
Ghange Detection for
Monitoring Forest Defoliation

Dougfas M. Muchoney and Bary N. Haack

Abstract
Monitoring of environmental conditions such as forest defoli-
ation by insects over large areas is facilitated by automated
approaches to change detection using rcmotely sensed data.
This study evaluated four change detection techniques using
multispecbal, multitemporal spor data for identifying
changes in hordwood forest defoliation caused by Wpty
moth, Lymantria dispar L.

The change detection techniques considered were princi-
pal components analysis, image differencing, spectral-tempa-
rcl (layered temporcl) change classification, and
post-classification change differencing. The study area com-
prised approximately 148 squarc kilometres in Warcen and
Shenandoah Counties, Virginia. Reference information of de-
foliation were aerial sketch maps developed by the U.S. Forest
Sewice.

^Resulfs indicate that defoliation may be best determined
by image differencing and principal components analysis. A
pair-wise test of significance determined that the four tech-
niques resulted in significantly different accuracies at a 95
percent probobility level. Principol components and image
differencing analyses are generally more complex than post-
classification because data no longer represent actual sensor
data values, and classification involves identifuing change,
ruther than cover, classes. These techniques are simpler than
post-classification approaches, which require independent
classification prior to change detection.

lntroduction
A significant insect defoliation problem in the United States
is caused by the gypsy moth, Lymantria dispar L. Defoliation
assessment commonly involves aerial sketch mapping, pho-
tographic interpretation, and/or ground surveys. These tech-
niques can be subjective and labor intensive. Automated
change detection using satellite data could allow for timely
and consistent estimates of defoliation trends over large ar-
eas, and ease of data capture into a Geographic Information
System (cIs).

Forest assessments for monitoring gypsy moth defolia-
tion require data acquisition at least once during the early
summer when the insects are most active. Subsequent data
acquisitions are also necessary to characterize regrowth and
re-infestation during the growing season and to monitor sup-
pression activities (Ciesla, 1981). Because defoliation can
occur over thousands of hectares, there is also the need to
have a synoptic view of defoliation (Talerico et al.,1S7B).
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Satellite-based digital remote sensing has been used for
forest cover type mappinS (Nash et al.,'tgao; Bryant ef o1.,
1980; Buchheim ef a1.,7s84), forest clearing (Sader, 198Z),
silvicultural assessments (Tom and Miller, 1980), disturbance
assessment and monitoring (Aldrich, 1975), and forest defoli-
ation and damage assessment studies (Nelson, 1983; Vogel-
mann and Rock, tgBB; Vogelmann and Rock, 1989). The
defoliation assessment studies have included damage from
insects such as Mountain Pine Beetle, Dendroctonus ponde'
rosoe (Sirois and Ahern, 1989); Hemlock Looper, Lambdina
fiscellaria fscellaria (Franklin, 1989); and Spruce Budworm,
Choristoneura fumiferana Clemens (Buchheim et al., 1gB4);
as well as gypsy moth (Nelson, 1983; Ciesla et o1.' lg8g).

Landsat Multispectral Scanner (uss) and Thematic Map-
per (ru) data have been used successfully to map forest de-
foliation for a single date. Rohde and Moore (1924)
delineated gypsy moth defoliation using false color compos-
ites of Landsat MSS data, and enhanced defoliation estimates
with multitemporal usS band 7 composites. Johnson (1980)
evaluated an iterative procedure using an unsupervised clus-
tering algorithm to develop training statistics for forest and
non-forest categories using Landsat MSS data including three
levels of canopy defoliation. Reported accuracies were 82.0
percent plus/minus 2.4 percent.

Williams ef o1. (1985) used ratio vegetation indices of
Landsat MSS bands 5 and 7 to discriminate heavy forest defo-
Iiation from a category of moderate defoliation and healthy
forest with accuracies of 75 to 80 percent. \A'illiams and Nel-
son (tsao) developed techniques to delineate and assess for-
est damage due to defoliating insects with a reported 90
percent classification accuracy for delineating insect-dam-
aged and healthy forest. Vogelmann and Rock (tga8) evalu-
ated Landsat tM data for its ability to detect and measure
damage to spruce-fir stands. That study indicated that TM
Band 5/a andTl+ ratios correlated well with ground observa-
tions of forest damage defined as percent foliar loss.

Applications of forest monitoring using SPOT (Satellite
Probatoire pour I'Observation de la Tene) include the evalu-
ation of simulated SPoT data for their ability to map forest
cover type and detect defoliation caused by the spruce bud-
worm (Buchheim ef a1., 1984). That study found that, al-
though defoliation was discernible using digital processing,
contextual information was needed to discriminate forest
cover type. SPOT-XS (multispectral) color composites have
also been used to delineate areas of gypsy moth defoliation
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in eastern hardwood forests (Ciesla et aL.,7989). The authors
compared defoliation estimates obtained from panoramic
color infrared (ctR) aerial photography and reported an over-
all agreement between the two methods as 86 percent, al-
though there were differences between the two techniques in
their abilitv to classifu defoliation intensity.

Changl detection using multitemporai data had previ-
ously been employed primarily for the evaluation of land-
cover changes associated with urbanization (Christenson and
Lachowski. 1976: Wickware and Howarth. 1981: Estes ef o1.,
1982), desert i f icat ion (Coiner, 1980; Robinove et al. ,79Bt),
and coastal zone monitoring (Weismiller et ol., 1977; Hong
and lisaka, 1982). Specific applications of change detection
to monitoring defoliation include Nelson (1983), who evalu-
ated image differencing, ratioing, and vegetative index differ-
encing of Landsat MSS data for detecting defoliation due to
gypsy moth. That study concluded that the vegetative index
differencing and an MSS Band 5 ratio gave the best indication
of forest canopy change, with accuracies of about 78 percent.
Vogelmann and Rock (1989) used multitemporal Landsat TM
band + image differencing (subtraction) with single-date band
3 and 5 data to distinguish between high and Iow levels of
defoliation of hardwood forests caused by the Pear Thrips,
T aeni othri p s i n c onsequ ens Uzel.

The obiective of this study was to evaluate four change
detection techniques using multitemporal, multispectral sat-
ellite data to identify changes in hardwood forest defoliation
caused by gypsy moth. The four methods were (t) principal
components analysis (PCA), (2) image differencing (n), (3)
spectral-temporal change classification (srcc), and (4) post-
classification change detection differencing (pccon).

SPOT XS multispectral data for two years, 1987 and 1988,
were obtained for portions of Warren and Shenandoah Coun-
ties, Virginia. Criteria for evaluating the change detection
techniques were classification accuracy, signature develop-
ment complexity, data reduction, and processing and analy-
sis intensity.

Study Area
The study area comprised a portion of the Strasburg, Virginia
1gB7 U.S. Geological Survey (uscs) 7.s-minute quadrangle
map including approximately 148 square kilometres or 57
square miles (Figure 1). The study area is located within
both the Blue Ridge Physiographic Province, and the Appala-
chian Valley and Ridge Physiographic Province. The Valley
and Ridge Province comprising the western portion of the
study area includes Massanutten Mountain and the adjacent
foot slopes, narrow ridges, flood plains, and uplands. The
rock strata in this region are predominantly folded sand-
stone, siltstone, and limestone. In the eastern portion of the
study area, the steep to moderately steep foothills are under-
lain by greenstone and granitic rock (Holmes ef o1., 1984).

The forest cover of the region is predominantly hard-
wood and mixed oak-pine in the upland forested regions.
The dominant tree species present are white oak (Quercus
alba L.), northern red oak (Quercus rubra L.), chestnut oak
(Quercus prinus L.), shagbark hickory (Carya ovofo (Mill.) K.
Koch), and American beech (Fagus grandifolia Ehrh.) (Smith
and Linnartz, 1.980). Lower elevations support agricultural
crops and pasturage.

The upland hardwood forests of the region, including
the study area, have been recently disturbed by the invasion
of gypsy moth. Gypsy moth eggs are laid during the summer
season and hatch the following spring. These first-stage lar-
vae feed primarily on oaks (Quercus spp.) and other hard-
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woods, particularly walnut (Juglans spp.), basswood (Tilia
spp.), and birch (Befula spp.). The optimum time to evaluate
the effects of gypsy moth defoliation is 1 to 21, lune, when
gypsy moth infestation is at its peak (Knight and Heikkenen,
1980; Ciesla ef o1.. 1989).

Methodology
sPoT Haute Resolution Visible (unv) XS data were acquired
on 15 fune 1987 and SPoT HRV-XS and panchromatic data
(PAN) were acquired on 4 )uly 1988 (Path-Row Kl 61.9, 272).
Although the 19BB data were acquired two weeks after what
is considered to be the peak of infestation, it is not late
enough to allow for vegetation to recover and defoliation
would still be quite evident.

The multispectral data from June 1987 and 1988 were
geocoded and resampled from ZO-metre to 10-metre spatial
resolution using an intensity, hue, and saturation (ms) trans-
formation based on the SPOT lO-metre panchromatic data.
The geocoding process used a single set of control points to
create a sensor-orbit-Earth ellipsoid model to transform indi-
vidual pixels to the Universal Transverse Mercator (urv) ref-
erence system, The geocoding also employed a 1:25,000-scale
terrain model (s0-metre contour) to remove terrain relief dis-
tortions, A nearest-neighbor spatial interpolation was used to
retain radiometric integrity, and the root-mean-square of the
rectification model was approximately one pixel (ten metres).

Precision geocoding of the multitemporal data obviated
additional resampling for image-to-image co-registration. Pre-
cise co-registration of the data sets is critical to minimize
misregistration that might provide false indications of image-
to- image change. No corrections for atmospheric effects
were performed because the imprecision of a scattering
model might influence change detection results. This also en-
abled characterization of each change detection technique's
ability to isolate inter-image variance due to atmospheric ef-
fects. At the resampled spatial resolution of 10 metres, 1088
rows by 1391 scan lines, or 1,513,408 pixels, were included.

Defoliation maps of the study area had been developed
by the U.S. Forest Service from aerial sketch mapping per-
formed in June of tgaz and 1988. These maps corresponding
to the U.S. Geological Survey 7.S-minute, 1.:24,OOO scale top-
ographic map were obtained and digitized into a raster GIS
(Figure 1). The 19BB defoliation maps were classified by the
Forest Service as non- defoliated (greater than or equal to 30
percent defoliation), moderate defoliation (31 to 60 percent
defoliation), and heavy defoliation (61 to 100 percent defolia-
tion. Because the 1987 data maps included only defoliated/
non-defoliated classes, the 1988 data were recoded also as
defoliated/non-defoliated, with moderate defoliation
included as defoliation.

The minimum mapping unit of the defoliation polygons
was approximately 4 hectares (10 acres). These sketch maps
were the reference information for the accuracy evaluation of
the change detection strategies. No quantitative assessment of
the accuracy of the sketch maps was performed. These tech-
niques are generally assumed to be reliable indicators of de-
foliation due to gypsy moth, although sketch-mapping can be
inaccurate (Aldrich et al., 1,gSB). Thus, accuracy assessment
should be considered as relative, rather than absolute, when
evaluating the four change detection methods.

Principal Compnents Analysis
PCA, or the Karhunen-Loeve (K-L) transformation (Duvernoy
and Leger, 1SB0), is a multivariate statistical technique where
data axes are rotated into principal axes, or components, that
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Figure 1. Study area.

maximize data variance (Figure 2). The original data are then
transformed to the new principal (xes, or comPonents. In
this manner, correlated data sets can be represented by a
smaller number of axes, while maintaining most of the varia-
tion of the original data. For change detection purposes, PCA
can be divided into two categories: (1) independent and (2)
merged data transformation and analyses. Independent trans-
formations are subsets of post-classification change detection
that employ PCR independently on registered temporal data
pairs as a prelude to post-classification comparisons (Estes ef
al., 1,982). Merged data transformations are those that rely
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upon PcA of combined multitemporal data sets to isolate in-
tei-image change. The premise for this analysis is that multi-
temporil data Jets are highly correlated and that PCA can be
used to highlight differences attributable to change (Byrne ef
al., 1980).

PCA for this study was based on the entire merged data
set. The eigenvalue matrix (Table 1) indicates that eigeni-
mage 1 accounts for the majority of the inter-image variance
- 6i.3 percent. Eigenimages 2,3, and 4 account for 22.9, 9.3'
and s.o percent oT the inter-image variance, respectively. The
remaining two components, 5 and 6, account for less than 1

u245



1203.02 1328.53 -568.68

7572 .77  -844 .35

3149 .52

7268.57 7292.90
1468.83 7527.76
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Figure 2. Principal component transformation. (A) Bivari-
ate scatterplot with mean and new coordinate system.
(B) Construction and rotation of the principal components
with theta equal to the angle of rotation and variance oP
timized by angle. (C) Component eigenvectors (EV), where
the lengths of the eigenvectors are the eigenvalues (from
Jensen, 1986; Jensen and Waltz, L979).

Tnarr 1. Menceo PRtttctplt- CotrtpoteNrs

Covariance Motrix

Bandt/82 Band2lSz Band3/82 Bandt/88 Bandz/84 Band3/84

Eigenimage 1. is attributable to changes in overall scene
brightness, while eigenimage 2 represents changes in overall
scene greenness (Figure 3). Eigenimage 3 is due to changes
caused by forest defoliation, and other changes in vegetation
cover which would impact infrared (n) reflectance, such as
cropping followed by fallow-field conditions. Eigenimage 4 ir
attributable to differences in the two images caused by
clouds and cloud shadows being present in the first year
only. The remaining two eigenimages, which account for
only 0.83 percent of the inter-image variability, represent in-
ter-image differences due to atmospheric and sensor varia-
tions. The sensor variations are evident in sensor band
striping in these two eigenimages.

Two PCA approaches were developed. In the first,
merged pcA (MPCA), all six principal components, or eigeni-
mages, were used in performing an unsupervised statistical
signature extraction based on minimum spectral distances
and scaled cluster weight criteria and application of a Baye-
sian maximum-likelihood decision rule. For this and subse-
quent processing, 25 unsupervised siSnatures were
generated. Although the six eigenimages contain all of the
variance of the original six bands, this allowed the evalua-
tion of the effects of the principal component transformation
on classification accuracy. In the second approach, because
eigenimage 3 (PC3) was found to represent year-to-year vari-
ance due to defoliation, it was also classified independently
using density level slicing.

lmage Dilftrcndng or Detta Change DetectionlD is a technique whereby
changes in brightness values between two or more data sets
are determined by cell-by-cell subtraction of co-registered
image data sets. The subtraction (differencing) produces an
image data set where positive and negative values represent
areas of change and values close to zero indicate areas that
remain relatively unchanged. Threshold values are often de-
fined and used to indicate whether significant or relevant
change has occurred. This method requires that the differ-
ence image be normalized to the median of the quantization
level. For these 8-bit data (0 to 255, or 256 levels) the me-
dian value (tzz) was added to the original value resulting
from the subtraction.

The pixel-by-pixel subtraction of registered images re-
sulting from image differencing can be used to create maps
of increased and decreased values of the reflectance of sur-
face features. In arid lands, for example, decreases in albedo
may indicate site degradation or desertification (Robinove ef
a,1., 1981). Image differencing can also be used to identify ar-,
eas where further analysis might be required, thereby reduc-
ing the amount of ground referencing required for effective
analysis by as much as 97 percent (Estes et aI., 1982).In this
study, the data sets were subtracted band-by-band, normal-
ized, and classified without using change thresholds (Plate
1 ) .

Spectral-Temporal Change Classification
STCC, or layered temporal change detection, is based on sin-
gle analysis of a merged multi-date data set using standard
pattern recognition and classification techniques. Because the
data sets would otherwise be similar, changes would be sig-
nificantly different statistically (Weismiller et al., 1977). Al-
though this technique only requires a single classification,
signature development can be very complex, especially when
a large number of spectral bands are considered (fensen,
1986J.

STCC required merging the pre-processed data into a sin-
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Conelation Matrix
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1.000
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o.777

-0 .3s2
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1.000 -0.447
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5
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831 .676
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61 .314
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9 .339
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U . J / J
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Eigenvectors

61.314 72,706
84.217 19.434
93.550 93.577
99.175 96.288
99.750 89.382

100.000 89.025

o.271
t t . J z +

- 0 .393

0.483
0 .514

-o.472

0.250
o.249
o.572
0.333
0.306
0.587

-0.270 -0.
-0.369 -0.454

0.624 -0.354

0.777 0 .331
0.236 0.322

-0.561 0.477

-0.161 0.719
0.163 -0 .653
0.005 -0.061

-0.700 -0.158
0.675 0 .163
0.039 0.035

percent of this variance, Analysis of the eigenvector matrix
indicates the relative contribution to the overall eigenimage
variance by each of the image bands. This "factor loading
analysis" provides insight into how each image band loads
or contributes to the principal components transformation
when considered with visual inspection of eigenimages.
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(e)

Figure 3. Individual eigenimages. (a) pc1. (b) pc2. (c) pca. (d) pc4. (e) pc5. (f) pc6.

gle six-band data set. Classification was performed by ex-
tracting unsupervised signatures and applying a
maximum-likelihood decision rule.

Post4lassification Change Detection Differencing
PCCDD is a technique where multi-date digital data sets are
independently classified and then compared on a pixel-by-
pixel, or polygon-by-polygon, basis for each class (Wickware
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and Howarth, 19S1). The classification maps are compared
using class pairs as described by the analyst, and the result
is an indicator of areas of change (Weismiller et al., 1,977i Es-
tes et al.,'1.982).

PCCDD was performed on the SPOT data sets using two
approaches. In addition to the cluster-generated signatures,
training classes were also defined interactively prior to the
application of a maximum-likelihood decision rule.



(a) (b) (c)
plate 1. 1987, 1988 (nce : 3, 2, 7; courtesy spor lmage Corporation), and lmage Differencing images (lD displayed as RGB
: !,2,3 for difference bands L, 2, 3, respectively). (a) 1987 sPor xs. (b) 1988 sPor xs. (c) lmage differencing.

Results and Discussion
One of the criteria for evaluating the change detection tech-
nique was classification accuracy, Accuracy assessment was
performed using a cls to reference the U.S. Forest Service
aerial sketch mapping classification. The standard error ma-
trices for the techniques are provided in Table 2.'the overall
accuracy as well as the normalized overall accuracy and
Kappa Coefficient (rHar) statistic, as described by Colgalton
et 41. (1983) and Congalton (rssr), are included as Table 3.
The Kappa Coeffrcient was generated for each error matrix as
an estimate of agreement where chance agreement is re-
moved.

The Z-statistic was used as a pair-wise test of signifi-
cance between the techniques at a 95 percent probability
level (Congalton ef o/., 1983). It indicated that the techniques
differed significantly (Table a.), that is, the absolute value of
the test statistic was greater than 1.96. The accuracy ranking
by technique varied somewhat according to whether the
standard error matrix, normalized error matrix, or Kappa Co-
efficient was scrutinized, although image differencing and
PC3 rank one and two, respectively, for all three. It is impor-
tant to note that only PCCDD and stcc were capable of deter-
mining that defoliation occurred in both 1987 and 1988.
Therefore, this category was not included in comparing the
techniques.

Merged Principal Compnents Analysis
MPCA was intended to identify the single component image
that reflected changes in defoliation, i.e., PC3. MPCA does,
however, have the advantage of defining the source of other
inter-image variance. Atmospheric effects and band striping
were isolated as individual components. The accuracy of
MPCA differed significantly from that of Srcc, although the
data were of the same dimensions and Mpc,t accounts for the
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same variance in the data as STCC. It is uncertain whether
this difference is due to the effects of the principal compo-
nents transformation or as a result of the unsupervised signa-
ture generation.

Improper generation of the transformation matrix is of
primary concern when using MPCA. Creating subsets of the
image data to guide transformation matrix generation so as to
highlight features of interest can be employed with poten-
tially good results (Duggin et al,, 1.986), although there may
be no prediction towards this end. Data correlation is deter-
mined by constructing either a covariance or a correlation
matrix (Fung and LeDrew, 1987), and results can differ signif-
icantly according to which matrix is employed.

Pl|nclpal Component 3
The PC3 analysis offered better locational accuracy results
than did the MPCA. Defoliation in any one year was mani-
fested at the tails of the PC3 smoothed frequency polygon
(Figure  ). The optimum standard deviation-derived density
Ievel slice was determined by plotting relative classification
accuracies (Figure 5). Although this procedure was based on
using the reference data, sampling to calibrate the level slice
could be performed. PCA has the best potential for becoming
a truly automated change detection technique. The ability to
discern defoliation was found to be based solely on distance
from the data mean, and defining defoliation in any region
was accomplished by setting the limits of the single-band
density slice. It also obviates normalizing multitemporal data
sets to remove inter-image variability due to sensor and at-
mospheric conditions and not due to change.

lmage Dlffercncing
ID offered the ability to define change thresholds and allows
for flexible subsetting of data for classification improvement
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TaeLe 2. ERRoR MATRTcES

MPCA Error Matrix, Reference Data

Classified
Data

Non-Def. Defol. Defol. Defol.
7987188 7987 1988 87188 Totals

Non-Defoliated
1987 and 1988
Defoliated
1987 only
Defoliated
1988 only
Defoliated
1S87 and 1988
Totals

325,688 37,454

10,314 15,222

66 ,319  4 ,749

708,378 7,322 478,842

655 956 27,747

74,320 4,387 749,769

0 0 0 0 0
402,321 27,1.47 749,769 72,659 655,758

PC3 Error Matrix. Reference Data

Classified
Data

Non-Def. Defol. Defol. Defol.
1587/88 7987 1988 87188 Totals

Non-defoliated
1987 and 1988
Defoliated
1987 only
Defoliated
1988 only
Defoliated
1987 and 1988
Totals

305,114 16,358 95,244 4,508 427.224

42,085 38,857 1,818 3,626 86,388

55,722 2,21.0 86,291 4,525 748,748

0 0 0 0 0
402,327 s7,425 183,352 72,659 655,758

lmage Differencing Error Matrix, Reference Data

and data reduction, with results comparable to PCA. ID is
computationally very simple and easy to interpret. Band-by-
band subtraction permits the analysis of the nature of inter-
image change on a per-band basis.

Spectral-Temponl Change Classlfrcation
srcc oroved to be the most analyticallv intensive of the tech-
niquei studied. Because the data sets are merged and no pre-
processing is prescribed for data reduction, it is necessary to
analyze all bands to subset the data. Signature development

Classified
Data

Non-Def. Defol.
7987/88 7987

Defol.
87188 Totals

Defol.
1988

Non-Defoliated
1987 and 1988 284,853 7A,704 49,924 4,A76
Defoliated
1987 only 13,348 34,950 620 3,529
Defoliated
1988 only 104,120 3,771 132,809 4,254
Defoliated
1 9 8 7 a n d 1 9 8 8  0  0  0  0
Totals 402,321,  57,425 783,352 72,659

Spectral-Temporal Error Matrix, Reference Data

462,428

52,329

141,001

0
655.758

Classified Non-Def.
Data 7987/88

Defol. Defol.
1988 87188 Totals

Defol.
7987

Non-Defoliated
1987 and 1988
Defoliated
1987 only
Defoliated
1988 only
Defoliated
1987 and 1988
I Otals

327,562 34,891

15,609 76,127

49,667 5,445

125,989 4,605 493,047

603 3,275 35,554

55,414 3,359 113,885

9,483 962 7,347 1,480 13,272
402,321 57,425 183,352 12,659 655,758

PCCDD Error Matrix, Reference Data

Classified
Data

Non-Def. Defol. Defol. Defol.
1.987188 1987 1988 87/88 TotaIs

Non-Defoliated
1987 and 1988 294,768 20,722
Defoliated
1987 only 10,496 18,459
Defoliated
1988 only 86,371 6,978
Defoliated
1987 and 1988 77,286 77,266
Totals 402321 57,425

90,488 5,720 41.O,

777 1,503 37,775

91,289 4,360 188,998

859 7,676 25,047
183 ,352  12 ,659  655 ,758

Where: values are pixels classified.
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Figure 4. pc3 smoothed frequency polygon with 1.0 stan-
dard deviation values.
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for change detection using STCC is complex because multi-
date change signatures, and not just defoliation signatures,
must be developed.

Post4lassifl cation ChanEe Detection Differencing
PCCDD is the most straightforward technique because the data
remain in image format. It does not, however, allow for nor-
malizing differences between multitemporal data caused by
sensor and atmospheric influences, and care must be taken
so that non-feature changes are not classified as change. The
primary disadvantage of ICCDD is that, although it is possible
to standardize classification procedures from one data set to
another, the technique does not allow for normalizing differ-
ences between multitemporal data attributable to sensor and
atmospheric influences.

Conclusions
Principal components analysis and image differencing offer
the greatest potential for achieving reliable mapping of defo-
Iiation. That a density level slice of a single principal com-
ponent could be used to characterize changes due to
defoliation is an outcome of special interest. When used in
conjunction with ground and aerial photography-based as-
sessment methods, change detection using satellite-borne re-
mote sensing data may aid in the systematic and quantitative
monitoring of defoliation conditions.

A limitation to using a change detection approach to
identify and monitor defoliation is that, if defoliation occurs
in the same area during consecutive years, there will be no
net change during that period. However, once baseline con-
ditions are established, monitoring can proceed normally.

Digital change detection offers potential benefits for
monitoring defoliation over large areas. Image differencing
and principal components analysis are rather straightforward
and could be automated easily. Even if defoliation could not
be readily classified, the detection of change could be refer-
enced in a spatial database to isolate change occurring in
hardwood forests, thus effectively reducing sampling costs
required for other monitoring techniques.
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