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Abstract
SPOT multispectral imagery captured 10 August 1991, ERDA9
image processing sofh,vare, the Global Positioning System
(Gps), and enor analysis techniques were used to develop a
baseline vegetation map of Water Conservation Area 2A, an
impounded portion of the remnant Everglades managed for
flood control and water supply. A hybrid unsupewisedlsu-
peruised classification routine was pe$ormed utilizing the
ces for ground truthing and accuracy qssessment. Differen-
tially conected GPs data were an essential part of the overall
effort. Cluster busting techniques were utilized to propeily
rcfine confused classes, and Kappa statistics programs werc
used for enor analysis. ,Results suggest a relationship be-
tween agricultural nuftient inflow and vegetation changes
from sawgrass to cattail andlor willow monoculturc in areas
closest to the inflow.

Introduction
The South Florida Water Management District (sFwMDd) is
developing a detailed land-cover vegetation map of the entire
Everglades system. This mapping proiect will encompass
Water Conservation Areas 1, 2A, 28,3A, 38, the Holey Land
Wildlife Management Area, and Everglades National Park
(Figure 1). These lands comprise approximately 754,000 ha
of remnant Everglades habitat.

The requirements for data sources and methods for this ef-
fort were such that the resultant maps be defensible in both a
scientific and legal context. Methods also had to be reliable, ef-
ficient, economical, and, above all, repeatable so that various
analysis functions could be performed on a regular basis, possi-
bly by different personnel. Accuracy assessment was required
so that the integrity and utility of the resultant maps would be
known. After careful consideration of all these requirements, it
was determined that remotely sensed multispectral imagery
and digital image processing techniques would serve as a first
approach to meet the stated goals.

Past Everglades vegetation mapping efforts utilizing digi-
tal image processing techniques have been sporadic and lim-
ited to selected geographic areas. Capehart et al. (7977)
found limited applications of Landsat MSS data for mapping
the distribution of an exotic nuisance tree, Melaleuca quin-
quenervia, throughout southern Florida. Gunderson ef o/.
(1986) depicted vegetation cover t5ryes of Shark River Slough
in Everglades National Park from Landsat tv data. No accu-
racy assessment was done for this mapping effort. Richard-

South Florida Water Management District, Everglades Sys-
tems Research, 3301 Gun Club Road, West Palm Beach, FL
33406.

PE&RS

son et o/. (1990) mapped the vegetation types of Loxahatchee
National Wildlife Refuge (also known as Water Conservation
Area 1) from sPor satellite data. A generalized ground tru-
thing effort was performed using LORAN c. No omissiory'com-
mission or overall map accuracy assessment was reported,
Gilbert {1991) initiated a vegetation mapping project of the
Holey Land Wildlife Management Area. Both Landsat TM
and spot data were available for this mapping project. It was
determined that the classified seot imagery was more effi-
cient in separating certain land-cover classes than was Land-
sat. Gilbert (1991) determined that overall map accuracy for
ten classes using LORAN c was 83.1 percent based on 59
ground truthed sites.

Compared to the above, this study is unique in that it
utilizes the Global Positioning System developed by the De-
partment of Defense. cPS was used to locate field verification
sites in addition to providing us with a precise navigational
tool for map accuracy assessment, Gps has a Sreater accuracy
than any other navigation system in use today (Gibbons,
1992). Although the system was not fully deployed, it pro-
vided a large enough ephemeris window in South Florida to
be used as an accurate and convenient geographic position-
ing tool.

The remnant Everglades has been influenced by an ex-
tensive system of levees and canals which have significantly
altered the hydroperiod and flow of water (Davis and Ogden,
1993; Worth, 1988). Much of the area has been impounded
into Water Conservation Areas. The geographic focus of this
study was Water Conservation Area 2A (wcAzA) (Figure 1), a
42,707 ha impoundment managed by the srwun.

The objective of this study was to define the dominant
species composition, distribution, and spatial extent of the
existing Everglades macroph5rte communities in order to pro-
duce a baseline vegetation map. Once completed, this digital
data set could act as a benchmark against which future con-
ditions can be compared. The future changes that may result
from various management scenarios, such as possible hydro-
period manipulations or nutrient inflow changes, will be
documented utilizing image processing change detection
techniques. This documentation will provide researchers
with one analysis tool for determining the relationships be-
tween management practices and plant community structure.
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Figure 1. Area of Florida showing remaining Ever$ades system and location
of study area. Note that S-1O stands for structure 10. All structures shown
are inflow structures.

Materials and Methods
Vegetation mapping was accomplished by utilizing SPOT
(HRV2) 2O-metre multispectral digital satellite imagery col-
lected on 10 August 1991. All image processing was per-
formed on a Sun Sparc 2 (Mountain View, California)
workstation using ERDAS (Atlanta, Georgia) image processing
software. The area of interest (Water Conservation Area 2A)
was extracted from the total scene and all background pixels
were set to a value of zero, A small portion of the very
southern tip of Water Conservation Area 2,t was not avail-
able from the satellite data for this study.

An initial unsupervised classification was performed on
the unrectified Water Conservation Area 2A image using the
minimum spectral distance formula (ERDAS, 1991). Arbitrary
cluster means were chosen by default and allowed to shift
through an iterative process until a maximum percentage (95
percent) of unchanged pixels had been reached between the
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final two iterations. A number of initial clusters (e.g., 25, 50,
75, 100) were examined in this unsupervised classification.
A final number of 30 clusters was chosen based on the abil-
ity to find homogeneous areas that could be field verified
within each cluster using the GPS.

The image was then rectified to a Universal Transverse
Mercator (uru) map projection using 20 well distributed
ground control points. Ground control point selection was
based on the ability to find a corresponding pixel within the
image. Ground control data and corresponding image pixel
locations were then used to compute a transformation ma-
trix. A coefficient file was generated. A first-order transfor-
mation was performed with a resultant root-mean-squate
enor of 0.4 pixels. The coefficient file was then used to rec-
tify both the unsupervised subset as well as the original ex-
tracted subset of the WCA2A image using a nearest neighbor
resampling method.
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Field verification and ground control data for this study
were gathered by airboat or helicopter. Navigation to field
site locations was accomplished with a Trimble (Sunnyvale,
California) Pathfinder Basic cPS unit, and positions were dif-
ferentially corrected using satellite ephemeris data collected
by a Trimble Pathfinder Community Base Station. Multiple
points were collected at each site so that averaging algo-
rithms could be applied to the data once it was differentially
corrected. Trimble software packages PFBASIC (Version 1.0),
rnCnS (Version 1.0), and PFINDER (Version 1.42) were used.
GPS position accuracy was periodically verified at a 1990 Na-
tional Geodetic Survey North American Datum 1983 adjusted
benchmark. Ground control data were differentially cor-
rected, averaged, and checked against this benchmark. Data
accuracy ranged between three and seven metres. This level
of accuracy was essential to the mapping effort so that the
pixel locations within the image could be identified with
spatial precision.

Wherever possible, five points were selected for ground
truthing from each of the go unsupervised spectral classes of
the rectified image. Optimally, field verification data were col-
lected at distributed geographical regions throughout the spec-
tral class. Points also had to be within the center of a
minimum 3 by 3 homogeneous pixel block. This procedue al-
lowed room for any positional errors inherent in the rectifica-
tion process (total root-mean-square error of 0,a pixel : I m)
and the inaccuracy of the cPs unit collecting the data (3 to 7
m), and it resulted in 129 points being selected from the image.

Each of the data points selected from the image were
field verified. Field verification was accomplished by navi-
gating to a point using the GPS and having a single observer
visually estimate the percent cover of each of the plant spe-
cies located within an approximated 20- by 20-metre grid
square. The same observer was used throughout the study in
order to maintain consistency and uniformity. Every attempt
was made to evaluate percent coverage of vegetation based
on a vertical view of the grid cell (i.e., understory species
were not taken into account if they were not visible from a
vertical perspective).

After performing differential cPS correction routines,
each point was then rechecked to verify that its exact loca-
tion was still within the center of a minimum 3 by 3 homo-
geneous pixel block of the correct spectral class. Evaluation
of this ground truth data resulted in the composition of the
19 vegetation classes listed in Table 1 (as discussed below, a
twentieth class was added after subsequent analysis routines
were performed). Each of the 129 field verified data points
were assigned to a vegetation class and used as seed loca-
tions for generating training samples.

Ellipses were created by using the mean and standard
deviation of each training sample band combination. Train-
ing samples were viewed simultaneously by class to find and
eliminate signatures that were not visually representative of
the class distribution. All remaining training statistics for
each class were combined, resulting in one file containing
signature statistics for 19 vegetation classes. Ellipses for all
19 vegetation classes were viewed simultaneously, and it
was determined that each was spectrally unique enough to
represent a separate class.

A maximum-likelihood (Bayesian) supervised classifica-
tion was performed using the vegetation signature statistics
file and the original unrectified extracted wcA2A subset im-
age. All bands were utilized with no change to o priori prob-
abilities for any one class.
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Each vegetation class generated from the maximum-like-
lihood classification was viewed individually. From
1:24,000-scale color infrared photography obtained 10 Octo-
ber 1991 and field observation, it was determined that all the
resultant classes appeared reasonable except Sawgrass/Cattail
Sparse and Tree Islands.

In the case of the Sawgrass/Cattail Sparse class, it was
concluded that this class was accurate in the northern parts
of the project area, but within the southern region the signa-
ture wis heavily influenced by periphyton reflectance. The
lack of uniformity within this class was addressed by first
masking out all other classes from the original unrectified
subsetted wcA2A image, creating a single class image file. An
unsupervised classification was then performed on this data
similar to the procedure described earlier for the parent im-
age. The original Sawgrass/Cattail Sparse class was broken
down into five new spectral classes. Each of these classes
was viewed individually, and it was determined from large-
scale aerial photography and from field experience that these
five classes could be reduced to two-Sawgrass/Cattail
Sparse and Periphyton. The resulting two-class image file
was then mosaicked back into the maximum-likelihood clas-
sification output data set. Thus, one additional class (Peri-
phyton) was added, making a new total of 20 vegetation
classes.

The problem of misclassification of tree islands was
dealt with by digitizing the outline of the tree islands from
the original unrectified subsetted wCA2A image. A total of 3t
tree islands were digitized and extracted out of the data set
as a new image. In a "cluster busting" (Jensen, 1987) tech-
nique similar to that described for the Sawgrass/Cattail
Sparse class above, an unsupervised classification was per-
formed, resulting in ten classes. These classes were then col-
lapsed into four of the already existing classes and
mosaicked back into the maximumlikelihood classification
output data set to create a vegetation map with 20 classes.

A rectification of this final hybrid unsupervised/super-
vised classification was then performed using the coefficient
file described earlier and a nearest neighbor resampling tech-
nique. The resultant map was color coded and a legend was
added in preparation for hard copy output (Plate 1).

Accuracy Assessment
Map accuracy assessment was initiated by generating 241
random points from the final classification using a random
sampling technique stratified by class. The number of points
selected was based on the required minimum number of 204
points for an 85 percent map accuracy level with an error of
+ 5 percent. This minimum required number was based on
binomial probability formulas (Snedecor and Cochran, 1s78)'

Map accuracy assessment points were field verified.
During this phase of the study the Department of Defense
had implemented Selective Availability (sa), degrading the
GPS signal and positional accuracy in the navigation mode'
After each site was visited, position data were differentially
corrected and site locations were rechecked. Depending on
the extent of Sa, many points were geographically located at
different pixeVclass locations than originally determined.
However, these new locations were considered valid because
random sampling was still maintained.

Each site was then evaluated for majority pixel status.
Data were deemed acceptable as long as there was a S-pixel
class majority within the center of a 3- by 3-pixel block with
the site being the center pixel. Field verification data were
checked against the map vegetation class pixel block and
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Class Description

1-SAWGRASS-DENSB

2-SAWGRASS-MODERATE

3 - SAWGRASS. SPARSE

4 - SAWGRASS/CATTAIL - DENSE

5 - SAWGRASS/CATTAIL - SPARSE

6 - SAWGRASS/CATTAIUBRUSH

7 - SAWGRASS/BRUSH 1

8. SAWGRASS/BRUSH 2

9 - SAWGRASS/BROADLEAF/CATTAIL

10 - CATTAIL. DENSE
11 -CATTAIL-MODERATE

12-CATTAIL-SPARSE

13 - CATTAIUBRUSH

14 - BRUSH MIXTURE

15 . BRUSFVCATTAIL

16 - TREE ISLAND

17 - SLOUGFVOPEN WATBR

18 . BROADLEAF EMERGENTERUSH

19 - POLYGONU}WBRUSH
20. PERIPHYTON

dense to moderately dense Cladium jamaicense; areal coverage >7OVo, evenly distriubted;
balance in open water
dense to moderately sparse Cladium jamaicense; >3O/o to <7O9/o covercge; balance in
open water
Evenly distributed, sparse or clumps of moderately dense to dense Clodium jamaicense;
<30026 coverage; balance in open water
mixture of Cladium jamaicense and. Typha domingensis; vegetative cover excluding
aquatics >6096

mixture of Cladium jamaicense and, Typha domingensis; vegetative cover excluding
aquatics <607o

>7|o/o coverage of Cladium jamaicense; >3096 coverage ofTypha domingensis and brush
(Myrica cerifera, Salix caroliniano, and/or Cephalanthus occidentalis)
Cladium jamaicense at >7OVoi balance in Myica cerifem, Salix caroliniana, and/or
C ep halanth us oc c i dentalis
>30/o and <7oo/o coverage oI Cladium jamaicense; balance in Myica cerifeta,
Salix caroliniano, and/or Cephalanthus occidentalis
>50olo coverage of Cladium jamaicense; >307o and <7O/o coverage ofbroad leaf
emergents (typically Sogittaria spp. and,/or Pontederio spp.); s30% coverage of
Typha domingensis
dense to moderately dense Typha domingensisi >7|yo coverage; balance in open water
dense to rnoderately sparse [.pio domingensis; >30% and <7OVo coverage; balance in
open water
sparse distribution or small clumps of moderately dense to dense Typha domingensis;
coverage of <30o/o; balance in open water
> 50076 coverage of Wpha domingensis; balance in Salx caroliniana, Myrica cerifem, andl
or Cephalanthus occidentalis and open water.
dominated by Solx caroliniana, Myrica cerifera, and/or Cephalanthus occidentalis;
associated species are lemna spp., Sagiftaria spp., Pontederia spp., Mikania scandens,
Acrostichum spp., and,/or Hibiscus gandiflorus
>5lo/o arcal coverage of SaIk caroliniona, Myrica cerifera, and,/or Cephalanthus
occidentalis; balance in Typha domingensis at a <3096 areal coverage and/or open water
IIex cassine and Perseo borbonia as overstory plants; Mynba cerifem occupying lower tier
and outside edges; Sa}x caroliniana, Myrica cerifera, and,/or Cephalanthus occidentalis
at southern end
large pools or sloughs of open water; may also include Nymphaea odorcta, Eleocharis
spp., andlor algal mats; other plants occupy <5Vo of the area
(See Class 20 - PERIPHYTON)
dominated by broad-leaved emergents, typically Sagittaria spp. and/or Pontederia spp.;
areal extent >70lo; balance in brushy species
uncommon; >7oo/o axeal coverage of Polygonum spp.; balance in brushy species
large pools or sloughs of open water; thick and heavy algal mats of periphyton; sparse
Cladium jamaicense and/or Typha domingensis may be presenh bright spectral
reflectance of algal mats dominates signature

deemed correct if they fell within the pixel maiority class
and incorrect if they did not.

A final consolidation of classes was performed. The 13
density dependent classes from the Z0-class map were selec-
tively merged into five more generalized vegetation classes --
Sawgrass, Sawgrass/Cattail, SawgrassBrush, Cattail, and Cat-
tail/Brush. This resulted in a vegetation map with 12 classes
(Plate 2, Table 2). A map accuracy assessment was then per-
formed utilizing the same field verified data and procedures
used for the 2O-class vegetation map.

Overall map accuracy was computed by taking the total
number of correctly classified samples (diagonal cells of the
matrix) and dividing by the total number of samples.

Kappa coefficient of agreement was computed by run-
ning the rGPPA (congalton et o1., 1981: 1982) FORTRAN pro-
gram. Variance of the Kappa statistic has been corrected in
this program as documented in Hudson and Ramm (1987).

77''

The Kappa coefficient of agreement is a measure of the ac-
tual agreement (indicated by the diagonal elements of the
matrix) minus chance agreement (indicated by the product of
row and column marginals) (Fung and Ledrew, 19S8). It
takes into account both commission and omission errors (Ro-
senfield and Fitzpatrick-Lins, 1986) and is a measure of how
well the classification agrees with the reference data (Congal-
ton et 01., 1983).

A pairwise test of significance was performed utilizing
the Kappa coefficients from the 12- and 2O-class vegetation
maps to determine if the two error matrices were signifi-
cantly different (Cohen, 1960; Congalton et aL.,1983; Congal-
ton and Mead, 1986). The formula used to test for
significance between the two independent Kappas was

Z : (K, _ K")/[V(K,) + V(K,)ltrz

where K is the Kappa coefficient, V is the large sample vari-
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exception of a number of small patches along the levee adja-
cent to and south of the S-7 shucture. Six-hundred-and-
eighty-two ha of sawgrass/broadleaf emergenvcattail mixture
were found east of the S-7 along with many small patches
south of the S-10s. As previously stated, most of the cattail
and cattail mixes were found in close proximity to inflow
structures. Several canopied tree islands comprising 234 ha
still existed in the northeast portion of the study area.
Sloughs and open water areas had an areal coverage of 473
ha and were found almost exclusively in the south end of
the impoundment. Periph5rton coverage was 5092 ha, also in
the south end. Many of the periphyton areas were sloughs
dominated by these microfloral communities. The broadleaf
emergenVbrush mixture was found primarily on remnant tree
islands south of the S-10s, east of the S-7, and in one small
patch in the very north end of the study area. The poly-
gonurn/brush mixture class was small with an areal coverage
of only 53 ha. It was restricted to two areas east of the S-7
and in one small patch in the very north end.

Discussion

Gh$tficatin hocedules
Consideration was given to the use of Landsat Tv data due
to its greater ability to discriminate the spectral characteris-
tics of vegetative features. A case can also be made in sup-
port of spor data because of the greater spatial resolution
that it offers. The final deciding and consequently overriding
factor was the availability of a current cloud-free scene.
There was none available from Landsat.

There was concern that rectifying the original cut image
file before performing the classification routines would cor-
rupt the brightness values of the data set. Thus, all super-
vised/unsupervised classifications were run prior to
rectification. However, use of the nearest neighbor method of
resampling would eliminate this concern. (fohn R. fensen,
personal communication). This sampling technique does not
alter the pixel brightness values during resampling {/ensen,
1986). Future mapping routines could include pre-classifica-
tion rectification as long as the nearest neighbor resampling
method is used.

The initial strategy for this mapping project was to per-
form an unsupervised classification of the original cut data
set and to collapse the classes into the appropriate cate-
gories. However, a new course of action had to be taken after
evaluation of the field verification sites for homogeneity
within each of the unsupervised classes. Only five unsuper-
vised spectral classes were homogeneous based on field veri-
fied data. Field verified data for three unsupervised spectral
classes were unobtainable within the minimum 3- by 3-pixel
block because no homogeneous areas could be found for
these classes within the scene. There was only one field veri-
fied site available for each of two unsupervised spectral
classes. All other unsupervised spectral classes exhibited
heterogeneity based on field verified data. As a result, field
verified data from the unsupervised classification was used
in a supervised classification. Thus, a hybrid unsupervised/
supervised classification was performed utilizing the field
verified data set.

Accuracy Assessment
The accuracy level of the 20-class vegetation map was less
than expected with an overall accuracy of zo.g percent and a
Kappa coefficient of 67. Because much of the inaccuracy

1 6 -

t 8 -

1 9 -

2A-

TREE rSrANo (214) TREE ISLAND (2]4)

S L o U G H / o P E N w ^ I E R ( 4 7 J ) + 9 _ s L 0 U c H / o P E N w A T E R ( 4 7 3 )

BRoAoLaF EMERGENT,/BRUSH MlxruRE (255) -ro - ERoADLEAF EMERCENT/8RUSH MlxruRE (255)

POLYCONUM/BRUSH MIXTURE (53) +11 - POLYCONUM/8RUSH MIXTURE (5J)

ptRtpdroN (509?) +1? - PERIPHTON (5092)

ance of the Kappa coefficients, and. Z is the standard normal
deviate. IfZ is less than or equal to 1.96, then there is no
significant difference between the two independent Kappa
coefficients at the 95 percent confidence level.

Producer's accuracy was computed by taking the number
of correctly classified samples of a particular class and divid-
ing by the total number of reference samples for that class.
Producer's accuracy indicates the probability of a reference
pixel being correctly classified and is really a measure of
omission error. User's accuracy was computed by taking the
number of conectly classified samples of a particular class
and dividing by the total number of samples being classified
as that class. User's accuracy, or reliability, is indicative of
the probability that a pixel classified on the map actually
represents that class on the ground and is really a measure of
commission error.

Results
Error matrix and statistical results for both the 20- and 12-
class maps are found in Table 3. Overall accuracy for the 20-
and lz-class maps was 70.9 and 80.9 percent, respectively.
The Kappa coefficients of agreement for the 20- and 12-class
maps were 67.0 and 73.5, respectively.

Six of the 20 and five of the 12 classes provided reliable
data for calculating the conditional Kappa coefficient for in-
dividual class accuracy assessment (Table 3). This was based
on a minimum sample size of 19 for a single category at the
95 percent confidence level with assumed probability of 85
percent and error of estimate of 10 percent (Rosenfield ef o1.,
7SB2).

Results of the pairwise test of significance (Table 4) uti-
lizing the Kappa coefficients show that there was no signifi-
cant difference between the overall accuracy of these two
maps despite the overall accuracy of the 20-class map having
been ten percent less than the 12-class map.

Both of the vegetation maps generated for this project
depict an area dominated by large expanses of sawgrass
(Plates 1 and 2, Table 2). This species was found throughout
the study area and had an areal coverage of t9,532 ha. Mixed
sawgrass/cattail communities covered 922O ha with mono-
typic cattail contributing an additional 4899 ha. CattaiVbrush
mixture comprised 1210 ha and was found almost exclu-
sively downstream of the S-10D control structure with the
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came from errors within the density classes of a single vege-
tation community, an attempt was made to collapse these
categories into a single class for each plant community. This
affected the class density categories for Sawgrass, Sawgrass/
Cattail, Sawgrass/Brush, Cattail, and CattaifBrush and re-
sulted in a 12-class vegetation map with an overall accuracy
of 80.g percent and a Kappa coefficient of 73.

In the authors' view, going from the 20- to 1.2-class map
produced a visual impression that there are large stands of
monotypic cattail in the south end of wCA2A along the levee.
The 2O-class vegetation map depicts sparse cattail coverage
for the same region. By collapsing the density categories of
cattail into one class, there is a visual impression of much
more cattail in the south end of wcA2A.

Much of the inaccuracy depicted by the error matrices
was in the southern region of the image. This was due to the
presence of periphyton which exhibited unique spectral re-
flectance characteristics. Periphyton is the term used to de-
scribe the microfloral growth upon substrata (Wetzel, 1983).
The microfloral colonies tend to rise to the surface in the late
summer and frequently form large floating masses on the
water's surface and around the stems of wetland macro-
phytes (Craighead, 1971). The signature of periphyton out-
competed the signature of associated species within the same
class. This was reflected in the low user's accuracy for peri-
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phyton of 44 percent in both lhe 72- and 20-class maps. Im-
agery could be captured during the infrequent times when
periphyton is absent or submerged enough to mask its bright
signature, but this would be an unrealistic limitation on the
data acquisition window.

Interprctatitn of Fiml ilaps
The pattern and composition of the vegetative communities
surrounding all wcaza inflow structures appeared to be dif-
ferent from the interior marsh areas. The most obvious dis-
parity was the presence of monotypic and,/or mixed stands of
cattail. Phosphorus inputs to the Water Conservation Areas
have increased from 167 tonnes annually under predrainage
conditions to 455 tonnes currently (Davis and Ogden, 1993).
Davis and Ogden (1993) and Davis (1991) have shown that
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areas affected by high nutrient influx undergo a change in
plant community coverage. These studies show that sawgra.qs
has a limited capacity to tolerate higher nutrient inputs and
is subject to displacement by a more competitive species
such as cattail when nutrient inflow is excessive. Richardson
ef 01. (1991) concluded that loadings of water, nutrients (N,
P), and other chemical constituents into the northern part of
wCA2A are probably contributing to the replacement of
sawgrass with cattail. Debusk et 01. (1993) concluded that the
occurrence of cattails at WCA2A soil sampling stations closely
corresponds to the zones of phosphorus enrichment'

Many remnant tree islands near inflow structures may
have also been affected by high nutrient levels and exhibit a
luxuriant growth of willow along with a mixture of cattail.
Remnant tree islands within the interior marsh area of
wCA2A and spatially distant from the input structures are
comprised mainly of sawgrass with a scattering of brushy
species (willow, buttonbush, wax myrtle, and saltbush). This
abnormal vegetative composition was the result of the artifi-
cial lengthening of hydroperiods as well as increased water
depths (Worth, 1988). Dineen ('].972; rc7a) concluded that
the loss of trees and woody vegetation on tree islands was
the result of prolonged high water stages. Several large tree
islands in the northern reaches of wca2a still exhibited a
well developed and healthy tree canopy and are good exam-
ples of what these drowned tree islands once looked like.

Conclusion
It was concluded that heterogeneity within unsupervised
spectral classes was the result of too few unsupervised
classes being selected initially. However, tests were con-
ducted to determine the appropriate number of clusters to be
used in the unsupervised classification. It was determined
that if the initial number of clusters was larger, then the
minimum 3- by 3-pixel requirement for GPS navigation
would not be found within many of the classes. Based on
this knowledge, it was apparent that Everglades vegetation
communities were too spatially heterogeneous for performing
an unsupervised classification utilizing a large enough num-
ber of classes to overcome heterogeneity. Attempts to ground
truth unsupervised classes utilizing cPS would not be possi-
ble without the minimum number of required homogeneous
pixels. It may be desirable in future mapping efforts to per-
form an unsupervised classification by choosing enough
classes to overcome heterogeneity and then collapsing these
classes into the appropriate categories. The cPS could still be
utilized to ground truth vegetation pattern boundaries result-
ing from the unsupervised classification. However, it would
not be possible to ground truth each class individually using
the GPS due to the problems just discussed. Thus, the hybrid
unsupervised/supervised classification used for this study
may have been unnecessary had enough initial clusters been
chosen for the unsupervised classification.

The lower accuracy levels exhibited by the 2o-class map
versus the 12-class map was indicative of the subtle signa-
ture changes between similar species with differing densities.
Choosing a larger number of initial clusters for the unsuper-
vised classification routine may have also reduced the confu-
sion caused by density differences within classes. Obtaining
digital data with a greater pixel resolution may have alle-
viated this problem.

The increase in overall accuracy from 70.9 percent to
80.9 percent resulting from collapsing the 20-class map into
12 classes was appreciable. The loss of specific density
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breakdowns for the Sawgrass, Sawgrass/Cattail, Sawgrass/
Brush, Cattail, and CattaiVBrush classes was justified consid-
ering the greater level of accuracy obtained using more gen-
eralized classes. However, a pairwise test of significance
using Kappa coefficients revealed that the error matrices of
the 20- and 1z-class maps were not significantly different.

Overall, the map accuracy results were modest for this
type of classification. Considering the highly mosaicked na-
ture of the Everglades and the limited range of feature types
(100 percent wetland), this may be the best that can be ex-
pected using these data and analyses. Future work should in-
vestigate other data sources such as Landsat TM, low altitude
aircraft multispectral scanner data at various scales of resolu-
tion, and aerial photography.

Periphyton was used as a vegetation class through the
normal classification process while accepting the fact that
the spectral returns of some vegetation types, especially in
sparse concentrations, may be masked.

It was concluded that the cluster busting routine used to
refine the Sawgrass/Cattail Sparse and Tree Island classes
was an appropriate method to break down confused classes
into smaller, more defined vegetation categories. Of course,
had a greater number of clusters been chosen for the initial
unsupervised classification, these cluster busting methods
would have probably been unnecessary.

During a review of the methods used to process the
wCAzA imagery, it was learned that all image rectification re-
sampling methods do not necessarily corrupt the original
digital values of the data set. The algorithms used in the
nearest neighbor resampling method do not rely on averaging
data values as other methods do. Thus, the original digital
values are maintained.
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