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Knowledge Formulation for
Supervised Evidential Classification

Derek R. Peddle

Abstract

The Dempster-Shafer Theory of Evidence provides an appro-
priate framework for overcoming problems associated with
the analysis, integration, and classification of modern, multi-
source data sets. However, current methods for generating
the prerequisite evidence are subjective and inconsistent. To
address this, a more objective approach is presented for de-
riving evidence from histogram bin transformations of super-
vised training data frequency distributions. The procedure is
illustrated by an example application in which evidential
land-cover classification accuracy is increased from a kappa
coefficient of 0.51 to 0.90 by appropriate use of bin transfor-
mation functions for a complex, mountainous environment
in the Canadian sub-Arctic.

Introduction

New opportunities for synergy among environmental sci-
ences, engineering, and remote sensing have emerged from
the challenge to monitor and understand increasingly com-
plex environmental processes at different scales, and as a re-
sult of concurrent advances in airborne and satellite sensor
systems and computing architectures. However, for this criti-
cal evolution to occur, new approaches to image processing,
analysis, classification, and modeling must be developed to
help realize the full potential of these converging technolo-
gies. For example, time-honored methods of image classifica-
tion such as the Bayesian maximum-likelihood algorithm
were neither designed nor intended to process modern data
sets which often possess (1) higher dimensions (or number of
bands, e.g., hyperspectral imagery); (2) properties inappropri-
ate for parametric statistical analyses; (3) information from
different sources (i.e., multisource data) with inherent dispar-
ities, inconsistencies, errors, and uncertainty (e.g., incorpo-
rating ancillary variables, or using GIs data as an input to a
remote sensing classification); and (4) data at different scales
of measurement (or data levels, i.e., nominal, ordinal, inter-
val, ratio) or with unique properties such as directionality
(e.g., topographic aspect, climatological wind vectors).

To address these problems, new procedures for classify-
ing multisource image data have been developed within the
realms of pattern recognition, artificial intelligence, and
knowledge-based expert systems (Argialas and Harlow, 1990;
Campbell and Cromp, 1990; Tailor et al., 1986). The Demps-
ter-Shafer (D-S) Theory of Evidence (Dempster, 1967: Shafer,
1976), is one such approach that provides a framework for
addressing the challenges of multisource image classification.
In addition to its explicit mechanism for handling informa-
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tion uncertainty and conflict, a key aspect of the theory is its
ability to combine, from any number of disparate sources,
evidence in the form of support (information in favor of a
class labeling) and plausibility (information which fails to re-
fute that labeling) using the technique of orthogonal summa-
tion (denoted by ®). As an alternative approach to Bayesian
theory, the D-S Theory of Evidence provides a powerful
method for combining evidence into a decision using the
concepts of evidential intervals and degrees of belief. How-
ever, as a result of the generality of this theory (it can be ap-
plied to any problem of statistical probability), there is no
formal specification of how measures of evidence are ob-
tained prior to the orthogonal summation process. There
exists a significant gap between remotely sensed (and multi-
source) image data and its appropriate conversion to meas-
ures of evidence for input to the D-S approach. This gap in
knowledge formulation is the basis for this contribution.

In the next section, previous applications of the D-S
Theory of Evidence in remote sensing image classification
will be reviewed to reveal the subjective and informal nature
of current methods for deriving the necessary prerequisite
evidence prior to an evidential classification, and that as a
result, the full power of the D-S Theory of Evidence for mul-
tisource image analysis has yet to be realized. In the third
section, the design criteria for a frequency-based approach to
generating evidence from supervised training data is intro-
duced, and in the fourth section, a bin transformation tech-
nique is described for manipulating the computed evidence
to be representative over a greater range of digital values
within the image domain. Prior to concluding the paper, an
example application of evidential land-cover classification is
presented for a mountainous environment in the southwest
Yukon Territory, Canada, to illustrate how the bin transfor-
mation functions can be used to increase classification accu-
racy.

Background and Previous Studies

The Mathematical Theory of Evidence (Shafer, 1976) has re-
ceived increasing attention in recent years for classifying
multisource image data sets. However, much of the pub-
lished literature to date has focused on describing and justi-
fying the theory and its implications, with less attention
directed towards exactly how evidence was obtained or de-
rived. The following review is intended to summarize several
previous studies involving the D-S Theory of Evidence, and
to illustrate the need for a formal and more objective ap-
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proach to generating evidence for input to an evidential clas-
sifier.

Lee et al. (1987) explored general methods of evidential
calculus for multisource classification. Emphasis was placed
on the advantages of using measures of evidence, while *...
the bridge between these measures and the original data
structure, whether the latter be numerical or otherwise, is
left largely to the user” (Lee ef. al., 1987, p. 286). An exam-
ple was presented for classifying a set of spectral data classes
from a Landsat MSS image of an agricultural area. The visible
(MsS bands 4 and 5) and infrared (bands 6 and 7) of the sin-
gle image were considered as two independent sources of in-
formation, with evidence granted to various propositions
using source-specific membership functions obtained from a
prior statistical classification which assumed a normal distri-
bution. In these tests, equal uncertainties were assigned for
all pixels; however, they stressed the importance of deter-
mining pixel-specific uncertainty measures in future work to
realize the full power of this component of evidential reason-
ing. The study amply demonstrated the advantages of the ev-
idential approach; however, the implementation was re-
stricted to ratio-level data and constrained by the use of
parametric statistics to generate evidence, thereby requiring
that the data conform to a normal distribution.

Moon (1990) used evidential belief functions to integrate
disparate geological and geophysical data and to overcome
problems of mixed data formats and different spatial resolu-
tions. An interesting product from this study was the crea-
tion of a series of maps depicting the spatial distribution of
evidential support for a series of base metal deposits. They
relied on human experts to evaluate individual cells and pro-
duce qualitative assignments of evidence in support of a va-
riety of mineral propositions. However, this assignment of
partial belief functions was ... less exact and may even be
arbitrary”™ (Moon, 1990, p. 714). Because this approach must
rely on individual interpretations from a geologist, the basic
framework for information representation for relating explo-
ration evidence to mineral deposits is both difficult and sub-
jective (Moon, 1993, p. 64). The development of a systematic
and consistent technique to quantify and compute evidence
for input to the evidential procedures was deemed a signifi-
cant area in need of future work.

Wilkinson and Mégier (1990) used an evidential reason-
ing approach to integrate GIS data and expert system rules to
resolve indecision in maximum-likelihood (ML) classification
of agricultural land cover. A hierarchical class structure was
used, and the evidential approach was based on a linear-time
approximation to the D-S Theory of Evidence developed by
Gordon and Shortliffe (1985). Supporting evidence was ob-
tained as computed likelihoods from the ML classifier, while
disconfirming evidence for the expert system rules was ex-
pressed as numeric probabilities based on qualitative rela-
tionships among GIS variables. The source of supporting
evidence limits this approach to image data which adhere to
ML assumptions (e.g., normally distributed data, limited di-
mensionality), as mentioned earlier and discussed in more
detail in Peddle (1993), while the origin of the disconfirming
evidence for the expert system rules was not specified.
Therefore, although the general ideas put forth by Wilkinson
and Mégier (1990) were valid and useful, the methods sug-
gested for generating evidence were restrictive in their nature
and lacking in objectivity. [n addition, the approximation of
Dempster’s rule for hierarchical evidence developed by Gor-
don and Shortliffe (1985) was later shown to be unnecessary
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by Shafer and Logan (1987), based on an improved and exact
algorithm which is also linear in its computational complex-
ity.

Srinivasan and Richards (1990) provide an excellent de-
scription and evaluation of some of the advantages of the D-
S Theory of Evidence cast in the spatial and remote sensing
realm. In their implementation, a hierarchical class structure
was also developed based on the computationally efficient
algorithm described by Shafer and Logan (1987). A forward-
chaining rule-based system was used, with two options for
attaching evidence to rules: (1) using pre-defined functions to
equate a fixed degree of evidence to rules entered in a con-
strained English format (e.g., for class i, DEFINITELY__NOT (i)
would result in a belief of 0.9 being attached against the
class labeling i); and (2) using heuristic functions to produce
beliefs for and against a class (or set of classes) based on the
degree to which the pre-condition of a rule was satisfied
(e.g., for Landsat MSS imagery, the greater the band 4 (green)
: band 5 (red) ratio value for a pixel, the more evidence
would be granted in favor of a vegetation class label). How-
ever, it is often very difficult to translate heuristic knowledge
into numerical degrees of belief (Srinivasan and Richards,
1990). Also, as a result of the subjectivity of human interven-
tion, the knowledge embedded in a rule may have greater
significance than the precision of the number (evidential
mass) attached to it (Srinivasan and Richards, 1990, p. 516).
Although this rule-based approach makes good use of the ad-
vantages and power offered by the D-S Theory of Evidence,
there did not appear to be a consistent or repeatable method
for translating knowledge into numerical belief values during
the rule specification process.

As a final example, Goldberg et al. (1985) proposed the
D-S Theory of Evidence as being appropriate to handle un-
certainty in an expert system for updating forestry maps in
western Canada based on Landsat image change detection.
Within this context, the authors concluded that “Further re-
search is required in the assignment of support and plausi-
bility values in a consistent manner" (Goldberg et al., 1985,
p. 1062).

Two conclusions can be drawn from these studies: (1)
the evidential approach is theoretically appropriate and
shows much potential for multisource data integration and
classification, and (2) an objective procedure for determining
evidence for input to an evidential classifier has not been
forthcoming. To address this need, the remainder of the pa-
per describes a more objective approach to formulating
knowledge as measures of evidence for input to a classifica-
tion framework based on the D-S Theory of Evidence.

Knowledge Representation

Design Criteria

The supervised approach to classification is used in this im-
plementation of an evidential classifier (Peddle, 1995) to pro-
vide the image analyst with sufficient power to address
complex environmental problems which require multisource
image data and the a priori identification of intricate physi-
cal classes for their solution. The requirements for a super-
vised evidential classifier include (1) a way of obtaining
representative information for each class to base classifica-
tion decision making, and (2) a way of converting this infor-
mation into measures of evidence by class. The first
requirement is satisfied using standard training data identi-
fied for each class. This approach takes advantage of existing
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training data acquisition modules and graphical interfaces
available in most commercial image analysis systems for in-
teractive class delineation. It also makes the evidential classi-
fier compatible with existing training data sets used
previously with other supervised classification algorithms.
The second requirement poses a greater challenge due to the
disparate nature of multisource data sets which preclude the
use of powerful statistical models and measures of central
tendency to characterize training samples (such as the Gaus-
sian assumption in maximum-likelihood classification and
many implementations of linear discriminant analysis).
Therefore, a method is required which provides greater flexi-
bility with respect to input data types and which adequately
captures the increased information content available from
multisource data.

To formalize these requirements, the following design
criteria have been identified for converting supervised train-
ing data into measures of support and plausibility within an
evidential classification framework:

® the method must be free of statistical assumptions and mod-
els;

® it must be able to handle multisource data at any scale of
measurement (or data level);

® it must be able to incorporate uncertainty into the analysis;

® 3 mechanism must exist to grant evidence to pixel values
which are representative of a class, but which do not occur
within the range of training class values due to the chance
location of training samples (this is essentially a question of
interpolation); and

® o method is needed to determine evidence for values represen-
tative of a class but which lie outside the numeric bounds of a
training sample (this is an issue analogous to extrapolation).

Deriving Evidence

The method devised to meet the design criteria for generat-
ing evidence uses training data explicitly as direct sources of
evidence for class membership. Evidential support is com-
puted with respect to the frequency of occurrence of values
within training samples. The universality of this approach is
based on the fact that all training data have a frequency dis-
tribution, regardless of data type, scale of measurement, or
statistical properties. There are no requirements for intricate
mathematical formulation, statistical processing, or reinter-
pretation, and, as a result, the method is relatively easy to
understand intuitively and is without excessive computa-
tional burden. Two basic premises underlie the approach:

(1) values found in class training samples represent that class
(i.e., they provide evidence in support of a particular class
labeling), and (2) the frequency of occurrence of a specific
value within a class training sample is an indicator of the
magnitude of support for that class (i.e., it quantifies the sup-
port for a class labeling).

The first step in this approach is to obtain frequency dis-
tributions of training samples over the entire set of classes,
or frame of discernment (denoted by ©). Training data are
read from each data feature in sequence, and a frequency
distribution of training values is compiled for each class.
Thus, for I classes and k sources. there will be a total of
i X k frequency distributions. During this compilation pro-
cess, the training sample size (TSn) for each class is re-
corded. For a given input pixel value Pv to be classified, the
amount of evidence in support of the ith class label is com-
puted initially as the frequency of occurrence of pv in the
training data for class i divided by the number of training
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samples (TSn) for class i. Plausibility (P) is a measure of the
extent to which the available evidence does not support the
negation of a given proposition (Shafer, 1976), and is com-
puted for a given class C, as

P(C) = 11 — s(lc)) (1)

where S(1C) is the magnitude of evidential support for the
negation of class C, computed over a total of n classes as

s(lc) = 25(@;} (2)

k)

Individual measures of evidential support and plausibil-
ity lie in the range 0 to 1, inclusive, with the set of supports
and plausibilities for a given input value over a frame of dis-
cernment O referred to here as the evidential vector. Uncer-
tainty is quantified for each pixel as the amount of evidence
not assigned to any particular subset (i.e., class), and it is
computed as one minus the sum of supports for all classes
(after Garvey et al., 1981). In the rare case where this sum
exceeds one, the evidential vector is normalized to unity
(i.e., 1), and there will be no quantifiable uncertainty.

An example multisource training data set consisting of
three sources with different properties was constructed to
help explain the methodologies created for the derivation
and processing of evidence. This hypothetical training data
set was designed to illustrate the flexibility of the approach
for classifying multisource, disparate data (e.g., remote sens-
ing imagery together with GIS data and directional informa-
tion) obtained at different scales of measurement (ratio and
nominal), and which do not necessarily conform to the Gaus-
sian distribution. Figure 1 shows the frequency distributions
of the example training data set for three sources and three
classes. An example input pixel {110, 6, 315) from these dis-
tributions is used to demonstrate explicitly how evidence is
derived from the original training data.

From Figure 1, one can surmise the general nature of
each data source and magnitudes of support for a given
value over the set of classes. For example, Source 1 is at the
ratio scale of measurement, and could represent a typical in-
put feature from an 8-bit digital remote sensing image. Only
training data for Class 3 have a distinct normal distribution,
while Class 2 is bi-modal. Observations of these training data
distributions suggest low values in Source 1 are more indica-
tive of Class 1, while high values are more likely a member
of Class 2.

Source 2 is nominal (or thematic) level data which could
have been obtained from a geographic information system or
from an earlier remote sensing classification. The frequency
of occurrence of value i has no bearing on the frequency of
value i + 1, because the numeric values are assigned to clas-
ses arbitrarily, and usually without any physical basis. None
of the three class training samples appears to have a normal
distribution. In general, the nominal values 2, 6, 8, and 9 are
indicative of Class 1; values of 1, 4, and 7 provide the most
support for Class 2; while values 3 and 5 are more likely to
represent Class 3.

Source 3 illustrates properties of directional data (e.g.,
compass aspect measured in degrees from 0 to 359). Low
values are more indicative of Class 1, intermediate values
lend the most support to Class 3, while high values more
likely represent Class 1 or 2. The directional or circular na-
ture of these data is shown by the distribution for Class 1,
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SOURCE 1
Remote Sensing Data
Data Level: RATIO

0 128 255
Value

in Table 1.
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f 25 e
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s
R !
23456789 0 180 359
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Figure 1. Example training class frequency distribution for three features from
different sources in a multisource data set. Training sample size (Tsn) shown in
left column for each of n = 3 classes (distribution not drawn to scale). The
graphic illustrates the disparate nature of the three example data sources to be
integrated and classified: (1) remote sensing data at the ratio scale of meas-
urement, (2) nominal (or thematic) GIS data, and (3) directional data (e.g., ter-
rain aspect). The frequency of occurrence (f) of each value in a pixel vector
{110, 6, 315} to be classified is shown for each distribution and used in the
computation of evidence from this example, as described in the text and given

where the frequency of the lowest and highest values ap-
pears to be similar. In the case of directional data, the class
training set for Class 1 would resemble a normal distribution
if the x-axis is relabeled starting at 180 (and continuing
through 359, 0 to 179). However, in a number system which
deals strictly with absolute magnitudes, this variable would
be considered to have a distinctly bi-modal distribution, as
shown in Figure 1. This type of data is not suitable for para-
metric classifiers which rely on arithmetic measures of cen-
tral tendency and variance to characterize training data
information (e.g.. maximum likelihood, linear discriminant
analysis). For example, the mean of the Class 1 distribution
would be approximately 180, even though no values in Class
1 are close to that value. Similarly. the computed variance
would not be representative because it would be greatly
overestimated. Because these statistical models and assump-
tions are not used in this implementation of an evidential
classifier, it is possible to process directional data together
with other information at all scales of measurement.

The computation of evidential support from the example
data set is provided in Table 1. The pixel vector {110, 6, 315}
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from Figure 1 is used to show the derivation of support val-
ues from the training data distribution of each class shown.
For each source, the sum of supports for all classes does not
exceed one, and therefore mass normalization to unity is not
required. The importance of incorporating the training sam-
ple size into the computation of evidence from training data
frequency distributions is apparent for Source 3. The pixel
value 315 occurs most often in the training data for Class 1,
which is also the largest training sample by class. However,
the greatest support is assigned to Class 2, because the fre-
quency of occurrence of this pixel value in that class occu-
pies a greater proportion of a smaller training sample.

The computed measures of pixel-specific uncertainty
(underlined in Table 1) represent the remaining amount of
evidence which could not be ascribed to a particular class
within the frame of discernment @ (in this case, O is the set
of classes [1,2,3]). This residual uncertainty must instead be
assumed to be distributed in some unknown manner among
the class propositions, and, as a result, the evidence is as-
signed to O (after Garvey et al., 1981).

With reference to the design criteria identified at the be-
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TaBLe 1. ExampLE COMPUTATION OF EVIDENTIAL SUPPORT VALUES FROM THE
CLass TRAINING DATA FREQUENCY DISTRIBUTIONS SHOWN IN FIGURE 1. Pv IS THE
PixeL VALUE IN THE VECTOR {110, 6, 315} 10 BE CLASSIFIED; TSn IS THE TOTAL

NUMBER OF PIXELS IN EAcH CLASS TRAINING SAMPLE; f IS THE FREQUENCY OF

OCCURRENCE OF Pu IN EACH TRAINING SAMPLE. EVIDENTIAL SUPPORT (S) FOR

EacH Crass 1s CompuTeD as f =+ Tsn, WHERE 0 = S < 1. BoLp ENTRIES
DENOTE THE CLASS WITH THE GREATEST AMOUNT OF EVIDENCE BY SOURCE.
Evipence NoT CoMMITTED To ANy CLass (C) IS ASSIGNED TO THE FRAME OF
DiSCERNMENT (S(®) = 1 — ZS(C,) SHOWN AS BOLDFACE ENTRIES), AND
REPRESENTS THE RESIDUAL UNCERTAINTY ASSOCIATED WITH EVIDENCE FROM EACH
Source (Garvey ET AL., 1981).

Source 1 Source 2 Source 3
Py = 110 Pr =6 Pv = 315

Class TSn f Support f Support f Support
1 150 20 0.13 39 0.26 18 0.12
Z 129 28 0.22 11 0.09 17 0.13
3 131 46 0.35 22 0.17 0 0.00
(&} 0.30 0.48 0.75

ginning of this section, the first three have been satisfied by
the method outlined. The frequency-based technique for gen-
erating support values has been shown to be (1) not re-
stricted by statistical assumptions or models, (2) able to
process multisource data at any level, and (3) equipped with
a mechanism to quantify and incorporate uncertainty into
the classification process. The remaining two design criteria
deal with extending knowledge from training samples to en-
compass a greater range of values within the multisource im-
age domain. The next section describes a transformation
approach to facilitate the classification of values which do
not occur in training data.

Knowledge Domain Processing by Bin Transformation

The method developed for unrestricted knowledge domain
processing operates by transforming the frequency distribu-
tion of training data using weighted functions applied over a
specified range, or bin size. This approach enables informa-
tion to be both interpolated within the numerical range of
class training data (Design Criterion 4), and extrapolated be-
vond that range (Design Criterion 5).

Knowledge from training samples of quantitative data
sources is extended by propagating the evidence (frequency
of occurrence) from individual data values to its neighbors,
with the propagation function weighted by proximity to the
original training data value. The approach utilizes a multipli-
cative linear-weighted distance decay function and is based
on two premises: (1) if a value i occurs in training data for
Class ¢, then similar values are also indicative of that class
(e.g., for quantitative data, i = 1 € ¢); and (2) the probability
(p) that similar values represent Class ¢ increases with prox-
imity to i, or

pliz1 e ¢) > plix2e ¢) (3)

In the current implementation, the bin size is specified
by the user and can vary by individual feature. The bin size
is necessarily odd so that propagation of evidence is sym-
metrical about the data value being considered. It should be
noted that the bin transformations described here are distinct
from the a priori division of histograms into fixed cells
(sometimes referred to as bins). That process involves com-
pressing the range of values in a histogram, with an associ-
ated loss of precision. In this implementation, no reduction
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or generalization of frequency distributions is applied, and
therefore the original precision of training data is preserved.
For an individual training data value i, the method
works by first multiplying its frequency of occurrence f by a
specified constant equal to the bin size. The constant is then
decremented by 2, multiplied by f, and added to the frequen-
cies of occurrence of the two next adjacent values (i + 1,
i — 1). This is continued over the entire bin. Therefore, val-
ues which lie within a given bin are transformed as follows:
for Class ¢, given a training sample value i with a frequency
of occurrence f(i) = a and a specified bin size b, the evi-
dence for value j (f{j) = 0) belonging to Class ¢ would be in-
cremented as

fi) = f) +ax(b=2x1i=j) =

where |i — jlI < b+2 (i.e., j lies within the bin).

The specified bin size is applied to each value of all
class training samples for all valid sources (i.e., quantitative
data selected for bin transformation). Once all frequency dis-
tributions have been processed, evidence is computed for a
given input value as discussed earlier. The training sample
size (TSn) used in the denominator of the evidential support
equation is adjusted to reflect the increased frequency total
produced through the bin transformation process.

This approach is illustrated by example in Table 2. A
bin size of 5 is applied to a training data set containing four
samples (TSn = 4) for an arbitrary Class c. This small bin
size and a small number of samples was chosen to simplify

TABLE 2. EXAMPLE FREQUENCY TRANSFORMATIONS OF TRAINING DATA USING A
Bin Size oF 5. THe OriGiNAL FrReouencY OF Two TRAINING SAMPLE VaLues (70
AND 72, SHowN (N BoLp In Row 1) ARE TRANSFORMED INTO LOCAL
DISTRIBUTIONS IN TABLES 2A anD 2B, RESPECTIVELY. ADJACENT VALUES INCLUDED
IN THE TRANSFORMATION ARE SHOWN IN BRACKETS IN Row 1 oF EacH TABLE.
TABLE 2C SHOWS THE ADDITION OF THE TwO TRANSFORMED DISTRIBUTIONS, THE
UPDATED FREQUENCIES FOR EACH VALUE, AND THE RESULTING COMPUTATION OF
EVIDENTIAL SUPPORT.

A:
1. Pixel Values: (68) (B9) 70 (71) (72)
2. Original Frequency: 1
3. Bin Transformation: X 1 3 5 3 1
4. Transformed Frequencies: = 1 3 5 3 1
5. + Original Frequency: + ]
6. Transformed Local - 1 3 6 3 1
Frequency Distribution:
B:
1. Pixel Values: (7o)  (71) 72 (73) (74)
2. Original Frequency: 3
3. Bin Transformation X 1 3 5 3 1
4. Transformed Frequencies: = 3 9 15 9 3
5. + Original Frequency: k 3
6. Transformed Local = 3 9 18 9 3
Frequency Distribution:
C:
1. Pixel Values: 68 69 70 71 72 73 74
2. Transformed Frequencies: 1 3 6 3 1
(from Table 2A; Pv = 70)
3. Transformed Frequencies: 3 9 18 9 3
(from Table 2B; Pv = 72)
4. Total Frequencies: [ = 1 3 9 12 19 9 3
{adjusted TSn = 56)
5. Evidential Support: 0.018 0.0540.161 0.214 0.339 0.161 0.054
f= TSm:
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the illustration (in practice, these values will usually be con-
siderably larger). In the example, there is one occurrence of
the value 70 in the training sample, and three occurrences of
the value 72 (Tables 2A and 2B, respectively). The bin trans-
formation is applied to each sample value, and the frequen-
cies are accumulated in Table 2C. The TSn value is adjusted
and evidential support is computed as shown in the bottom
line. The resulting frequency spread is better suited to recog-
nize an input value in the range 68 to 74 as being a member
of Class c. For example, without applying the bin transfor-
mation process, there would be no evidence for assigning an
input value of 71 to the class which contained 70 (once) and
72 (three times) in its training data. The fact that 71 was not
in the training set is almost certainly due to the chance loca-
tion of the sample data, and not because the value is not rep-
resentative of that class. This is an example of interpolation
within training data (Design Criterion 4). Evidence can also
be extrapolated beyond the range of training sample data.
This occurs when the transformation process is applied to
extreme values within the training data frequency distribu-
tion. In the example (Table 2), evidence generated for the
values 68, 69, 73, and 74 would be considered as extrapo-
lated support (Design Criterion 5). In this research, a linear
relationship is assumed between numerical proximity and
probability of membership during the bin transformation pro-
cess; however, more complex relationships (e.g., square-root
functions, logarithmic decay) may provide improved results
when larger bin sizes are applied.

Bin Size Considerations

The selection of bin size is an important parameter in this
implementation of an evidential classifier. Different bin sizes
may be specified for different sources, with a given bin size
selected with reference to the nature of the data being classi-
fied and the precision of the classes under consideration.
[deally, all valid data values which represent a given class
would be incorporated into the expanded training sample
through the bin transformation procedure, with no values ex-
ceeding known class limits. In practice, however, training
data from different classes often are not mutually exclusive
for all data sources, and training data overlap among classes
is inevitable. Although bin transformation increases the like-
lihood of overlap, the effects are minimal. This is because,
for a given feature, the same bin size is used for all class
training samples, and, as a result, the overlap from Class a to
Class b caused by the bin transformation would have no con-
sequence because the frequency of the Class b training value
would be increased by the full amount within its own bin.
This serves to cancel out any negative impact on the ability
to discriminate Class b. It also suggests that there may not be
a maximum bin size beyond which classification accuracy
would be expected to degrade (i.e., overall accuracy will sta-
bilize at and beyond a sufficiently large bin size, provided
the bin sizes do not exceed the numeric range of the data).
Therefore, providing sufficient memory exists, a general rule
is to select large bin sizes to ensure sufficient expansion of
training data values to be representative of its class. This
also permits classification based on fewer training samples,
because the information provided by each sample value is
propagated over a wider range of digital values. However, be-
cause larger bin sizes require more memory and computation
time, this method of bin size selection may be limited in
practice by available resources. In this case, the theoretical
optimal bin size would be the minimum bin size which can
still yield the maximum level of classification agreement
(i.e., the bin size at which classification accuracy begins to
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stabilize). A more refined approach is required to determine
this region of stability. Early results from empirical analyses
of histograms, descriptive statistics, and moments of training
sample frequency distributions suggest that a reasonable ini-
tial bin size can be determined as one-fifth of the sample
range for a given class training set (for multi-modal training
data, the range of individual data groupings identified in the
histogram should be used). However, this will likely vary by
data source, application, and training sample size; therefore,
some iteration and experimentation with bin sizes may be
necessary to achieve optimal results. For example, with
larger training sample sizes, one could expect maximum
classification accuracy to be reached using smaller bin sizes.
Conversely, if the training sample size is small, larger bin
sizes would likely be required.

The bin transformation process cannot be applied to
qualitative data (i.e., nominal and ordinal level data) be-
cause, at these scales of measurement, magnitude of differ-
ence between data values is either inappropriate or un-
known. However, this generally does not limit the utility of
the frequency-based approach for classifying qualitative data
because these variables often possess a limited range of val-
ues, for which their original frequency distributions are usu-
ally representative. For the same reason, frequency transfor-
mations are not always necessary for quantitative data which
possess a limited dynamic range or a very large training sam-
ple. In these cases, the user would specify that no bin trans-
formation of training data is to be performed for that feature.
Additional Functionality
In addition to bin size, several other options have been in-
corporated into the knowledge representation scheme to per-
mit greater control of the classification process if additional
information about the multisource data is known a priori.
For example, it is possible to assign weights of importance to
each input data variable if the relative quality of these varia-
bles is known with respect to the classes of interest. Reliabil-
ity specifications such as these are often not available in
conventional statistical classifiers, despite the importance of
reliability measures for multisource data which, by their na-
ture, are more likely to contain variables with varying de-
grees of relevance to a particular application (Benediktsson
et al., 1990).

The weights of evidence concept has also been extended
in this implementation to allow, for a given data feature, dif-
ferent weighting factors to be assigned for different classes.
This option permits the user to include detailed information
about how individual features and classes are related based
on information such as field surveys, aerial reconnaissance,
or laboratory analyses. Both of these optional evidential
weighting capabilities provide the user with ways to capture
more fully the additional information content available in
multisource image data sets for optimizing classification re-
sults.

As a result of the disparate nature of multisource data
sets, individual data variables sometimes possess missing
values, undefined data fields, or information with different
properties. These inconsistencies create problems which
should be dealt with explicitly by a classifier. In this imple-
mentation, missing data values can be identified by a data
flag and excluded from the analysis. Undefined values can be
similarly flagged: however. in this case the user may choose
to include this information if it is warranted (e.g., flat terrain
has an undefined topographic aspect; however, this informa-
tion is useful for classification). No bin transformations are
permitted on undefined data.
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TABLE 3. EVIDENTIAL LAND-CoVER CLASSIFICATION ACCURACY WITH INCREASING
Bin Size. THE Bin Transrormation OpTion Was NoT USED FOR THE FIRST
ENTRY OF THE TABLE (@); THE LasT ENTRY SHOws THE HIGHEST ACCURACY

OBTAINED Using THE FEATURE-SPECIFIC Bin Sizes LISTED IN TABLE 4. ACCURACY

|s ExPRESSED IN TERMS OF PERCENT AGREEMENT AND THE Kappa COEFFICIENT (k)
FOR 455 INDEPENDENT TEST PIXELS.

Bin Size % K
o] 56.2 0.51
3 57.6 0.53
7 67.9 0.65
11 81.0 0.79
15 85.0 0.82
19 85.7 0.84
23 86.8 0.85
27 B86.4 0.84
31 B86.6 0.84
35 86.7 0.85
39 86.6 0.84
Variable 91.2 0.90

(see Table 4)

The bin transformation process can also be controlled to
permit the correct incorporation of directional data (e.g.,
wind direction, solar azimuth data, terrain aspect) into the
evidential classification process. This is achieved by specify-
ing the actual or theoretical range of data values which is
used to modify the bin transformation process accordingly
through the use of a wrapping function to ensure that the ap-
propriate frequency values are incremented.

Example Application

The approach described here for deriving evidence from
multisource image data has been implemented in the C-pro-
gramming language as part of the MERCURY® evidential clas-
sifier (Peddle, 1995), which runs under the UNIX, ULTRIX,
VAX/VMS, MS-DOS, and Apple Macintosh operating systems.
This software was shown to provide significantly higher clas-
sification accuracies than traditional maximume-likelihood
and linear discriminant analyses in an extensive comparison
of high-relief land-cover classifications (Peddle, 1993). It was
also crucial for the complex environmental application of
permafrost active layer depth classification (Peddle and
Franklin, 1993) through its ability to handle disparate, multi-
source data which otherwise could not be processed by con-
ventional means. As a follow-up to those detailed studies, a
series of experiments is presented in this section to study the
effects of different bin sizes on land-cover classification accu-
racy. A brief description of the experimental design is given
here: however. for a full account of the study area, data sets,
and processing strategies, the reader is referred to Peddle
(1993) and Peddle and Franklin (1993).

The sub-Arctic study area is located in mountainous ter-
rain of the Ruby Range, southwest Yukon Territory, Canada.
Vegetation and land cover vary through an elevation range of
900 m, and have been generalized into nine classes as fol-
lows: white spruce forest, woodland. upland shrub, alpine
shrub, alpine tundra, alpine barrens, organic terrain, exposed
slopes, and water (after Franklin, 1987). The digital data
sources for this study include a cloud-free multispectral sPOT
HRV image acquired 21 July 1990 and a co-registered dense
grid digital elevation model (DEM). Spectral image texture
was processed from each SPOT image band using a spatial co-
occurrence algorithm, with noise removal procedures and
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geomorphometric processing (slope, aspect, curvature, and
relief) applied to the DEM. Spectral texture and geomorphom-
etric image processing have been shown to provide the addi-
tional information necessary for increasing land-cover classi-
fication accuracy in complex, mountainous areas such as the
Ruby Range (Franklin, 1987; Peddle and Franklin, 1991).
However, the higher dimensionality of the data set and the
fact that many of the new variables do not conform to a nor-
mal distribution complicated the use of conventional classifi-
ers, and resulted in a need for the new classifier presented
here.

Observations of land cover from field work and aerial
photointerpretation were compiled for 1693 pixel sites.
These pixels were identified in the registered data sets, di-
vided randomly into a mutually exclusive set of 1238 train-
ing and 455 test pixels, and written to disk as independent
attribute table files. These attribute tables were used in a se-
ries of 11 tests of the MERCURY® evidential classifier using
different bin sizes. The full complement of available sPOT
image bands, image texture, and geomorphometric variables
was used in each classification to conduct a rigorous test un-
der conditions of high data variability and maximum availa-
ble data volume. This set of 12 variables has also been shown
to possess the highest amount of information content in a se-
ries of empirical analyses (Peddle, 1993). Classification accu-
racy was determined with respect to ground data and ex-
pressed using percent agreement and the Kappa coefficient
for the 455 independent test pixels. The experiments were
controlled as follows: (1) in each test, the same bin size was
used for all sources; (2) all sources and classes were weighted
equally in each test; (3) separate test data were used for all
classification assessments to avoid overestimating accuracy:
(4) the same training and test samples were used in all clas-
sifications; and (5) all other parameters were kept constant
throughout the experiment. Bin size was the only parameter
altered between individual tests.

Table 3 shows the percent accuracy and kappa coeffi-
cients obtained as the bin size was increased from 3 to 39, in
increments of four., When the bin transformation option was
not used, classification accuracy was 56.2 percent (Kappa co-
efficient: k 0.51). This was the lowest accuracy obtained in
the experiments, and suggested immediately that using only
the frequency of occurrence of original training data without
any transformation was insufficient for acceptable classifica-
tion accuracy. This would be expected because training sam-
ples from higher level, quantitative data rarely possess the
full range of values representative of a given class. A mini-
mal increase in accuracy was found with a bin size of 3.
Again, many pixels which represent a given class are still
not being included in the transformed sample. However,
with larger bin sizes, significant increases in classification ac-
curacy were observed. The accuracy increased by 10 percent
and then by a further 13 percent using bin sizes of 7 (67.9
percent, k 0.65) and 11 (81 percent,  0.79), respectively.
This illustrates the positive effect of including a greater range
of pixels in the bin transformation process for generating evi-
dence within the MERCURY® classifier. Classification accu-
racy increased further to 85 percent (x 0.82) and to 85.7
percent (k 0.84) with bin sizes of 15 and 19, after which the
accuracy stabilized at =86 percent. From these results, there
appears to be a bin size threshold beyond which classifica-
tion accuracy reaches a maximum and remains constant.
However, because computational requirements and the
amount of memory needed increase with bin size, it would
be desirable to avoid using unnecessarily large bins. These
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results confirm the earlier notion that the optimal bin size
should be set as the smallest bin size for which classification
accuracy is maximized. In this case, an optimal bin size of
19 was found for this data set when the bin size was held
constant for all features tested. Clearly, however, if memory
resources or processing speed are significant controlling fac-
tors, a trade-off exists between classification accuracy and
available compuling resources.

Additional increases in classification accuracy are possi-
ble using the feature-specific bin size option available in the
MERCURY® software. After experimentation with different bin
sizes for each feature, the highest classification accuracy
achieved was 91 percent (x 0.90). The bin sizes used in that
classification are shown in Table 4, and ranged from 11 to
27. In general, the bin sizes were larger for features with a
greater dynamic range of digital numbers. However, these se-
lections of bin sizes are data dependent, and therefore the
optimal bin sizes found in this study (Table 4) cannot be
readily generalized to other study areas or data sets. Also, in
this example, all sources were assigned equal weights for
these experiments. Even higher classification accuracies may
be possible by weighting each feature according to relative
information content, or by introducing different weights for
each class, as discussed earlier.

Conclusion

The Dempster-Shafer Theory of Evidence provides an estab-
lished and mathematically sound framework for consolidat-
ing evidence from multisource data for image classification.
However, current methods to first derive these measures of
evidence from image data prior to invoking the orthogonal
summation process have been shown to be arbitrary, subjec-
tive, and inconsistent, and have prevented the full power
and versatility of evidential classification from being real-
ized. To overcome these problems, a more objective method
for generating evidence from supervised training data has
been presented as an interface to a Dempster-Shafer multi-
source image classifier. Evidence is computed from trans-
formed frequency distributions of training data, and without
reference to restrictive mathematical models or statistical as-
sumptions. The approach permits the integrated classification
of data at all scales of measurement (i.e., nominal, ordinal,
interval, ratio), from different sources (e.g., thematic GIs data
together with remotely sensed imagery and ancillary infor-
mation), and with different or unique properties (e.g., direc-
tional data, or information sources which include undefined
or missing data points). The user may control the bin trans-
formation process and also has the option to specify individ-
ual feature weights and class weights as appropriate.

The approach to deriving evidence was illustrated in an
example application of alpine land-cover classification using
the MERCURY® evidential classification software (Peddle,
1995). Information available from 12 multisource input varia-
bles comprised of SPOT imagery, image texture, and geomor-
phometry from a digital terrain model was used in a series of
experiments to test the effect of increasing bin size on classi-
fication accuracy. Classification accuracy increased steadily
from a kappa coefficient (k) of 0.51 using no bin transforma-
tion functions, to k 0.84 using a bin size of 19 for each data
feature. The results stabilized at this level using larger bin
sizes, from which it may be concluded that the optimal bin
size in terms of both memory requirements and overall clas-
sification performance is the smallest bin size for which the
highest level of classification agreement is attained. In each
test, the bin size was kept constant over the entire data set;
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TaBLE 4. Feature-SpeciFic Bin Sizes Usep 1o OBTAIN THE HIGHEST LEVEL OF
EVIDENTIAL LAND-COVER CLASSIFICATION AGREEMENT OF 91.2 PERCENT, KaPPA
Coerrcient 0.90

Feature Bin Size
SPOT Band 1 17
SPOT Band 2 17
SPOT Band 3 21
Image Texture: Band 1 23
Image Texture: Band 2 27
Image Texture: Band 3 27
Elevation 23
Aspect 11
Slope 23
Down Slope Convexity 25
Cross Slope Convexity 25
Relief 17

however, when the bin size was varied by feature, a higher
overall classification agreement of k 0.90 was achieved. Ad-
ditional increases in classification agreement are also possi-
ble through the use of individual feature weights, and by
utilizing the class weighting option. These tests illustrate the
utility of the approach taken for representing training knowl-
edge as evidence for input to an evidential classifier, and the
importance of applying bin transformation procedures to
achieve higher levels of classification accuracy for multi-
source data sets. The continued development of improved
procedures for image processing and analysis will be vital if
we are to realize the full potential of powerful new computa-
tional techniques for extracting the increasingly rich informa-
tion content available from multisource data. The interface
developed for a Dempster-Shafer formalism and presented
here is one such example.
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