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Abstract
Remotely sensed datq have considercble potential for map-
ping and monitoring tropical forests. For the production of
regional scale maps which may be up-dated periodically,
relatively coarse spatial resolution remotely sensed data,
sucfr os those from the NOAAAwnn, are an appropriate
source of data for such mapping applications. These maps,
however, typically depict land cover at the nominal level
only and may be unsuitable for the estimation of forest ex-
tent and dynamics. In this pape\ resulfs of an investigation
into the estimation of sub-pixel forest cover and classifica-
tion at the ordinal level are presented. Based on an analysis
of Landsat MSS data that had been degraded spatially to a
1.2-km resolution, a strong conelation, t : 0.94, was ob-
served between predicted and actual sub-pixel forest cover.
These estimates of sub-pixel forest cover may be used to pro-
duce an ordinal-Ievel classification of forest cover. Using a
classification accuracy ossessment p rocedurc that accounts
for the higher information content of ordinal level data over
nominal level data, the degee of agreement betvveen pre-
dicted and actual class for a four-class classification of trcp-
ical forest cover wes estimated to be 75.2 percent.

lntroduction
Tropical forests have recently become a focus of significant
attention. These forests cover some 7 percent of the Earth's
Iand surface yet contain nearly two thirds of the global
standing biomass and are the world's largest bank of species
diversity (Whitmore, 1990). Our knowledge of tropical for-
ests, however, is limited, We do not, for instance, know ac-
curately basic properties of these forests, such as their areal
extent and dynamics. Global estimates of tropical forest cov-
erage and dynamics, for instance, vary considerably (Sader ef
o/., tgg0; Townshend ef al., 1991). Information on these lat-
ter issues is, however, required for a number of applications,
Tropical forests, for instance, play a major role in global bio-
geochemical cycles, A major current concern is the role of
tropical forests as both source and sink of atmospheric car-
bon (Enting and Mansbridge, 1991; Houghton, 1991) and the
anthropogenic modifications on the magnitude of the carbon
flux between the tropical forests and the atmosphere. It has
been inferred, for example, that a significant proportion of
the enhanced carbon loading of the atmosphere can be attrib-
uted to tropical deforestation. The accuracy of predictions of
future atmospheric carbon loadings and, hence, resultant cli-
matic changes are therefore dependent partly on the quality
of information on tropical forest coverage. More accurate in-
formation on the extent of tropical forests and other terres-
trial ecosvstems would therefore facilitate the refinement of
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global carbon models which currently mis-estimate signifi-
cantly atmospheric carbon loadings (Tans ef o/., 1990).

A range of remotely sensed data sets have been used to
classify tropical forests (Green and Sussman, 1990; Sader et
a/., tggo; Malingreau, 1991). In terms of data availability and
coverage, data from the NOAA AVHRR are particularly appro-
priate for the mapping and monitoring of tropical forests at
the regional to global scale. This system allows the collection
of data at a high temporal frequency, approximately every
twelve hours, and, consequently, cloud free regional views
may be acquired through the use of data acquired over sev-
eral days.

NOAA A\,TIRR data have, unfortunately, a relatively coarse
spatial resolution, 1.1 km at best. As a consequence, the pro-
portion of mixed to homogeneous pixels may be high (Camp-
bell, 1987). In such circumstances misclassification may be
Iikely and an estimate of the extent of tropical forest cover in
a region derived from the number of pixels allocated to the
forest class by an image classification may be erroneous. Re-
cent studies have found that estimates derived from classifi-
cations of remotely sensed data with spatial resolutions of or
near that of the NOAA AVHRR may be inaccurate (Cross et o1.,
1991; Foody ef o1., 1sg1). While the observed pattern of mis-
classification can be used to reduce error in the calculation
of the areal extent of a class within a region (Prisley and
Smith, 1987; Conese and Maselli, 1992; Czaplewski, 1992),
the utility of such procedures may vary with the proportion
of oixel area that must comprise a class for it to be allocated
to ihat class. Furthermore, the "hard" allocation of a classifi-
cation may result in a poor representation of the forest distri-
bution, with large root-mean-square (nvs) errors. The
classification also typically presents the data at the nominal
Ievel (e.g., forest, agriculture, and urban), the lowest form of
data measurement in which the classes differ only in kind,
not by degree (Norcliffe, 19s2). To reduce the problems of
utilizing coarse spatial resolution imagery, spectral mixture
modeling approaches may be used to estimate sub-pixel for-
est cover accurately. The results of such an analysis could be
an image depicting the extent of class cover on a per-pixel
basis (Drake and White, 1991), or an ordinal-level classifica-
tion [e.g., large, intermediate, and small forest cover) may be
produced. The latter represents a higher level of data mea-
surement than the nominal level, with classes differing by
degree and which may be placed in rank order (Norcliffe,
1eB2).

This paper presents results of a pilot study to classify
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Figure 1. Approximate test site location, shaded box, in
Ghana, West Africa.

tropical forest cover at the ordinal level, performed as part of
a preliminary investigation into the classification of tropical
foiests throughout South America and West Africa for re-
gional carbon modeling (Curran et aI., 7992). Attention is fo-
cused on the accuracy with which sub-pixel forest cover may
be estimated and on the accuracy assessment of an ordinal-
level classification of forest coverage. The latter involved the
evaluation of classification accuracy or agreement with a
technique designed to utilize the information content of ordi-
nal-level data more fully than conventional classification ac-
curacy assessment techniques. While ordinal-level
classifications of a variety of phenomena have been per-
formed with remotely sensed data (e.g., Curran and William-
son, 1987), the accuracy of these classifications has generally
been assessed with techniques designed for application to a
conventional, nominal level, image classification. The latter
techniques make no allowance for the variation in the size of
the error that is associated with a misclassification, which at
the ordinal level is dependent on the characteristics of the
classes and the distance between the actual and predicted
class of membership; a misclassification of a case of large
forest cover to the intermediate cover class is, for example,
less erroneous than its allocation to the small cover class.

Data and Methods
The investigation focused on tropical forest reserves in
Ghana, West Africa (Figure 1). Within this region moist ever-
green and moist semi-deciduous forest predominate (Hall
ind Swaine, 1981; Whitmore, 1990). These forests are bor-
dered typically by savanna, much of which is used for agro-
forestry and agriculture. The boundary between the forest
and savanna is abrupt and may be sharpened by fire within
the savanna (Hall and Swaine, 1981). The abruptness of the
forest boundary was evident in the remotely sensed data
used in this investigation which was a relatively fine gPatial-
resolution (79 m), near-infrared (0.8-1.1 pm waveband) Land-
sat MSs Image (Figure 2). Data acquired in this waveband
only were used to minimize the effects of atmospheric atten-
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uation and because foresVnon-forest contrast is high in the
near-infrared as the forest may act as a "trap" for such radia-
tion (Malingreau et o,1., 1989). The Landsat MSS image was
resampled to 57-m pixel size with cubic convolution resam-
pling, and was degraded to simulate imagery with a spatial
resolution of 1.2 km, approximately that of NoAA AVHRR
data, using a filtering approach similar to that described by
|ustice ef o1. (1989) which provides a set of co-registered im-
agery that may be considered identical in all aspects except
spatial resolution. For each pixel in the simulated coarse
siatial resolution image, the proportion which was forest
cbvered was derived from a foresVnon-forest classification of
the original, undegraded spatially, Landsat vSS image. The
use of a classification of fine spatial resolution data to evalu-
ate the performance of classifications of coarse spatial resolu-
tion data has been used in other studies (e.g., Iverson et o/.,
1989; Spanner et a/1.,1989) and this approach was necessary
given the lack of accurate ground data. For the purpose of
this paper the forest cover estimates derived from the origi-
nal-Landsat MSS data in this way will be referred to as the
"actual" cover although they are themselves only an approx-
imation. These were then used to assess the accuracy of the
estimates of sub-pixel forest cover in the simulated coarse
spatial resolution image (Figure 3).

The sub-pixel forest cover prediction was achieved by
deriving a regression relationship between the strength of
forest class membership, as indicated by the fuzzy member-
ship function associated with forest and the proportion of
forest cover within the pixel, determined from the Landsat
MSs classiffication. The fuzzy membership functions were
generated from a supervised version of the fuzzy c-means al-
gorithm presented by Bezdek ef o/. (1984). This is based on a
fuzzy c-means partition,

i u * :1 ,k :1 , . . , ,n )

where U is a fuzzy c-partition of n observations and c fuzzy
groups, and u,1 is an element of U and represents the mem-
bership of an observation x1 to the i6 class, where x1 is a
vector the length of which is the number of attributes used.

y :  { tJ:u*e [0,1];  i  uo r  o,  i  :  1,  . . . ,  c;
t - 1

Figure 2. Landsat Mss image (0.8- to 1.1-pm waveband)
of part of the test site acquired in November 1973. The
tropical forest reseryes (dark tone) may be readily distin-
guished from the surrounding land.
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Figure 3. Summary of the approach used. The
Landsat Mss image (Figure 2) was degraded
spatially to a 1.2-km spatial resolution by a
fl ltering approach which maintains the noise
and other properties of the data. The propor-
tion of forest cover in Dixels within the simu-
lated coarse spatial resolution image was
then predicted, based on a regression rela-
tionship between the fu24l membership func-
tion associated with forest and the propottion
of forest cover derived from a sample of pix-
els. The accuracy of this prediction was then
assessed relative to the proportion of forest
cover in the area corresponding to each pixel
in the simulated coarse spatial resolution im-
age, derived from a foresVnon-forest classifi-
cation of the original, undegraded spatially,
Landsat MSS image.
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Figure 4. Regression relationship between the
percentage of pixel area forested 0) and the
fuz4y membership function associated with
forest (x). The regression equation wasy :
1.37 + 80.3x.

The optimal fuzzy c-partition is identified through the min-
imization of the generalized least-squared errors functional
I^,

I^(U,V) {u'*)-(d*)'

where V is o c by p matrix whose elements, v,1, represent the
mean of the ki of p attributes in the i'h class, m is a weight-
ing parameter, 1<m < o, and d,1 is a measure of dissimilarity
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based on the distance between an observation and a class
centroid which can be determined from

(d,r)' : (x1 - v,)rA(xo - v,)

in which A is a weight matrix which determines the norm to
be used (Bezdek, 1981; Bezdek ef o1., 1984). In this paper the
Mahalanobis norm was used, and attention was focused on
thefuzzy membership functions, ur1, output withm:2.0.
The latter variable is positively related to the degree of "fuz-
ziness," and a conventional hard classification may be ob-
tained with m: 1.0, The fuzzy membership functions
derived in the analysis lie on a scale between 0 and 1 and
sum to 1 for each case, They are to some extent, therefore,
similar to a posteriori probabilities of class membership and
their magnitude will be related to the proportion of a partic-
ular class within a pixel (Fisher and Pathirana, 1990; Foody,
1992a).

In total, 89 pixels were sampled from the simulated
coarse spatial resolution image. The DN of 12 pixels located
at each end of the forest cover continuum was used to derive
the end member spectra for the calculation of. the fuzzy
membership functions. Of the remaining 65 pixels, 33 were
used to derive the regression relationship and the other 32
were used to provide an independent testing set to assess the
accuracy of the analysis. The sub-pixel forest cover was,
however, estimated for all 89 pixels from the regression rela-
tionship. Each pixel was then allocated to one of four ordinal
level classes of forest cover; large (>80 percent), intermediate
(20 to 80 percent), small (2 to 19 percent), and very small
(less than 2 percent) forest cover. The accuracy of this classi-
fication, which may be inflated due to the inclusion of train-
ing data, was assessed using the r coefficient presented by
Jolayemi (1990). For a c by c contingency table, this may be
calculated from

? :  I  x ''  
V ( " - 1 ) N

where f is the Pearson chi-squared statistic and N is the
number of cases. The r statistic, -1 < r< 1, provides a measure
of agreement between the actual and predicted class alloca-
tions (Jolayemi, 1990), This measure of classification quality
was used in preference to other measures such as Cohen's
Kappa coefficient (Congalton, 1991) which were designed for
application to nominal level classes and would therefore not
utilize fully the information content of an ordinal level clas-
sification.

Results and Discussion
With the 12 pixels sampled from each end of the forest cover
continuum used to define the end member spectra, the
regression relationship between lhe fuzzy membership func-
tion associated with forest and the percentage pixel forest
cover was derived for 33 pixels, A strong positive relation-
ship was obtained (Figure 4), with R2:0.87, significant at
the 99 percent level of confidence. This regression relation-
ship was then used to predict the amount of sub-pixel forest
cover in all 89 pixels sampled from the simulated coarse
spatial resolution image. The accuracy of prediction based on
this regression relationship was assessed using the 32 inde-
pendent testing pixels. A strong and significant correlation
between predicted and actual sub-pixel forest cover was ob-
tained (Figure 5); the conelation coefficient, r:0.94, was sig-
nificant at the 99 percent level of confidence. Moreover, for
the 32 independent testing pixels, the observed RMs error
was 1.3.95 percent pixel cover, substantially less than that
which would have been derived from a conventional image
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Figure 5. Comparison of the predicted forest
cover in the simulated coarse spatial resolu-
tion imagery and actual percentage of pixel
area forested derived from the Landsat Mss
image classification. The dashed line illus-
trates the 1:1 relationship.

Large (L)

Intermediate (l)

Small (S)

Very Small (VS)

Frequency ol correct allocalior .
obserued = 70
expected by chance = 22.05
(derived from row and column marginals)

Percentage correct allocation = Zq x 100 =78.65%

Kappa= 70-22.05 x100 = 71.62fz"
89 - 22.05
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Figure 6. Contingency table of actual
against predicted forest cover for the as-
sessment of classification accuracy and
the three classification accuracy state-
ments. For clarity the main diagonal,
which illustrates agreement, is high-
lighted.

classification, 23.26 percent pixel cover. Similar results were
also obtained for data at different simulated spatial resolu-
tions and for an analysis using NOAA AVHRR data (Curran and
Foody ,1993 ) .

Each of the 89 oixels was then allocated to one of the
four classes of foresi cover, and a contingency table of pre-
dicted against actual forest cover, derived from the Landsat
MSS classification, was constructed {Figure 6). Although the
data set was limited, especially in terms of sample size, the
quality of the classification was then assessed. For illustra-
tive purposes, three measures of classification accuracy are
presented in Figure 6, each expressed as a percentage. These
measures were the percentage correct allocation (Hord and
Brooner, 1976), Cohen's Kappa coefficient (Rosenfield and
Fitzpatrick-Lins, 1986; Congalton, 1991), and r (Jolayemi,
1990). The latter two measures, unlike the perc€ntage couect
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allocation, incorporate information contained in the off-diag-
onal elements of the matrix and compensate to some extent
for the effect of chance agreement (F6ody, 19s2b) and so are
more useful, but of a lower magnitude than the percentage
correct allocation. Note also, however, that the r coefficient
is slightly larger than the Kappa coefficient.

With an ordinal-level classification, the significance of a
misclassification may vary considerably. Thus, for example,
the incorrect allocation of a case of large forest cover to the
intermediate cover class would be less erroneous than its al-
location to the small forest cover class. In this study, all the
misclassifications observed were between "neighboring"
classes and so the full range of error magnitud-es were not
covered. Had any of the misclassifications shown in Figure 6
been more extreme, the differences between the estimated
measures of classification accuracy may have been more
marked and in some instances r may be the only measure
sensitive to the distribution of error magnitude (Foody,
1992b). For ordinal level classifications, such as here, r
would therefore appear to be the most appropriate of the
measures for evaluating classification accuracy.

Summary and Conclusions
In mapping tropical forests from remotely sensed data, use
has frequently been made of relatively coarse spatial resolu-
tion imagery. While forest mapping has been achieved with
some success from such imagery, the spatial resolution of the
data may Iimit the accuracy of estimates of the extent of the
forest at large and small scales (Cross et a1., t99t; Foody ef
o/., rssl). Furthermore, only nominal level maps, which
show typically the presence of the most Iikely land-cover
class only, are presented. By deriving sub-pixel estimates of
forest extent and mapping the forest distribution at the ordi-
nal level, more information may be conveyed on forest distri-
bution, While the forest reserves at the site may not be
representative of tropical forests in general, thr-ee main con-
clusions may be drawn from this investigation for the forests
in the test site:

Sub-pixel forest coverage can be estimated accurately from
remotely sensed data with a coarse spatial resolution-
The sub-pixel forest cover estimates derived can be classified
at an ordinal level, which may be mapped to show a general-
ized view of the spatial distribution of forest cover.
To utilize the additional information content of an ordinal
classification relative to a nominal classification, the assess-
ment of classification accuracy with the r coefficient is rec-
ommended because it will account for the distribution of
error in the classification contingency table in a more mean-
ingful manner than measures such as Cohen's Kappa coeffi-
cient.
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