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Abstract

Artificial neural networks have considerable potential for the
classification of remotely sensed data. In this paper a feed-
forward artificial neural network using a variant of the back-
propagation learning algorithm was used to classify
agricultural crops from synthetic aperture radar data. The
performance of the classification, in terms of classification
accuracy, was assessed relative to a conventional statistical
classifier, a discriminant analvsis. Classifications of training
data sets showed that the artificial neural network appears
able to characterize classes better than the discriminant
analysis, with accuracies of up to 98 percent observed. This
better characterization of the training data need not, how-
ever, translate into a significantly more aceurate classifica-
tion of an independent testing set. The results of a series of
classifications are presented which show that in general
markedly higher classification accuracies may be obtained
from the artificial neural network, except when a priori infor-
mation on class occurrence is incorporated into the discrimi-
nant analysis, when the classification performance was
similar to that of the artificial neural network. These and
other issues were analvzed further with reference to classifi-
cations of svnthetic data sets. The results illustrate the de-
pendency of the two classification techniques on
representative training samples and normally distributed
data.

Introduction

Supervised image classification is one of the most widely
used procedures in the analvsis of digital remotely sensed
data. A wide range of supervised classifiers are available but
all share a common objective, to allocate each case of un-
known class membership to a pre-defined class on the basis
of its spectral properties. The accuracy with which a re-
motely sensed image may be classified is dependent on
many factors. In addition to the properties of the remotely
sensed data set, the latter include the characteristics of the
training data (Swain, 1978; Schneider, 1980; Campbell, 1981;
Foody, 1988) and the nature of the classifier (Mather, 1987a;
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Thomas et al., 1987; Schalkoff, 1992). These latter issues are
often important because widely used conventional statistical
classifiers are based on a range of assumptions about the
data. For instance, the maximum-likelihood classification,
one of the most widely used image classification techniques,
assumes that the data for each class display a Gaussian nor-
mal distribution. This assumption is often untenable with re-
motely sensed data where classes may display a range of
distributions. Furthermore, because class membership is un-
known—it is the objective of the classification to define it—
correction for non-normality is impossible. Even if the as-
sumptions regarding the data distribution are satisfied, the
performance of the classification will be dependent on the
quality of the training data used. In order to form a represen-
tative training set for an individual class, it is generally rec-
ommended that the size of the training sample should be at
least 30 times the number of features (e.g., wavebands) for
each class (Swain, 1978; Mather, 1987a), vet such a training
set is frequently not acquired.

To avoid some of the problems associated with the max-
imum-likelihood classification, users may adopt more robust
techniques. For instance, discriminant analysis is in many
ways similar to the maximum-likelihood classification but is
less sensitive to deviations from normality and other as-
sumed conditions (Tom and Miller, 1984). Other alternative
procedures which make no assumption about the statistical
distribution of the data may also be used. A wide range of
techniques are available, including non-parametric classifiers
(Skidmore and Turner, 1988) and fuzzy classifiers (Kent and
Mardia, 1988; Key ef al., 1989; Wang, 1990). Recently, atten-
tion has focused on artificial neural network techniques as a
distribution-free approach to image classification (e.g.,
Benediktsson et al., 1990; Liu and Xiao, 1991).

Artificial neural networks have a wide range of applica-
tions (Davalo and Naim, 1991) and have been used to clas-
sify remotely sensed data to accuracies that are generally
comparable to or higher than those derived from conven-
tional statistical c lassifications (Hepner et al. 1990; Medina
and Vasquez, 1991: Short, 1991). In essence, an artificial
neural network may be considered to comprise a relatively
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Figure 1. A typical artificial neural network
unit. The output of the unit is a function
of the net input to it which is a composite
of the input strengths (x) and the con-
necting weights (w).

large number of simple interconnected neurons or units that
work in parallel to categorise input data into output classes
(Hepner et al., 1990; Schalkoff, 1992). The interconnections
between the units are weighted and, with the input data,
these weights determine the level of activation of a unit in
the network, which in turn influences the level of activation
of other units in the network and ultimately determines the
network outputs (Figure 1). The magnitude of the weights is
determined by an iterative training procedure in which the
network repeatedly tries to learn the correct output for each
of the training samples. The procedure involves modifying
the weights between units until the artificial neural network
is able to characterize the training data accurately. Conven-
tionally, a backpropagation learning algorithm has been em-
ploved in which the error between the network output and
desired output is minimized (Davalo and Naim, 1991; Schal-
koff, 1992). Once trained, the artificial neural network may
then be used to determine class membership for other data.
The network architecture parameters influence the perform-
ance of an artificial neural network (Benediktsson et al.,
1990; Hepner et al., 1990; Lee et al., 1990) but may be
difficult to define and are typically determined subjectively.
Once defined, however, the artificial neural network is more
robust than conventional statistical classifiers (Hepner ef al.,
1990). Artificial neural networks are also more tolerant to
noise and missing data (Hepner et al., 1990), can adapt over
time (Short, 1991), weight the importance of the data in the
classification (Benediktsson et al., 1990), and. once trained,
can be more efficient computationally than conventional
classifiers, especially if run on a parallel processing system
(Lee et al., 1990).

As with the conventional statistical classifications, the
characteristics of the training data will influence classifica-
tion performance. The size of the training set, for instance,
may be important in determining the relative accuracy of
classifications derived from artificial neural networks and
conventional statistical image classifications (Benediktsson et
al., 1990; Hepner et al., 1990). It may be possible for artifi-
cial neural networks to classify a remotely sensed data set
accurately with a smaller training set than is required for a
conventional classification (Hepner et al., 1990) and, if so,
then substantial advantages are afforded to the user; the abil-
ity to use small training sets and the absence of data distri-
bution assumptions. This is important because, if the
remotely sensed data satisty the assumptions of conventional
statistical classifiers, then no significant difference in classifi-
cation accuracy is usually observed between conventional
and neural network classifications (Ryan et al., 1991). With-
out any further advantage over conventional statistical classi-
fiers, artificial neural networks would therefore only be
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attractive for the classification of data which showed mark-

edly non-normal distributions. In this paper we evaluate the
performance of an artificial neural network against a discri-

minant analysis with particular attention to the characteris-

tics of the training data used in the classification.

Data

The classifiers were evaluated using two data sets. First, X-
band HH-polarized synthetic aperture radar (SAR) data for a
region of flat agricultural land centered on Feltwell, United
Kingdom (Figure 2) and second, a simulated data set. The
latter data set will be discussed later in the paper.

The SAR data were acquired on four dates during the
1986 growing season for an approximately 100km? test site
by the VARAN-S SAR as part of the European AgriSAR cam-
paign (Figure 3). These data suffer from a range of radiomet-
ric distortions (Quegan et al., 1991) and, consequently,
required preprocessing. The major radiometric distortions
were reduced by deleting duplicated lines and radiometric
balancing of the imagery, and the tone of the images was
standardized by a simple inter-image regression (Foody et
al., 1989). Because these data were to be generalized to pro-
duce a nominal level land-cover map, and the temporal di-
mension of the data was not being utilized further, more
detailed corrections were not considered necessary. The
analyses aimed to classify crop type on a per-field basis
(Pedley and Curran, 1991) using image tone (DN) as the dis-
criminating variable. The field mean DN from each of the
four images was estimated from a sample of at least 10,000
pixels, which were located away from the field edges to

N [ ] Forest

Study area

Feltwell

L _4km |

Figure 2. Location of the Feltwell test site in the United
Kingdom.
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Figure 3. SAR image (uncorrected) of the test site re-
corded on 28 June 1986.

avoid boundary effects, for a total of 158 fields (Foody et al.,
1989). These fields had been planted to one of seven crop
classes; winter wheat (42), spring barley (42), sugar beet (42),
potatoes (12), carrots (7), spring wheat (5), and grass (8).

The Classifiers

The two classification techniques used in the analyses were a
discriminant analysis (Klecka, 1980) and a feedforward artifi-
cial neural network using a variant of the backpropagation
learning algorithm (Yates et al., 1993). The discriminant
analysis, like the maximum-likelihood classification, allo-
cates each case to the class with which it has the highest a
posteriori probability of membership (Klecka, 1980; Tom and
Miller, 1984), and has been widely used in the classification
of remotely sensed data. Although the discriminant analysis
is a relatively robust technique (Tom and Miller, 1984), an
artificial neural network may be a more attractive approach
to classification when the data show a marked deviation
from normality.

An artificial neural network is constructed from a set of
processing units interconnected by weighted channels ac-
cording to some architecture. Each unit consists of a number
of input channels, an activation function, and an output
channel. Signals impinging on a unit’'s inputs are multiplied
by the channel’s weight and are summed to derive the net
input to that unit. The net input (net) is then transformed by
the activation function (f) to produce an output for the unit
(Figure 1). This may be expressed as

net = Zx,w,

1]

f(net)

where x, is the magnitude of the ™ input and w, is the
weight of the interconnection channel.

output
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In order to apply the backpropagation learning algo-
rithm, the activation function must be continuous, differen-
tiatable, and non-linear. Frequently, a sigmoid function is
employed (Rumelhart et al., 1986): i.e.,

f:R — [0,1]

1

fnet) = —
’1 + e—luuf

where A is a gain parameter which is often, and is in this pa-
per, set to 1 (Schalkoff, 1992). The activation function em-
ployed here is symmetric, and such functions have been
shown to improve learning algorithm performance over the
sigmoid function (Stornetta and Huberman, 1987). Specifi-
cally, the hyperbolic tangent function, tanh, was used. In this
paper, a fully connected layered feedforward architecture
with one hidden layer and an external bias unit was used
(Figure 4). The units of the network are grouped into layers,
with the output of a layer feeding forward to the next layer.
The output of the network as a whole is simply the activa-
tion of the units in the final layer.

The backpropagation learning algorithm (Rumelhart et
al., 1986) has been widely used in pattern recognition appli-
cations of artificial neural networks; it iteratively minimizes
an error function over the network outputs and a set of target
outputs, taken from a training data set. The process contin-
ues until the error value converges to a (possibly local) min-
ima. Conventionally, the error function is given as

E=1/2 X(T, - O)

where T, is the target output vector for the training set
(T,, .... T,) and O, is the output vector from the network for
the given training set. On each iteration backpropagation re-
cursively computes the gradient or change in error with re-
spect to each weight in the network, dE/aw, and these values
are used to modify the weights. Adding a fraction of the neg-
ative gradient to each weight is equivalent to performing a
steepest descent minimization of the error function with re-
spect to each weight in the network (Rumelhart et al., 1986).
Because standard backpropagation tends to be slow and does
not scale up to larger problems well, faster variants of back-
propagation are widely used. The algorithm employed in this
paper is Fahlman's (1988) Quickprop algorithm with Al-
meida and Silva's (1990) adaptive learning rate. In essence,
Quickprop is a second-order gradient descent technique
based on Newton’s method (Fahlman, 1988). The algorithm
recursively computes the error derivative with respect to
each weight in the network as in conventional backpropaga-
tion (Rumelhart et al., 1986). However, for each weight,
Quickprop uses a copy of the previous gradient and weight
update, in conjunction with the current error gradient, to de-
termine a parabola of error versus weight strength. By em-
ploying the quadratic update formula,
aE
aw

Awdt) E

awlt—=1)  aw(t)

B Aw(t—1)

where t indicates the iteration number, and other heuristics,
Quickprop tries to jump to the minima of the parabola. Al-
though the derived parabola is only an approximation to the
true error surface seen by each weight, the procedure when
applied iteratively has been shown to be more effective than
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Bias unit

Winter wheat

Spring barley

Carrots

Grass
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Input Hidden Output
units units units

Data flow

Figure 4. Basic structure of the 4:3:7 artificial neural net-
work used. For clarity, some of the network's connections
have been omitted.

standard backpropagation (Fahlman, 1988). An extension
proposed by Almeida and Silva (1990) employs an individ-
ual learning rate for each weight in the network. These learn-
ing rates are adapted during training according to the
heuristic that, if the previous and current gradients have the
same sign, that is, direction, the local learning rate is in-
creased. If the gradients have different signs, the learning
rate is decreased. Such a heuristic allows each learning rate
to tune itself during training and has been shown to reduce
zigzagging on the error surface and therefore learning times.
(Almeida and Silva, 1990). The network architecture and
learning algorithm parameters used were tuned following a
number of learning trials. The architecture selected con-
tained as few weights as possible while still allowing signifi-
cant learning to occur. Such an approach not only decreases
learning algorithm run times but also increases the artificial
neural networks’ potential for generalization (Baum, 1990). A
full exposition of the algorithm emploved here is beyond the
scope of this article but may be found in Yates ef al. (1994).

Classification Accuracy Assessment and Comparison
A statement of classification accuracy is required for the
evaluation of classification performance. There are many ap-
proaches for the assessment of image classification accuracy
and, because there are no general rules which can be fol-
lowed to define an appropriate classification accuracy tech-
nique (Congalton, 1991), one simple, easy to interpret, and
widely used measure, the percentage correct allocation, was
used. However, the classification confusion matrices are also
presented, enabling the calculation of other measures of clas-
sification accuracy if desired (Story and Congalton, 1986:
Foody, 1992). For clarity, the main diagonal of the classifica-
tion confusion matrices, which illustrates the correct class al-
locations, are highlighted.

The significance of the difference in classification accu-
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racy observed between the artificial neural network and dis-
criminant analysis classifications was assessed, on the
assumption that the samples may be considered independ-
ent, with the difference between proportions test (Freund
and Williams, 1959; Clark and Hosking, 1986).

Results and Discussion

For the classifications of the SAR data, a three-layer artificial
neural network architecture was used, comprising four input
units, three hidden units, seven output units, and a bias unit
(Figure 4). The SAR data were divided into training and test-
ing sets for a series of classifications. For the initial set of
analyses, the training set comprised 122 fields drawn from
all seven classes. The testing set, however, comprised 36
fields of only the three most predominant crop types found
in this region; spring barley, sugar beet, and winter wheat.
To assess the level of inter-class separability and illustrate
the relative ability of the artificial neural network and discri-
minant analysis to identify or “learn” the characteristic ap-
pearance of a class, the accuracy with which both could
classify the training data was assessed. The results showed
that a significantly higher classification accuracy was derived
from the artificial neural network classification than from the
discriminant analysis (Figure 5). This result indicates that
the artificial neural network is able to learn class appearance
more accurately than does the discriminant analysis.

Once trained, both classifiers were then used to classify
the independent testing set. As expected, the accuracy of the
classifications of the independent testing data sets were
lower than those derived from the training classifications
(Swain, 1978). As with the training classification, the artifi-
cial neural network was able to classify the data to a signifi-
cantly higher accuracy than the discriminant analysis (Figure
5).

The results above were derived under the assumption
that each class had an equal a priori probability of occur-
rence. Often this is not the case in remote sensing and, for
the data set under investigation, there was a marked range in
class occurrence, with three classes covering most of the test
site. If this information on class occurrence is known before
the analysis, it may be used to increase classification accu-
racy (Strahler, 1980). Incorporating prior probabilities, de-
fined in direct proportion to the number of fields in each
class in the training set, into the discriminant analysis re-
sulted in an increase in classification accuracy (Figure 6). It
is evident, however, that the classifications derived from the
artificial neural network were slightly, but not significantly,
more accurate than those from the discriminant analysis
even with the inclusion of prior information for a training
classification. With the classification of the testing data, how-
ever, the discriminant analysis with prior information was
able to classify the data to the same accuracy as the artificial
neural network. It was also apparent that the distribution of
class allocation evident in the confusion matrices derived
from the discriminant analysis with a priori information was
similar to that from the artificial neural network. These re-
sults, therefore, appear to indicate that the artificial neural
network is superior to the discriminant analysis in terms of
characterizing class appearance and so indicating a high po-
tential for accurate inter-class discrimination. This may not,
however, always translate into a more accurate classification
of an independent testing set if prior information on class oc-
currence is available to the discriminant analysis. The use of
prior information within an artificial neural network is more
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TRAINING TESTING
Predicted Predicted
SpB SuB WW Sw P cC G SpB SuB WW SW P c G
SpB | 28 1 SpB| 8 1 1 1 1
SuB | 1 24 4 SuB 9 3
WwW | 1 8 | 1 4 ww 5 5 2
(rmonsn 2 EQUAL) E SW| 1 4 Accuracy = 81.11%
P 1 1
c|l 1 1 1 1 2
1 1 4
Accuracy = B5.57%
SpB SuB WW SwW P cC G SpB SuB WW SwW P c G
SpB| 29 1 SpB| 10 2
SuB| 1 28 1 SuB 10 2
ww | 1 29 WwW| 2 10
ANN g SW 5 Accuracy = 83.33%
P| 2 2 8
c| 2 2 1 1
G 1 2 5
Accuracy = B1.97%
Figure 5. Confusion matrices for the classifications of the SAR data by a discriminant analysis (DA)
with equal prior probabilities of class occurrence (priors=equal) assumed and by the artificial neural
network (ANN). Note that the training set comprised seven classes and the testing set three classes.
The class codes are: SpB - Spring barley; SuB - Sugar beet; WW - Winter wheat; SW - Spring wheat; P
- Potatoes; C - Carrots; G - Grass.

TRAINING TESTING
Predicted Pradicled
SpB SuB WwW SW P G SpB SuB Ww SwW P c G
SpB | 28 2 SpB| 8 3 1
SuB| 1 | 27 1 1 SuB 11 1
wWw| 1 29 ww | 1 11
D -
(PRIORSA:z SIZE) g SwW| 1 4 Accuracy = 83.33%
Pl 2 1 9
c| 1 2 1 2
G| 1 3 4
Accuracy = B0.33%
Figure 6. Confusion matrices for the classifications of the SAR data by a discriminant analysis (DA)
with a priori information of class occurrence. Prior probabilities were defined in direct proportion to
the size of each class in the training set (priors=size).

problematic and is the focus of on-going research with pres-
ent emphasis on the effect of training set size on the oppor-
tunity to learn class appearance (Foody et al., 1992b; 1993).
Another important issue is the reaction of the classifica-
tion to cases that are members of an untrained class. Fre-
quently, in a supervised image classification, the image will
contain classes for which a training set has not been ac-
quired. For instance, an image used for a crop classification
may contain classes of no interest to the user such as forest,
water, or urban land for which training sets were not de-
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fined. Cases of these untrained classes must, however, be al-
located to one of the trained classes by the classification. The
effect of untrained classes on the performance of the two
classifiers was assessed for a data set in which the training
set comprized 90 cases of the three most predominant clas-
ses but was used to classify a testing test containing 68 cases
of all seven classes (Figure 7). As with the previous classifi-
cations, the artificial neural network classified the training
data to a higher accuracy than did the discriminant analysis.
It was evident, however, that the discriminant analysis clas-
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TRAINING TESTING
Predicted Pradicted
SpB SuB WW SpB SuB WwW
SpB| 28 2 SpB| 9 3
e 2suB suB 12
(PRIORS = EQUAL) § u 2 28 u
1 29 WW | 1 11
Accuracy = 94.44% sSw 1 4
Pl 1 1
c| 2 5
G| 1 7
Accuracy = 47.06%
SpB SuB ww SpB SuB ww
SpB| 30 SpB| 8 1 3
ANN %SUB 30 SuB 12
P
wwi| 1 29 ww| 2 10
Accuracy = 96.88%  SW 1 4
P 12
1 1 5
G 1 7
Accuracy = 44.12%
Figure 7. Confusion matrices for the classifications of SAR
data by discriminant analysis (DA) and artificial neural net-
work (ANN). Note that here the training set comprised
three classes but the testing set contained seven clas-
ses, four of which were untrained classes.

sified the testing set to a marginally, but not statistically sig-
nificant, higher accuracy than the artificial neural network,
and inspection of Figure 7 shows that the difference in clas-
sification accuracy was not caused by cases of the untrained
classes. The value of the classifications could be improved if
untrained classes were identifiable. By outputting the relative
strength of class membership in addition to the most likely
class of membership, it may be possible to identify cases that
may be members of untrained classes. Measures of the
strength of class membership can be derived from a range of
classifiers and used to improve the value of the classification
(e.g., Foody et al., 1992b). The outputs of an artificial neural
network classifier, computing over the real numbers, may be
interpreted as such a measure of class membership, with the
convention that the output with the largest value is taken as
the predicted class of membership. The potential of this
measure for identifying members of untrained classes was as-
sessed with reference to the strengths of class membership
derived from a previous classification, the training classifica-
tion of 122 cases drawn from all seven classes. Analysis of
the relative strength of membership each case displayed to
each class revealed thal a case typically showed a high
strength of membership to its allocated class and a low
strength to others (Figure 8). This indicated that the artificial
neural network provided a fairly hard allocation, like the dis-
criminant analysis (Table 1), and that this measure of the
strength of class membership may not be useful for the iden-
tification of cases of untrained classes.

The ability of the classifiers to accurately determine
class membership for an independent testing set will be de-
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pendent on the quality of the description of class appearance
generated in the training stage. Two key issues related to this
are the representativeness of the training data and their sta-
tistical distribution. While the latter should only affect the
performance of the discriminant analysis because the artifi-
cial neural network is a distribution free technique (Medina
and Vasquez, 1991), it is essential for all classifiers that the
training data are representative of the class from which they
are drawn if they are to be of value in determining class
membership for cases of previously unknown class. The ef-
fects of data distribution and representativeness were as-
sessed in a series of classifications using a simulated data
set. The latter comprised four classes, A, B, C, and D, each
with 100 cases. Each class was generated with a normal dis-
tribution, the characteristics of which are given in Table 2;
normality was assessed by the Kolmogorov-Smirnov test. The
data for each class were then split into training and testing
sets comprising 33 and 67 cases, respectively. The architec-
ture of the artificial neural network was modified from that
shown in Figure 4 to one with one input, three hidden, and
four output units, a 1:3:4 structure.

As with the analyses of the SAR data, the accuracy with
which the training and testing data could be classified was
assessed for all classifications. In the first set of analyses, the
training data for each class were sampled to ensure that they
were representative of the class from which they were drawn
(Table 3); representativeness was assessed by the Mann-
Whitney U test. Classifications of the training and testing
data by the discriminant analysis and artificial neural net-
work were found to be of comparable accuracy, although the
artificial neural network classifications were marginally more
accurate (Figure 9). Keeping the size of the training and test-
ing sets the same but taking a non-representative sample (Ta-
ble 4) to form the training set, the classifications were
repeated; here an unrepresentative sample is considered to
be one drawn from the population but having a mean that is
dissimilar to that of the population at the 95 percent level of
confidence. Again, the performance of both classifiers was
fairly similar, but there was a marked difference in the accu-
racy with which the training and testing sets were classified
(Figure 10). This result is to be expected because the training
set for each class would not be representative of that class in
the testing set. It was apparent that both classifiers were al-
fected similarly by unrepresentative training data, and users
may therefore need to exercise care in selecting training sites
and ensure, for instance, that atypical cases are excluded
from training sets through the application of a training set
purification procedure (Mather, 1987b; Arai, 1992). It may be
possible to increase the accuracy of the artificial neural net-
work classification by including a “noise” term which less-
ens the sensitivity of the classification to the exact
characteristics of the training data set (Holmstrm and Koisti-
nen, 1992).

Thus far, the simulated data for each class had displayed
a normal distribution. To assess the effect of data non-nor-
mality on the relative performance of the classifiers, the data
for each class were deliberately skewed through the applica-
tion of power functions (Table 5). These non-normal data
were then used in a set of classifications using representative
and non-representative training samples as before.

With a representative sample of the non-normally dis-
tributed data used for training both classifiers, the accuracy
with which the artificial neural network and discriminant
analysis could classify the training and testing data were as-
sessed. The classifications were less accurate than the com-
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REFERENCE CLASS
Spring Sugar Winter Spring Potatoes  Carrots Grass
barley beet wheat wheat
Spring
barley
Sugar
beet
Winter
wheat
< g
—l 2 |
O w, 1
1 Spring © |
<C wheat 8 |
5 z‘l’l"| 08 0s 10
{ 124
Potatoes
0
Carrots
8 8- L] l-l 8 84 8
Grass ' [
o R . () 60 u.] . 351 w” , '!EI :

Strength of membership

Figure 8. Variations in the strength of class membership derived from the artificial neural network for all cases
to each class. Derived from the training classification of 122 cases of seven classes.
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TABLE 1. A POSTERIOR! PROBABILITIES OF CLAsS MEMBERSHIP DERIVED FROM THE TRAINING CLASSIFICATION oF 122 CASES OF SEVEN CLASSES BY THE DISCRIMINANT
AnaLYsIS. NOTE THAT, as EXPECTED, THE CLASSIFICATION IS RELATIVELY HARD.

Actual class

A posteriori probabilities of class membership

Cases allocated correctly

Casses allocated incorrectly

To actual class
of membership

To actual class
of membership

To predicted class

of membership

Number of cases

mean min max mean min max mean min max allocated incorrectly
Spring barley 0.8058 0.4259 0.9990 0.0906 0.0408 0.1403 0.3886 0.3433 0.4339 2
Sugar beet 0.9067 0.5905 0.9952 0.2369 0.0000 0.4899 0.6490 0.4943 0.8684 6
Winter wheat 0.4114 0.3706 0.4593 0.2559 0.0331 0.3540 0.4952 0.3338 0.9242 22
Spring wheat 0.6342 0.3914 0.7918 0.0458 0.0458 0.0458 0.2500 0.2500 0.2500 1
Potatoes 0.7867 0.4452 0.9723 0.4471 0.4471 0.4471 0.5514 0.5514 0.5514 1
Carrots 0.4248 0.4248 0.4248 0.2301 0.1053 0.4171 0.4901 0.2806 0.7623 [§]
Grass 0.6449 0.5495 0.7762 0.2497 0.0466 0.3987 0.3651 0.3383 0.4443 4
TaeLE 2. Basic DEScRIPTION OF THE STATISTICAL DISTRIBUTION OF THE
SIMULATED DATA SETS. TRAINING TESTING
Pradicted Predicted
Mean Standard Deviation A B (o] D A B c D
Class A 60.74 4.49 32 |1 Ale2 | s
Class B 74.17 14.17 zB| 10 | 12 | 11 Bl ]2 f21 |2
Class C 90.71 10.05 DA §
Class D 120.13 4.98 ¢ 7]1264]2 | ¢ e L7011
a3 D &7
Accuracy = 76.52% Accuracy = 74.63%
A B [+ D A Cc D
TaBLE 3. MEAN AND STANDARD DEVIATION (STD DEV) OF THE TRAINING
31 2 Al 64 | 3
(REPRESENTATIVE SAMPLE) AND TESTING DATA USED IN THE CLASSIFICATIONS ON
WHICH FIGURE 9 Is BAsED. =B 8 14 1 Bl 17 | 27 | 23
mg
Training Testing c 6 [26 [ 1 c 1 | 52 | 4
Mean Std Dev Mean Std Dev 33 D 67
Accuracy = 78.79% Accuracy = 78.36%
Class A 60.32 4.28 60.95 4.61
E;ia-‘;“* ‘g 23-13 13-‘;2 ;‘i-gg lg-gé Figure 9. Confusion matrices for the classifications of
(‘1222 o 11;;'?3 o i g the simulated data by the discriminant analysis (DA)
it y ) : : and artificial neural network (ANN). The data sets were
distributed normally and representative training sets
were used.

parable classifications derived using normally distributed
data (Figures 9 and 11). This result appears to have arisen as
a function of increased overlap between classes W and Z as a
result of the deliberate skewing of the distributions rather
than as a result of the distributions being non-normal. As
with the classifications using normally distributed data with
a representative training set, the accuracy of the training and
testing classifications were similar for both the artificial neu-
ral network and discriminant analysis classifications, al-
though the accuracy of the artificial neural network
classifications were again marginally higher.

The accuracy of classifications using a non-representa-
tive training set of non-normally distributed data were found
to be higher from the artificial neural network than from the
discriminant analysis. For both classifiers, there was also a
difference in the accuracy of the training and testing classifi-
cations, although the magnitude was similar for both tech-
niques (Figure 12).

The results of the classifications of the simulated data
set therefore appear to show that the artificial neural network
classifies the data as or more accurately than the discrimi-
nant analysis. It seems that the ability of the two classifiers
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to characterize classes, as indicated by the training classifica-
tions, is similar, except where the data have a non-normal
distribution. In the latter situation, the artificial neural net-
work classified the data to a higher accuracy. Also, there was
only an appreciable difference between the accuracy of train-
ing and testing classifications when an unrepresentative
training set was used. These results, especially given the dif-
ficulties in defining a truly representative training set and in
assessing and correcting for non-normality in the data, indi-
cate that artificial neural networks have considerable poten-
tial for the classification of remotely sensed data, especially
as the statistical distribution of the data for each class is of-
ten unknown and the analysis is often based on a small
training set.

The undoubted advantages of the artificial neural net-
work based classifications over the discriminant analysis in
certain circumstances must, however, be seen in the light of
their limitations. Among the latter is included the largely
subjective manner in which the network architecture is de-
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TaBLe 4. Mean aND STANDARD DeviaTion (STD DEv) OF THE TRAINING (NON-
REPRESENTATIVE SAMPLE) AND TESTING DATA USED IN THE CLASSIFICATIONS ON
wHICH FiGURE 10 I1s BASED.

Training Testing
Mean Std Dev Mean Std Dev
Class A 63.32 4.93 59.20 3.35
Class B 83.47 13.49 69.60 12.18
Class C 97.86 10.21 87.19 7.93
Class D 123.57 4,92 118.90 4.09

TABLE 5. CHARACTERISTICS OF THE SKEWED SIMULATED Data SeT. CLasses W,
X, Y, anD Z ALL HAVE SKEWED DISTRIBUTIONS AND ARE NOM-NORMALLY
DiSTRIBUTED AT THE 90 PERCENT LEVEL OF CONFIDENCE.

Input class Function applied New class New class mean
A A? X 10 W 371
B B® x 10" X 30.6
G G x 10" p's 7.7
b} D* X 102 Z 30.8

TRAINING TESTING
Predicted Pradicted
A B C D A B C D
32 | 1 Al 87
=B| 8 18 9 B| as | 28 1
DA §
1 7 |24 | 1 c| 1 |45 | 21
D 1] 32 D 2 | 85
Accuracy = B0.30% Accuracy = 67.54%
A B C D A B C D
Al 32| 1 Al 67
=Bl 6 |2 | 7 B| 38 | 29
ANN 2
| 1|7 |2a] 1 cl1 | 46|20
D 1 | 32 D 3 |64
Accuracy = 81,82% Accuracy = 67.16%
Figure 10. Confusion matrices for the classifica-
tions of the simulated data by the discriminant
analysis (DA) and artificial neural network (ANN).
The data sets were distributed normally and non-
representative training sets were used.

fined. Furthermore, the artificial neural network is computa-
tionally more demanding than the discriminant analysis in
the training stage of the classification; in the analyses per-
formed here, the training stage of the artificial neural net-
work classifications involved some 500 iterations.

Conclusions

From classifications of SAR data and simulated data sets by
an artificial neural network and discriminant analysis, four
main conclusions may be drawn:

e The artificial neural network consistently provided a higher
training classification accuracy than did the discriminant
analysis, indicating that it is more able to accurately charac-
terize class appearance. The differences, however, were only
significant if the data were non-normally distributed.
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TRAINING TESTING
Predicted Prediclad
w X ¥ z w X Y z
Wl 24| 2 7 W\ 40 | 4 14
aX| 12 6 | 12 3 X| 25 [ 14 | 22 6
DA §
2y a3 Y 67
Z| 9 13 1 10 Z| 19 28 20
Accuracy = 55.30% Accuracy = 55.97%
w X Y z w X Y z
wil 31 2 w| 62 1 4
X| 1 4 11 7 Xl 2 | 11 | 22 | 14
ANN 3
2y 33 Y 66 | 1
Z|19 2 12 z 39 | 28

Accuracy = 60.61% Accuracy = 62.31%

Figure 11. Confusion matrices for the classifications
of the simulated data by the discriminant analysis
(DA) and artificial neural network (ANN). The data sets
were distributed non-normally and representative train-
ing sets were used.

TRAINING TESTING
Predicted Predicted
W X Y z w X Y Z
Wi\ 14 6 13 wl 11 56
=X 4 16 6 T X| 4 6 40 17
DA E
2y 33 Y 67
Z| 9 4 2 18 Z| 4 15 | 48
Accuracy = 61.36% Accuracy = 48.25%
w Y Z w X Y z
W) 23 2 8 Wil 19 48
- Xl 7 14 4 8 x| 7 4 33 23
ANN 3
2y 33 Y 67
Z(14 | 2 1116 Z| 5 2 | 60
Accuracy = 65.15% Accuracy = 55.97%

Figure 12. Confusion matrices for the classifications
of the simulated data by the discriminant analysis
(DA) and artificial neural network (ANN). The data sets
were distributed non-normally and non-representative
training sets were used.

e The better training classification performance of the artificial
neural network does not always imply a better ability to clas-
sify an independent testing set. The results of a series of clas-
sifications showed that higher classification accuracies were
derived from the artificial neural network but the differences
were at times insignificant, particularly when a priori infor-
mation was available to the discriminant analysis. The use of
a priori information in an artificial neural network is cur-
rently under further investigation.

e Non-representative training data lead, as expected, to signif-
icant differences between training and testing classification
accuracies, and the effect was fairly similar for both the ar-
tificial neural network and discriminant analysis classifica-
tions.
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® The artificial neural network classifications were as or more
accurate than those derived from the discriminant analysis;
except for one classification when the accuracy was slightly
and insignificantly lower. Furthermore, unlike conventional
statistical classifiers, the artificial neural network is not
based on often untenable assumptions about the data. Con-
sequently artificial neural network techniques are likely to
have considerable potential for the classification of remotely
sensed data.
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LaGuardia and Pittsburgh.

> A New Alliance With

British Airways. Ultimarely, we'll
be able to take you to 339 cities in
71 countries, and offer you a new
world of service, superb quality,
and international style.

USAir |

W New Frequent Traveler Benefits.
Members of the USAir Frequent
Traveler Program enjoy the fastest

free ticker to the most destinations.

And this year we've introduced

Priority Gold Plus, with the most

generous upgrade system in the
sky. And now, USAir

members will be able 1o

British Airways flight worldwide.
Obviously, there’s a lot thar’s

new at USAir. In fact, in the history
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