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Abstract

Analysis of digital data from Landsat Thematic Mapper (TM)
images has been proposed as a complementary method for
estimating surface organic carbon levels of soils. Our objec-
tive was to establish the relationship between soil organic
carbon (SOC) and a selected transformation of TM band ratios
corresponding to the soil component values in the Palouse
region of eastern Washington State. T™M data and surface soc
measurements were obtained and evaluated using linear
regression methods at four field-sites. Results showed that
regression models, each pooled with two field-sites (Plaza
and Pullman, Thera and St. John) were appropriate for the
data. Significant (P<0.01) regressions between surface SOC
and ™ data were detected for both functions, and r? values
(0.88 and 0.71) also indicated a strong linear association.
Plots of ™ data and surface SOC showed a general trend
toward higher sOoC with higher ™ values, suggesting a useful
relationship.

Introduction
Agricultural researchers are currently evaluating better meth-
ods for adjusting herbicide, fertilizer, and pesticide applica-
tions to soils in an attempt to address current environmental
concerns. Such experiments have investigated the effects of
variable rates of fertilizer applications, as well as the em-
ployment of smaller, more spatially homogeneous fields to
achieve efficient fertilizer management (Carr et al., 1991; Lar-
son and Robert, 1991; Mulla et al., 1992). Chemical fertilizer
applications are known to be a major method for modifying
soil organic carbon (SOC). Other principle means of changing
SOC in agricultural systems are by crop selection, addition of
organic matter, and tillage practices (Paustian et al., 1992).

SOC is an important component of agricultural soils
which is strongly associated with soil fertility, affecting plant
nutrient supply, microbial activity, and soil physical proper-
ties (Tisdale et al., 1985). Nitrogen fertilizer application rates
and the subsequent wheat grain yields in eastern Washington
are both responsive to SOC content. For example, using cok-
riging techniques, a significant association between SOC and
winter wheat grain yield has been found in an on-farm field
experiment (Bhatti et al., 1991). A variogram model for SOC
showed substantial spatial dependence in a breeder trial ex-
periment (Ball et al., 1992a; 1992b). Although the slope was
larger for the sOC than for the grain yield variogram, the spa-
tial patterns of the two properties were consistent.

To agronomists, the determination of SOC in many field
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experiments is essential, yet the sampling process for SOC is
expensive in labor and time, especially if intensive soil sam-
pling is needed to characterize the soil spatial variability. A
few studies have suggested that the estimated soil surface re-
flectance, measured by Landsat Thematic Mapper (TM), is a
potentially accurate and efficient method for estimating sur-
face SOC content (Baumgardner et al., 1985; Henderson et al.,
1989; Frazier, 1989). For example, remote sensing techniques
have been used to determine the extent of regional patterns
in soil erosion from measurements of SOC (Frazier and
Cheng, 1989). A variation of this technique was developed
using a principal component analysis approach which re-
duced soil reflectance variation due to roughness of the soil
surface, e.g., crop residue, tillage patterns, and soil texture
(Frazier and Jarvis, 1992).

While a few studies have used satellite imagery for eval-
uating the association between measured soil properties and
observed T™ reflectance data (Bhatti et al., 1991; Frazier and
Jarvis, 1992) of eastern Washington soils, little has been done
to determine if the T™ reflectance values are useful as a
means to estimate surface SOC content. The objective of the
research reported here was to estimate the relationship be-
tween measured SOC and observed Landsat T™ reflectance
data sets for four field-sites in the Palouse region of eastern
Washington.

Methods
Study Area

The Palouse region covers much of southeastern Washington,
as well as parts of western Idaho and northern Oregon, and
is one of the most productive dry land farming regions in the
United States (Kaiser, 1967) (Figure 1). This region is charac-
terized by steep, rolling, loessial hills with complex patterns
in crop productivity and soil fertility. The hills of this crop-
land range in steepness from about 2 to 50 percent (Mulla et
al., 1992). Vegetation includes agricultural crops (winter
wheat, winter barley, peas, lentils, canola), bunchgrass, and
sage, as well as fir and pine forests. The Palouse receives
from about 40 to 50 cm of average annual precipitation and
has average annual temperatures of about 10° C. Most of this
moisture is supplied by rain and snow during the winter and
spring. There are generally 45 or more days after the summer
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Figure 1. Location of the Pal-
ouse region (loess deposit)
which covers most of south-
eastern Washington, as well
as parts of eastern ldaho
and northern Oregon.

solstice when the soil becomes dry due to the warm dry
sumimers.

Soil parent material is predominately loessial silt and
clay that originated in central Washington, although soil for-
mation varies with longitude (from west to east). In addition,
there are soil gradients which occur across the Palouse re-
gion, resulting in variation of crop dry matter production,
crop residue decomposition, and the amount of organic mat-
ter in the soils. The soils are found in associations and each
series is characteristic of a specific landscape position.

The field sites near St. John and Thera are separated by
a distance of about 30 km. The Thera soils include (1) Ath-
ena silt loam (fine-silty, mixed, mesic Pachic Haploxerolls),
(2) Lance silt loam (fine-silty, mixed (calcareous), mesic Du-
rorthidic Xerorthents), and (3) Mondovi silt loam (coarse-
silty, mixed, mesic Cumulic Haploxerolls). The St. John soils
include (1) Latah silt loam (fine-silty, mixed mesic Xeric Ar-
gialbolls), (2) Palouse-Thatuna (fine-silty mixed, mesic
Pachic Ultic Haploxerolls and Xeric Argialbolls), (3) Snow
silt loam (fine-silty, mixed, mesic, Cumulic Haploxerolls),
and (4) Thatuna silt loam (fine-silty, mixed, mesic Xeric Ar-
gialbolls) (Donaldson, 1980).

The other two field sites are near Plaza and Pullman,
which are separated by a distance of about 65 km. The Plaza
soils include (1) Naff silt loam (fine-silty, mixed, mesic Ultic
Argixerolls), and (2) Caldwell silt loam (fine-silty, mixed,
mesic Cumulic Haploxerolls). The Pullman soils include Naff
silt loam, Palouse silt loam (fine-silty mixed, mesic Pachic
Ultic Haploxerolls), and Palouse-Thatuna silt loam. Thus, the
soils evaluated for associations between SOC content and
Landsat T™ reflectance values are spatially uniform and have
similar physical properties (Frazier and Cheng, 1989). How-
ever, we expect SOC to vary for the field sites which vary in
longitude.

The Landsat Thematic Mapper (TM) scenes (50135 18054 and
50503 18070) acquired on 14 July 1984 and 17 July 1985
from the Landsat World Reference System (coordinates 43-
27) were selected for this study. Landsat T™ data for two vis-
ible bands (Bands 1 and 3, centered on 0.485 and 0.660 pm)
and two near infrared bands (Bands 4 and 5, centered on
0.830 and 1.650 wm) were obtained at each sample point for
each field site (1 km? in area). Summer scenes were selected
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because summer fallow is used in dry-land crop rotation, as-
suring that imagery taken during the summer will include
fields of bare soils. In addition, periodic cultivation is used
to control weeds resulting in a relatively smooth soil surface.

The spatial structure within each field-site (Plaza, Pull-
man, Thera, and St. John) varies, and the patterns are consid-
ered useful for discriminating between soils differing in
amounts of SOC. Three of the field sites—Pullman, Thera,
and St. John —were sampled by transecting across the spatial
patterns so that samples would be obtained from each pat-
tern. At the fourth site, each pattern was sampled on a more
random basis, not aligned in linear transects. Each method
was considered representative of the field site in terms of
soil distribution and management.

Soil reference data were sampled almost simultaneously
with the date of satellite overpass from the Pullman and
Thera field sites and several years later from the St. John and
Plaza sites. Composite soil samples from the surface (0.08 to
0.10 m deep) were collected at each sample point (50-m in-
tervals along the transects). The sample points were matched
as closely as possible to pixel locations by plotting transects
on image data and measuring from field boundaries to pixel
locations on compass lines. The number of referenced data
collected and analyzed varied due to labor and time con-
straints and our ability to match sample points with pixels.
Nineteen samples were used from the Pullman field site, 39
at Thera, 145 at St. John, and 21 at Plaza.

The composite surface soil samples were analyzed to de-
termine the range in SOC content at each field site. Organic
carbon was analyzed according to standard procedures, i.e.,
it was determined to represent the darkening of soil color by
organic matter (Nelson and Sommers, 1975). Organic matter
is considered the dominant factor in soil reflectance values
when its quantities exceed 2 percent of the oven dry weight
of soil.

TM Data Transformation

The T™ data were received as fully processed tapes (CCT-PT)
and were also corrected to the UTM coordinate system. In an
effort to reduce sample location error, a 2- by 2-pixel win-
dow (pixel = 28.5 m) was averaged and used for each sam-
ple and each band. The T™ data were analyzed using the
VICAR/IBIS system at the Digital Image Analysis Laboratory
(DIAL) at Washington State University (Hart and Wherry,
1984). A dark-object substraction technique (first-order) was
employed to correct for atmospheric scattering (Chavez,
1988). The resulting TM data were then converted to plane-
tary reflectance using a sensor calibration information proce-
dure (Markham and Barker, 1986).

Various transformation models have been applied to the
scattering of optical radiation from soil surfaces (Becker et
al., 1985; Narayanan et al., 1992). We selected reflectance ra-
tios of Landsat TM data which have been shown to be rela-
tively insensitive to incidence angle variation (i.e., account
for shadowing effects) in the data. A number of researchers
have used ratioing to reduce illumination and topographic
effects on a scene (Holben and Justice, 1981; Jensen, 1986;
Kauth et al., 1979; Kriegler et al., 1969). In addition, these
ratios are strongly associated with measured soil reflectance
values. Image processing of the corrected T™M data included
conversion into four reflectance ratios (TM bands 1/4, 3/4, 5/
4, and 5/3) scaled from 0 to 255, considered useful to dis-
criminate between SOC levels, eroded soils, and bare soil
(Frazier and Cheng, 1989).

Principal component transformations (PCT) are com-
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TaBLe 1. ANALYSIS OF VARIANCE AND REGRESSION COEFFICIENTS FROM THE POOLED

(A) PLaza AND PULLMAN, AS WELL AS THE PoOLED (B) THERA AND ST. JOHN FIELD

SIES IN EASTERN WASHINGTON

(a) Plaza and Pullman

Analysis of variance

Regression coefficients

Source of Mean Regression Parameter Standard
variation df square F(Ha:B#0) coefficient estimate error
Regression 2 584.77 129.01** Bo —23.89 2.46
X, 1 1179.48 258.00** By 0.50 0.03
XalX, 1 0.06 0.01 B. -0.08 0.68
Error 37 4.53 rz = 0.88
{b) Thera and St. John
Regression 2 1187.04 224.14** Bo —21.47 1.63
X, 1 2373.81 448.,22** B4 0.38 0.02
XX, 1 0.26 0.50 B. 0.09 0.44
Error 181 5.30 2 = 0.71

** Denote significance at the 0.01 level of probability.

monly used to reduce the data redundancy and improve
interpretation by producing a few linear combinations (new
bands) of the original bands or ratios (Johnson and Wichern,
1988). It is generally accepted that with Landsat images of
land surfaces the first three principal components contain
over 98 percent of the total sample variance; hence, these
components can replace the original bands without much
loss of information (Rees, 1990; Gong and Howarth, 1992).
The corrected and ratioed T™ data were transformed using
PCT operations, resulting in three principal components with
improved interpretations (Frazier and Jarvis, 1992). Specifi-
cally, the first principal component contained variation due
to crop greenness, the second principal component rep-
resented variation due to soils, and the third principal com-
ponent contained variation due to wetness. This meaningful
interpretation was visualized from a rotation of the coordi-
nate axes, resulting in alignment of the soil component
along the second principal component axis (Johnson and
Wichern, 1988; Roman, 1984). The soil component data
were selected from each field site for further analysis be-
cause the values are related to organic matter of soils in
eastern Washington.

Data Analysis Techniques

Regression analysis (least-squares criterion) was used to ex-
amine the relationship between SOC content and Landsat T™
ratio values. The four data sets were originally analyzed in a
multiple regression model with three indicator variables and
their interactions (Neter et al., 1990). General linear tests
were used for the analysis of the initial model, and these
tests (P<0.05) indicated that two separate regressions using
the same model were appropriate for the data. The model is

V=08, + B:Xn + B:Xiz + &

where Y; is the response variable (SOC), Xj, is the trans-
formed satellite ratio value, X, is the indicator variable, S, is
the intercept, B, is the slope, 8, measures the differential ef-
fect of the locations, and the error term is €.

If the regression function given above was the same
(H,:B,=0) for both locations, implying the same location ef-
fect, we adopted a regression model without an indicator
variable. This simple regression model is

Y. =B + BXa + ¢
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where Y, B,, B:, X;;, and ¢ were previously defined. The
GLM, MEANS, and REG procedures of SAS/PC (SAS, 1988) were
used to perform the analyses of organic carbon and the T™M
transformed ratio values.

Results and Discussion

Location differences in SOC content were evaluated using lin-
ear regression techniques derived from least-squares equa-
tions for each of the four (Plaza, Pullman, St. John, and
Thera) field sites (Figure 1, Table 1). An analysis of variance
from a combined multiple regression model (data not shown)
indicated that the four field sites should be analyzed as two
data sets, each comprised of two different field sites. The
surface SOC reference and the selected Landsat T™ data (the
soil component) sets for the pooled field-sites (Plaza and
Pullman, Thera and St. John) showed a substantial difference
in response.

The F-tests in Table 1 showed that the differential effects
of field sites were nonsignificant for each regression, indicat-
ing that the regression functions are the same for the two
field sites. Therefore, the regression lines were computed
from a simple regression function (the indicator variable was
deleted from the model). Plots of T™ soil component values
versus surface SOC content indicated a general trend toward
higher SOC content with higher transformed T™ values (Fig-
ures 2 and 3). However, the intercepts and the rates of in-
crease differed for the regression models.

Highly significant (P<0.01) relationships between mea-
sured SOC and the transformed TM ratio values were detected
for each regression of the pooled field-sites (Figures 2 and 3,
Table 1). The coefficients of determination (r?) for Plaza and
Pullman (r2 = 0.88), and Thera and St. John (r? = 0.71) also
indicated a strong linear association between surface SOC and
observed T™M data. In comparison with Plaza and Pullman,
the fit for the Thera and St. John regression function was not
as good (i.e., the regression showed a larger scatter of data).
In addition, normality of error terms was satisfied and the
field sites within the pooled regression functions had error
variances (data not shown). Thus, our T™M data approach in-
dicated that two separate regression models are needed to
characterize the four field sites.

Results from the regression analyses (given above) corre-
spond with the topographical differences measured in soils
of the Palouse region of eastern Washington State. For in-
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Figure 2. Regression function compar-
ing the association between measured
soc content and observed Landsat ™™
values for the pooled Plaza and Pull-
man, Washington field sites. Regression
line (see Table 1) was derived from a

least-squares equation [Y = —23.89
+ 0.50X,, r? = 0.88, and F(Ha:B, #0)
= 265**].

Soil organic carbon
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Component value
Figure 3. Regression function compar-
ing the association between measured
SOC content and observed Landsat T™M
values for the pooled Thera and St.
John, Washington field sites. Regression
line (see Table 1) was derived from a

least-squares equation [Y = —21.47
4 0.38X,, ¥ = 0.71, and F(Ha:B,#0)
= 451%*%],

stance, patterns in measured SOC of surface soils corre-
sponded to differences in soil association, mainly due to
longitude (from west to east). The Plaza and Pullman soils
contain more clays (less carbonates) on the hilltops, thicker
A horizons, and are less eroded when compared to the Thera
and St. John soils (Frazier and Cheng, 1989). Therefore, Plaza
and Pullman soils are higher in surface SOC content and
transformed TM values. We concluded that the response pat-
tern of SOC was directly related to the T™ values, implying
that T™ data may be used to estimate surface SOC and dis-
criminate between SOC levels in soil types in eastern Wash-
ington.

These results also suggest that future research should de-
velop more accurate methods of soil reference data collec-
tion, combined with carefully corrected satellite data to
reduce variability, hence improving the SOC - T™M association.
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For example, soil reference factors which may be potential
sources of variability include spatial soil heterogeneity, SOC
composition and analysis, and differences in crop residue
cover, as well as location of pixels in fields.

The band ratios used in this study are sensitive to addi-
tive factors, i.e., the atmospheric correction process, and
therefore may be biased (Frazier and Cheng, 1989; Lathrop,
1992). Subtraction of the additive atmospheric haze compo-
nent can cause the data to shift vertically, depending on the
dark-object reflectance and atmospheric type selected. These
corrections were made for both dates. However, the process
requires that all pixels receive the same correction, while it
is common for haze to increase from east to west in eastern
Washington. As a result, an uncorrected gradient may remain
across the scene, though it would be diminished.

Conclusions

Results of linear regression techniques suggest a useful if not
yet close relationship between measured surface SOC and
Landsat TM values (for the ratioed and transformed soil com-
ponent). Consequently, the selected T™ data have potential
as a complementary method for estimating surface SOC of
Palouse soils in eastern Washington State. Thus, after a
model is established for the soil zone in question, TM images
could be used to predict the surface SOC values at nonsam-
pled locations (throughout the area where the model was de-
veloped) at a fraction of the cost for surface reference data. In
addition, a natural extension of this technique would be to
interpolate T™ values using spatial statistical methods to re-
late the effects of spatial heterogeneity in surface SOC to crop
yields. These results also suggest that research to measure re-
lationships between SOC and T™ values continue for other
soil zones in the Palouse toward efforts to increase the preci-
sion of the SOC estimates, and relationships to crop yield po-
tential.
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