the high relief
environment of Glacier National Park, Montana. Digital sur-
faces of elevation and elevation derivatives, including slope
angle and curvature, were examined for the presence of ani-
sotropy through the use of calculated semivariograms and
fractal dimensions. The existence of strongly anisotropic
conditions analytically confirmed the presence of systematic
errors in the dataset. The anisotropic conditions increased
with the calculated derivative surfaces. Standard filtering
procedures were applied to reduce the systematic errors. Al-
ternative filters, prescribed after analysis of the semivario-
grams, reduced the magnitude of the anisotropy more than
did a standard 3 by 3 low-pass filter.

Introduction

Systematic errors in digital data are the result of “some de-
terministic system which, if known, may be represented by
some functional relationship” (Thapa and Bossler, 1992, p.
836). Systematic errors may be the most significant errors in
a spatial or statistical analysis because they are not easily de-
tected yet can introduce significant bias.

Two techniques, based on the assumption that short-
range anisotropy in spatial data is indicative of error, are
presented for revealing the presence and form of systematic
error. Anisotropy is present when the general pattern of vari-
ation in one direction (eg., north to south) is different from
the pattern of variation in another direction (eg., east to
west). Webster (1985) discussed several approaches to ana-
lyzing anisotropy using semivariogram analysis. A simplified
version of the conical projection discussed by Webster, in-
volving the calculation of semivariance and fractal dimen-
sion in two orthogonal directions, is used here to assess the
presence and degree of anisotropy in the original and deriva-
tive topographic surfaces.

DEM data produced by the U.S. Geological Survey are ac-
curacy checked against the source products through stan-
dardized procedures, involving a comparison of elevation
values from at least 20 randomly selected points within the
digital dataset with the values at the same 20 locations on
the source product (U.S.G.S., 1987). A minimum acceptable
root-mean-square error (RMSE), or difference between DEM
and source product, of seven metres has been established
(U.S.G.S., 1987). This method of error calculation may be ad-
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equate under the assumption that errors are randomly dis-
tributed throughout the dataset.

The assumption of randomness in accuracy tests is con-
founded by the presence of systematic errors (Li, 1991). Aer-
ial photograph scanning procedures used in the production
of DEMs can result in “banding” or “striping” remnants, a
form of systematic error process which commonly affects
photogrammetric digital elevation data (U.S.G.S., 1987). The
techniques presented in this paper are well suited to reveal-
ing and analyzing this type of systematic error.

Recognizing that filtering can reduce both systematic
and random errors in a dataset, O’Callaghan and Mark (1984)
applied a 3 by 3 low-pass filter to a DEM dataset subse-
quently used for drainage network extraction. While the 3 by
3 filter is a popular approach in dealing with error, it may be
inadequate for removing all of the observed error. Suggested
improvements include altering the filter window to a size
which is more appropriate for the pattern of error as revealed
in an analysis of anisotropy. Three low-pass filters (3 by 3, 3
by 5, and 3 by 7) were tested for their ability to reduce the
systematic errors indicated by the semivariogram and fractal
analysis. Suggestions for filtering USGS photogrammetric DEM
datasets to reduce systematic error are provided.

Semivariogram and Fractal Concepts

Semivariance is the primary tool of modern geostatistics, a
field of analysis developed from regionalized variable theory
for the modeling of continuous, non-deterministic surfaces
exhibiting spatial dependence. Geostatistics were initially
applied to mining geology (Journel and Huijbregts, 1978;
Clark, 1979), and were extended for analysis of the pattern
and spatial structure of soilscapes (Burrough, 1983a; Bur-
rough, 1983b; Webster, 1985), vegetation (Cohen et al., 1990),
and topographic surfaces (Mulla, 1988; Oliver et al., 1989).
Semivariances have been analyzed to suggest optimal cell
sizes for modeling within a raster-based geographic informa-
tion system (Brown et al., in press).

Semivariance analysis describes a surface as the average
squared difference of surface values which are a given dis-
tance, or lag, apart. Semivariance in a single dimension, v(h),
is estimated by the expression

N-h
y(h) = 1/2(N — h) § (z(i) — z(i + h))? (1)

where N is the number of points on the surface, z(i) is the
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Figure 1. Study area map.

value of the surface at any point 7, and z(i+h) is the value of
the surface h units from i. The shape of the semivariogram, a
plot of semivariance against lag, reflects the underlying
structure of spatial variability and is frequently modeled
using spherical, linear, or exponential equations (Webster,
1985). Estimates of model parameters can be used as general
descriptors of these underlying patterns (Mulla, 1988).

Statistical self-similarity across multiple spatial scales
(the definition of a fractal which is used here) is present
when semivariance increases logarithmically with lag (Bur-
rough, 1983a). The fractal dimension of a surface can be cal-
culated as a function of the slope of a log-log transform of
the semivariogram by the equation

D=3-m?2 ()

where D is the fractal dimension and m is the slope of the
log-log semivariogram. While topographic surfaces do not ex-
hibit pure fractal behavior (Mark and Aronson, 1984), they
often exhibit self-similarity across a limited range of scales.
The calculations presented here are limited to variation
within a range of 180 metres, within which fractal behavior
was expected.

Polidori et al. (1991) used semivariograms and estimates
of surface fractal dimensions for assessing systematic errors
in DEMs. This paper demonstrates the logical extensions of
their work by examining the effects of systematic error in the
elevation data on errors in the derivative surfaces of eleva-
tion, slope angle, and slope curvature, and by suggesting
ways of correcting for these errors.

Study Area

A portion of Glacier National Park (GNP), in northwestern
Montana, was chosen as the study area for this analysis (Fig-
ure 1). Terrain is among the most important factors which
regulate the hydrologic (Walsh et al., 1990), ecologic (Brown,
1991; Bian and Walsh, 1992), and geomorphic (Butler and
Walsh, 1990) processes active in GNP. The rugged landscape
in the Park was shaped by Pleistocene mountain and valley
glaciers. Hanging valleys, cirques, aretes, and horns are
prominent features of the GNP landscape.

Elevations in the study area range from 1120 metres to
3000 metres. Rapid changes in elevation are common. Over
small distances (i.e., less than 30 metres) slopes of 90 de-
grees are present (Butler and Walsh, 1990).

The study area encompassed parts of four 7%2-minute
quadrangles, including Logan Pass, Many Glacier, Lake Sher-
burne, and Rising Sun. Each of the DEMs was produced
through the TRASTER procedure at the Rocky Mountain re-
gional office of the USGs (U.S.G.S, 1987). Production in-
volved scanning two stereascopic aerial photographs and
photogrammetrically plotting elevation values along parallel
transects.

Figure 2. Unfiltered topographic surface variables: (a) elevation, (b) slope angle, (c) slope cur-
vature.
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The unfiltered elevation surface and its derivative slope
angle and slope curvature surfaces for the study area are
shown in Figure 2. Banding errors were particularly evident
in the slope surface (especially in the southern quarter of the
image) and the curvature surface, though reduction and re-
production necessary for publication conceal the errors
somewhat.

Methodology

The DEMs were entered into ARC/INFO lattice format using
DEMLATTICE, and converted to the ERDAS raster format using
the ARC/INFO commands LATTICEGRID and SVFERDAS. All sub-
sequent processing was carried out with software provided
with the ERDAS system and with FORTRAN language pro-
grams, written using the ERDAS Programmer’s Toolkit of sub-
routines (ERDAS, 1991).

Slope angles were calculated using the ERDAS TOPO mod-
ule. A FORTRAN language program was written by the authors
to generate a dimensionless, relative curvature surface from
each elevation surface. Partial second-order derivatives were
calculated in the east-west (x) and north-south (y) directions
for each pixel on the elevation surface, using fourth-order fi-
nite difference calculus by the expressions

partial x = (1/12)(16z(i +1,j) + 16z(i-1,

— 30z(i,j) —z(i—2,j) — z(i+2,) (3)
partial y = (1/12)(16z(i,j + 1) +162z(j — 1)

— 30z(i,j) — 2(ij—2) — 2(ij+2) (4)

where z(i,j] is an elevation value at row and column location
i,j. For peripheral cells lacking first- or second-order neigh-
bors in one or more directions (e.g., edge pixels), second-or-
der backward or forward finite difference calculus was used
to calculate the partial derivatives (Hornbeck, 1975). The
partial second derivatives were transformed to polar coordi-
nates, where r = \/ [partial(x)2 + partial(y)2] and 8 = arc-
tan [partial(y) / partial(x)]. The relative signs of the partial
derivatives were used to assign 0 to the appropriate quad-
rant. The transformed partials were projected onto a 45° to
135° axis of relative curvature. Finally, the values on this
axis were scaled between 1 and 255, with 128 representing
zero curvature (e.g., flat planar surface), 129 to 255 rep-
resenting increasing concavity and 127 to 1 representing in-
creasing convexity.

A FORTRAN language program was written to indepen-
dently calculate semivariance as a function of lag distance in
the two cardinal directions, north-south (N-S) and east-west
(E-W). The semivariograms were calculated at 1-pixel lag in-
tervals, out to a lag of 10 pixels (300 metres), for each of 12
data sets described below. The results of these calculations
were exported to a graphing package for the production of
the semivariograms.

Semivariograms were produced for the N-S and the E-W
cases from elevation, slope angle, and slope curvature data
for the detection of anisotropy. Fractal dimensions were cal-
culated for each case using Equation 2 and the slope expo-
nent of a best-fit logarithmic regression function through the
semivariogram. Fractal dimensions were only calculated out
to the sixth pixel lag (180 metres) to ensure a good regression
fit (all but one of the fits had a Pearson R value of 0.99 or
greater).

The elevation data were smoothed, using a standard, 3
by 3 low-pass filter (LPF) of the form

PE&RS

3 by 3 LFF
1 1 1
1 1 1
1 1 1

The smoothed elevation, as well as slope angle and slope
curvature calculated from the smoothed elevation surface,
were then tested for anisotropy through semivariogram
analysis.

Two alternative smoothing kernels, a 3 by 5 and a 3 by 7
LPF, were subsequently applied to the original elevation sur-
face. Both kernels were designed to provide additional
smoothing in the N-S direction, the dominant orientation of
the systematic errors. The forms of these filters are as fol-
lows:

3 by 5 LPF 3 by 7 LPF
i 4 4 £ I %
T 1 4 -
1 4 4 1 1 3
i 1 X £t 3 1
i a2 1 1 4 1

§ 4 4
1 4 1

The resultant smoothed elevation surfaces, as well as slope
angle and slope curvature values calculated from those sur-
faces, were again examined through semivariogram and frac-
tal analyses for the presence of anisotropic properties.
Conclusions were drawn regarding the effectiveness of the
three filters for reducing errors and the potential data loss re-
sulting from the filtering process.

Results

Assuming that a dataset unaffected by systematic errors
would be isotropic over short distances (i.e., exhibit similar
spatially dependent variation in all directions), semivario-
grams were constructed to test for anisotropy in the unfil-
tered elevation and the slope angle and slope curvature
datasets calculated from unfiltered elevation in the study
area (Figures 3a, 4a, and 5a). If the datasets were isotropic,
the shapes of the semivariograms constructed for the N-S and
E-W dimensions would be similar. While this was somewhat
true for the semivariograms of unfiltered elevation (Figure
3a), the slope angle or slope curvature calculated from unfil-
tered elevation exhibited significant anisotropy (Figures 4a
and 5a, respectively). The cyclic form of the semivariogram
for the curvature surface (Figure 5a) suggested that the sys-
tematic error was related to the banding artifact and that it
was only present in the N-S transects.

Fractal dimensions calculated from the semivariograms
(to a lag of 6 pixels) indicated the degree of disparity be-
tween N-S and E-W variance patterns in all three surfaces
(Figure 6). The E-W transects exhibited lower fractal dimen-
sions, indicating a higher degree of spatial dependence
within 180 metres. The difference between the fractal dimen-
sions increased progressively with the subsequent derivative
surfaces of slope angle and slope curvature.

These analyses indicate that systematic error patterns
present but not easily detected in the elevation data set were
more noticeable after neighborhood operations (e.g., slope
angle and slope curvature calculations) had been performed.
Although it is difficult to quantify the degree of error magni-
fication, the finding that systematic errors can be increased
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through the calculation of derivative surfaces concurs with
the conclusions of others (Walsh et al., 1987; Lanter and Ver-
egin, 1992).

Filtering to Reduce Error

Low-pass filters (LPFs) are suggested as a device for reducing
the systematic errors present in the DEM dataset and deriva-
tives. The three filters (3 by 3, 3 by 5, and 3 by 7 LPFs] were
applied to the elevation data and resulted in the semivario-
gram patterns shown in Figures 3b through 3d. The forms of
the semivariograms for the derivative surfaces of slope angle
and slope curvature are given in Figures 4b through 4d and
Figures 5b through 5d.

Although the N-S and E-W elevation semivariograms
tended to converge somewhat with increasing N-S filter size,
the effect is more clearly evident in the slope angle and
slope curvature semivariogram forms. The N-S semivario-
grams of slope and curvature, calculated from the 3 by 3 LPF
elevation data (Figures 4b and 5b), deviated from the E-W
pattern less than the patterns calculated from the unfiltered
elevation. The 3 by 5 LPF had the effect of nearly equalizing
the N-S and E-W patterns (Figures 4c and 5c). Finally, the 3
by 7 filter appeared to have over-compensated for the aniso-
tropic pattern, affecting N-S elevation variation to the point
that both slope and curvature were excessively smoothed in
the N-S dimension (Figures 4d and 5d).

The fractal dimensions for elevation, slope angle, and
slope curvature from the 3 by 3, 3 by 5, and 3 by 7 LPF data-
sets confirmed these observations (Figure 6). The N-S fractal
dimension values were higher than the E-W values in the 3
by 3 LPF elevation data and associated derivatives, though
the differences in the fractal dimensions were reduced from
the values in the unfiltered data. The 3 by 5 LPF fractal di-
mensions in both orientations were nearly equivalent. Differ-
ences in the 3 by 7 LPF fractal dimensions for the elevation
and slope surfaces were reduced with the N-S transects hav-
ing lower values. The 3 by 7 LPF curvature semivariogram
exhibited a poor logarithmic fit and was not, therefore, as re-
liable as the other values.

Differences between Filtered and Unfiltered Data

While filtering improves the spatial structure of the datasets
and reduces systematic error, filtering may have had the un-
desirable effect of altering elevation values which were ac-
tually correct. The potential amount of information loss
which may have occurred as the result of filtering was as-

Fractal Dimension

Elev
Slope

3

w

Curvature
Elev 3x3
Slope 3x3
Curv 3x3
Elev 3x5
Curv 3x5
Curv 3x7 pem

Figure 6. EastWest and North/South fractal dimensions for
each topographic variable and each filter.
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TaBLE 1. CENTRAL TENDENCY MEASURES OF THE ABSOLUTE DIFFERENCE
DISTRIBUTION BETWEEN FILTERED AND UNFILTERED ELEVATION VALUES.

Median
Mean (in metres) Mode
3 by 3 LpF 2.9 1 1
3 by 5 LPF 4.7 2 1
3 by 7 LpF 6.4 3 1

sessed by comparing filtered and unfiltered elevation sur-
faces. Three absolute difference surfaces were constructed by
calculating the absolute value of the difference between the
filtered (3 by 3, 3 by 5, and 3 by 7 LPFs) and unfiltered eleva-
tion values at each pixel. Central tendency measures (mean,
median, and mode) were calculated for the absolute differ-
ence surfaces (Table 1).

As expected, the central tendency of differences between
filtered and unfiltered elevation values increased with in-
creasing filter size. While the filtering process increased un-
certainty in the elevation values, it is difficult to formally
assess the accuracy of the filtered elevation surfaces without
comparing them with the control points used by the USGS for
accuracy assessment. It is useful, nonetheless, to note that
the changes in elevation values with filtering appear to be
minor, with the mode of each absolute difference surface
being 1 metre and the mean difference being less than 6.5
metres for each filtered surface.

Conclusions
The local-scale anisotropic pattern within USGS DEM products
studied in this paper are consistent with patterns resulting
from banding, a common by-product of DEMs generated
through photogrammetric procedures. These errors are seen to
increase in severity with the calculation of derivative surfaces
and have the potential to result in significant distortions and
biases in analyses which use these products. Consequently, the
acknowledgement of the presence of these errors and methods
to correct them are of interest to all users of digital elevation
products generated by photogrammetric techniques.

This paper illustrated how semivariance and fractal
analysis over short ranges can be used to

® detect the presence and structure of the systematic errors of
DEM products, and

® provide a quantitative basis for applying corrections to the
surface to mitigate the severity of these errors.

Smoothing kernels were generated and applied using stan-
dard features of a commercially available image processing/
GIS system. These kernels were shown to have the desirable
effect of decreasing the observed anisotropy in the elevation
and derivative surfaces, while resulting in only small abso-
lute differences between the original and smoothed elevation
surfaces. For the DEMs evaluated in this study, a 3 by 5 low-
pass filter (LPF) oriented in the N-S direction resulted in
comparable semivariogram forms and fractal dimensions in
the N-S and E-W directions, with a mean absolute vertical
deviation of 4.7 metres between the unfiltered and filtered
elevation surfaces.
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