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Abstract
The Dempster-Shafer Theory of Evidence provides an apprc'
priate framework for overcoming problems associated with
the analysis, integration, and classification of modern, multi'
source data sets. However, curent methods fot genetating
the prerequisite evidence are subiective and inconsistent. To
address this, a more obiective approach is presented for de-
riving evidence from histogram bin transformations of super-
vised training data frequency distributions. The procedure is
illustrated by an example application in which evidential
land-cover classification occuracy is increosed from a kappa
coefficient of 0.51 to 0.90 by appropriate use of bin transfor-
mation functions for a complex, mountainous environment
in the Canadian sub-Arctic.

lntroduction
New opportunities for synergy among environmental sci-
ences, engineering, and remote sensing have emerged from
the challenge to monitor and understand increasingly com-
plex environmental processes at different scales, and as a re-
sult of concurrent advances in airborne and satellite sensor
systems and computing architectures. However, for this criti-
cal evolution to occur, new approaches to image processing,
analysis, classification, and modeling must be developed to
help realize the full potential of these converging technolo-
gies. For example, t ime-honored methods of image classif ica-
iion such as the Bayesian maximum-likelihood algorithm
were neither designed nor intended to process modern data
sets which often possess (r) higher dimensions (or number of
bands, e.g., hyperspectral imagerY); (2) properties inappropri-
ate for parametric statistical analyses; (s) information from
different sources (i.e., multisource data) with inherent dispar-
i t ies, inconsistencies, errors, and uncertainty (e.9., incorpo-
rating ancillary variables, or using GIS data as an input to a
remote sensing classification); and (a) data at different scales
of measurement (or data levels, i .e.,  nominal, ordinal,  inter-
val, ratio) or with unique properties such as directionality
(e.g., topographic aspect, cl imatological wind vectors) '

To address these problems, new procedures for classify-
ing multisource image data have been developed within the
realms of pattern recognition, artificial intelligence, and
knowledge-based expert systems (Argialas and Harlow, 1990;
Campbell  and Cromp, 1990; Tai lor et 4.1., 1986). The Demps-
ter-Shafer (D-S) Theory of Evidence (Dempster, 1967; Shafer,
1976), is one such approach that provides a framework for
addressing the challenges of multisource image classification.
In addition to its explicit mechanism for handling informa-

tion uncertainty and conflict, a key aspect of the theory is its
ability to combine, flom any number of disparate sources,
evidence in the form of support (information in favor of a
class labeling) and plausibility (information which fails to re-
fute that labeling) using the technique of orthogonal summa-
fion (denoted by @). As an alternative approach to Bayesian
theory, the D-S Theory of Evidence provides a powerful
method for combining evidence into a decision using the
concepts of evidential intervals and degrees of belief. How-
ever, is a result of the generality of this theory (it can be ap-
plied to any problem of statistical probability), there is no
iormal soecification of how measures of evidence are ob-
tained piior to the orthogonal summation process. There
exists a significant gap between remotely sensed (and multi-
source) image data and its appropriate conversion to meas-
ures of evidence for input to the D-S approach. This gap in
knowledge formulation is the basis for this contribution'

In the next section, previous applications of the D-S
Theory of Evidence in remote sensing image_ classification
will be reviewed to reveal the subiective and informal nature
of current methods for deriving the necessary prerequisite

evidence prior to an evidential classification, and that as a

result, the full power of the D-S Theory of Evidence for mul-

tisource image analysis has yet to be realized. In the third

section, the design criteria for a frequency-based approach to

generating evidence from supervised training data is intro-

duced, and in the fourth section, a bin transformation tech-

nique is described for manipulating the co-mputed evidence

to be representative over a greater range of digital values

within the image domain. Prior to concluding the paper, an

example application of evidential land-cover classification is

or"r".rt"d ior a mountainous environment in the southwest

Vukon Territorv, Canada, to illustrate how the bin transfor-
mation functions can be used to increase classification accu-
racy.

Background and Previous Studies
The Mathematical Theory of Evidence (Shafer, 1976) has re-

ceived increasing attention in recent years for classifying
multisource image data sets. However, much of the pub-

lished literature to date has focused on describing and iusti-
fying the theory and its implications, with less attention

di.eited towards exactly how evidence was obtained or de-

rived. The following review is intended to summarize several
previous studies involving the D-S Theory of Evidence, and

to illustrate the need for i formal and more objective ap-
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proach to generating evidence for input to an evidential clas-
slner.

Lee et al. (1987) explored general methods of evidential
calculus for mult isource classif icat ion. Emphasis was placed
on the advantages of using measures of evidence, whiie . , . . .

the bridge between these measures and the original data
structure, whether the latter be numerical or otherwise. is
left  largely to the user" (Lee ef. a1.,1.987, p. 286). An exam-
ple was presented for classifying a set of spectral data classes
from a Landsat MSS image of an agriculturil area. The visible
(rrass bands 4 and b) and infrared (bands 6 and 7) of the sin-
gle image were considered as two independent sources of in-
formation, with evidence granted to vai ious proposit ions
using source-specific membership functions obtained from a
prior stat ist ical classif icat ion which assumed a normal distr i-
bution. In these tests, equal uncertainties were assisned for
a l l  p ixe ls :  however .  they  s t ressed the  impor lan" "  o id " t " . -
mining pixel-specific uncertainty measures in future work to
real ize the ful l  power of this component of evidential reason-

i1S. fftt study amply demonstrated the advantages of the ev-
idential approach; however, the implementation was re-
str icted to rat io-level data and constrained bv the use of
parametric statistics to generate evidence, th-ereby requiring
that the data conform to a normal distribution.

Moon (roso) used evidential bel ief functions to inteqrate
disparate geological and geophysical data and to oue."ori"
problems of mixed data formats and different spatial resolu-
tions. An interesting product from this study was the crea-
t ion of a series of maps depict ing the spatial distr ibution of
evidential support for a series of base metal deposits. Thev
relied on human experts to evaluate individuaf cells and pro-
duce qrral i tat ive assignments of evidence in support of a va-
r iety of-m-ineral proposit ions. However, this asi ignment of
part ial  bel ief functions was ".. .  less exact and miv even be
arbitrary" (Moon, 1990, p. 714). Because this appioach must
rely on individual interpretations from a geologiit, the basic
framework for information representation for relating explo-
ration evidence to mineral deposits is both difficult andiub-
ject ive (Moon, 1993, p. 6a). TLe development of a systematic
and consistent technique to quanti fy and compute evidence
lor input to the evidential procedures was deemed a signif i-
cant area in need of future work.

Wilkinson and M6gier (rggo) used an evidential reason-
ing approach to integrate cIS data and expert system rules to
resolve indecision in maximum-l ikel ihood [Ml) classif icat ion
of agricuitural land cover. A hierarchical class structure was
used, and the evidential approach was based on a l inear-t ime
approximation to the D-S Theory of Evidence developed bv
Gordon and Shor t l i f fe  (1985) .  Suppor t ing  ev idence was ob l
tained as computed likelihoods from the rr.ll classifier, while
disconfirming evidence for the expert system rules was ex-
pressed as numeric probabil i t ies based bn quali tat ive rela-
t ionships among GIS variables. The source of support ing
evidence limits this approach to image data which adhere to
ML assumptions (e.g., normally distr ibuted data, l imited di-
mensional i ty),  as mentioned earl ier and discussed in more
detai l  in Peddle (1993), while the oriqin of the disconfirmins
evidence for the expert system rules was not specif ied
Therefore, although the general ideas put fortliby Wilkinson
and M6gier (t990) were val id and useful,  the meihods sus-
gested for generating evidence were restrictive in their naiure
and lacking in objectivi ty. In addit ion, the approximation of
Dempster's rule for hierarchical evidence developed by Gor-
don and Short l i f fe (rggS) was later shown to be unnecessarv
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by Shafer and Logan (1987), based on an improved and exact
algori thm which is also l inear in i ts computit ional complex-
ity.

Srinivasan and Richards (rggO) provide an excel lent de-
scription and evaluation of some of ihe advantases of the D-
S Theory of Evidence cast in the spatial and reriote sensing
realm. In their implementation, a hierarchical class structure
was also developed based on the computationally efficient
algori thm described by Shafer and Logan (1987). A forward-
chaining rule-based system was used,"with two options for
attaching evidence to rules: (f) using pre-defined functions to
equate a fixed degree of evidence to rules entered in a con-
strained English format (e.g., for class i, DEFTNTTELv_Nor (i)
would result in a bel ief of 0.9 being attached against the
classfabeling-i);  and (Z) using heurist ic functions to produce
beliefs for and against a class (or set of classes) based on the
degree to which the pre-condition of a rule was satisfied
(e.g., for Landsat MSS imagery, the greater the band 4 (green)
: band 5 (red) ratio value for a pixel, the more evidenc6
would be granted in favor of a vegetation class label).  How-
ever, it is often very difficult to translate heuristic knowledee
into numerical degrees of belief (Srinivasan and Richards, 

.-

1990). Also, as a result of the subiectivi tv of human interven-
tion, the knowledge embedded in a rule mav have greater
significance than the precision of the number (evid6ntial
mass) at lached to i t  (Srinivasan and Richards, 1990, p. 516).
Although this rule-based approach makes good use oi the ad-
vantages and power offered by the D-S Theory of Evidence,
there did not appear to be a consistent or rep-eatable method
for translating^knowledge into numerical belief values during
the rule specif icat ion process.

_ _ 1,r a final example, Goldberg et a,1. (f SeS) proposed the
D-S Theory of Evidence as being appropriate to handle un-
certainty in an expert system for updating forestry maps in
western Canada based on Landsat image change deteciion.
Within this context, the authors concluded thit ,,Further re-
search is required in the assignment of support and plausi-
bi l i ty values in a consistent manner" (Goldberg et a[. ,  tgas,
p .  1 0 6 2 J .

Two conclusions can be drawn from these studies: (1)
the evidential approach is theoretically appropriate and
shows- much potential for multisource-daii in-tegration and
classification, and (2) an objective procedure foi determining
evidence for input to an evidential classifier has not been
forthcoming. To address this need, the remainder of the pa-
per describes a more oblective approach to formulating
knowledge as measures of evidenie for input to a clasiifica-
t ion framework based on the D-S Theory of Evidence.

Knowledge Representation

Design Criteila
The supervised approach to classif icat ion is used in this im-
plementation of an evidential classif ier (Peddle, 199b) to pro-
vide the image analyst with sufficient power to address
complex environmental problems which require multisource
im.age da ta  and the  o  p r io r i  iden t i f i ca t ion  o f  in t r i ca te  phys i -
cal classes for their solution. The requirements for 

" 
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v i s e d  e v i d e n l i a l  c l a s s i f i e r  i n c l u d e  ( r i  a  w a y  o f  o b t a i n i n g
representative information for each class to base classifica-
tion decision making, and (2) a way of converting this infor-
mation into measures of evidence by class. The fi1st
requirement is satisfied using standard trainins data identi-
fied for each class. This approach takes advaniage of existing
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training data acquisition modules and graphical interfaces
available in most commercial image analysis systems for in-
teractive class delineation. It also makes the evidential classi-
fier compatible with existing training data sets used
previously with other supervised classification algorithms.
The second requirement poses a greater challenge due to the
disparate nature of multisource data sets which preclude the
use of oowerful statistical models and measures of central
tendeniy to characterize training samples (such as the Gaus-
sian assumption in maximum-likelihood classification and
many implementations of linear discriminant analysis).
Therefore, a method is required which provides greater flexi-
bility with respect to input data types and which adequately
captures the increased information content available from
multisource data.

To formalize these requirements, the following design
criteria have been identified for converting supervised train-
ing data into measures of support and plausibility within an
evidential classification framework:

. the method must be free of statistical assumptions and rnod-
els:

. it must be able to handle multisource data at any scale of
measurement (or data level);

. it must be able to incorporate uncertainty into the analysis;
I a mechanism must exist to grant evidence to pixel values

which are representative of a class, but which do not occur
within the range of training class values due to the chance
location of training samples (this is essentially a question of
interpolat ion); and

a a method is needed to determine evidence for values represen-
tative of a class but which lie outside the numeric bounds of a
training sample (this is an issue analogous to extrapolation).

Deriving Evidence
The method devised to meet the design criteria for generat-
ing evidence uses training data explicitly as direct sources of
evidence for class membership. Evidential support is com-
puted with respect to the frequency of occurrence of values
within training samples. The universality of this approach is
based on the fact that all training data have a frequency dis-
tribution, regardless of data type, scale of measurement, or
statistical properties. There are no requirements for intricate
mathematical formulation, statistical processing, or reinter-
pretat ion, and, as a result,  the method is relat ively easy to
understand intuitively and is without excessive computa-
tional burden. Two basic premises underlie the approach:
(1) values found in class training samples represent that class
(i .e.,  they provide evidence in support of a part icular class
labeling), and (z) the frequency of occurrence of a specific
value within a class training sample is an indicator of the
magnitude of support for that class ( i .e.,  i t  quanti f ies the sup-
port for a class labeling).

The first step in this approach is to obtain frequency dis-
tributions of training samples over the entire set of classes,
or frame of discernmenf (denoted by (D). Training data are
read from each data feature in sequence, and a frequency
distribution of training values is compiled for each class.
Thus, for i  classes and k sources, there wil l  be a total of
i x k frequency distributions. During this compilation pro-
cess, the training sample size (rsn) for each class is re-
corded. For a given input pixel value Pv to be classified, the
amount of evidence in support of the ith class label is com-
puted initially as the frequency of occurrence of Pv in the
training data for class j divided by the number of training
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samples (rsn) for class i. Plausibility (P) is a measure of the
extent to which the available evidence does not support the

negation of a given proposit ion (Shafer, 1976), and is com-
puted for a given class C, as

P(C, )  = t1  -S ( lC , ) )

where S(lC,) is the magnitude of evidential support for the
negation of class C,, computed over a total of n classes as

t 1 )

(2 )cr- l . r  :  Isrr tu | v i )  
7 : r " r " i '

Individual measures of evidential support and plausibil-
i ty l ie in the range 0 to 1, inclusive, with the set of supports
and plausibilitiea for a given input value over a frame of dis-
cernment @ referred to here as the evidential vector. Uncer-
taintv is ouantified for each pixel as the amount of evidence
not assigned to any part icular subset ( i .e.,  class), and i t  is
computed as one minus the sum of supports for all classes
(after Garvey ef d1., 1981). In the rare case where this sum
exceeds one, the evidential vector is normalized to unity
( i .e.,  1), and there wil l  be no quanti f iable uncertainty.

An example multisource training data set consisting of
three sources with different properties was constructed to
help explain the methodologies created for the derivation

and protessing of evidence. This hypothetical training data

set was designed to illustrate the flexibility of the approach
for classifying multisource, disparate data (e.g., remote sens-
ing imagery together with cIS data and directional informa-
tion) obtained at different scales of measurement (ratio and
nominal), and which do not necessarily conform to the Gaus-
sian distribution. Figure 1 shows the frequency distributions
of the example training data set for three sources and three
classes. An example input pixel {110, 6, 315} from these dis-
tributions is used to demonstrate explicitly how evidence is
derived from the original training data.

From Figure 1., one can surmise the general nature of
each data source and magnitudes of support for a given
value over the set of classes. For example, Source 1 is at the
ratio scale of measurement, and could represent a typical in-

put feature from an B-bit digital remote sensing image. Only
training data for Class 3 have a distinct normal distribution.
while elass 2 is bi-modal. Observations of these training data
distributions suggest low values in Source 1 are more indica-
tive of Class 1, wnlte nign values are more likely a member
of Class 2.

Source 2 is nominal (or thematic) level data which could
have been obtained from a geographic information system or
from an earlier remote sensing classification. The frequency
of occurrence of value i has no bearing on the frequency of
value i + 1, because the numeric values are assiSned to clas-
ses arbitrarily, and usually without any physical basis. None
of the three class training samples appears to have a normal
distribution. In general, the nominal values 2, 6, B, and I are
indicative of Class 1; values of t ,  q, and 7 provide the most
support for Class 2; while values 3 and 5 are more likely to
represent Class 3.

Source 3 i l lustrates propert ies of direct ional data (e'g.,

compass aspect measured in degrees from 0 to 359). Low
values are more indicative of Class 1, intermediate values
lend the most support to Class 3, while high values more
likely represent Class 1- or 2. The directional or circular na-
ture of these data is shown by the distribution for Class 1,
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Figure 1. Example training class frequency distribution for three features from
different sources in a multisource data set. Training sample size (rsn) shown rn
left column for each of n : 3 classes (distribution not drawn to scale). The
graphic i l lustrates the disparate nature of the three example data sources to be
integrated and classified: (1) remote sensing data at the ratio scale of meas-
urement ,  (2)  nominal  (or  themat ic)  c ts  data,  and (3)  d i rect ional  data (e.g. ,  ter
rain aspect). The frequency of occurrence ( f) of each value in a pixel vector
{110, 6, 315} to be classified is shown for each distribution and used in the
computation of evidence from this example, as described in the text and given
in Table 1.
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where the frequency of the lowest and highest values ap-
pears to be similar. In the case of directional data, the Class
training set for Class 1 would resemble a normal distribution
if the x-axis is relabeled starting at 1BO (and continuing
through 359, 0 to 179). However, in a number system wtrlctr
deals strictly with absolute magnitudes, this variable would
be considered to have a dist inct ly bi-modal distr ibution, as
shown in Figure 1. This type of data is not suitable for para-
metric classifiers which rely on arithmetic measures of ien-
tral tendency and variance to characterize training data
information (e.g., maximum likelihood, linear disiriminant
analysis). For example, the mean of the Class 1 distribution
would be approximately 180, even though no values in Class
1 are close to that value. Similarly, the computed variance
would not be representative because i t  would be greatly
overestimated. Because these stat ist ical models and assumn-
t ions are not used in this implementation of an evidential 

-

classif ier, i t  is possible to pr6cess direct ional data together
with other information at all scales of measurernenr.

. The computation of evidential supoort from the example
data set is provided in Table 1. The pi iel  vector {110,6, 3iS}

4L2

from^ Figure 1 is used to show the derivation of support val-
ues from the training data distribution of each clasi-shown.
For each source, the sum of supports for al l  classes does not
exceed one, and therefore mass normalization to unity is not
required. The_importance of incorporating the training rurn-
ple size into the computation of evidencJfrom trainiig data
fre_quency distributions is apparent for Source 3. The plxel
value 315 occurs most often in the training data for Ciass 1,
which is also the largest training sample by class. However,
the greatest support is assigned to Class 2, because the fre-
quency of occurrence of this pixel value in that class occu-
pies a_greater proport ion of a smaller training sample.

. I\g computed_measures of pixel-specifiC uncertainty
(underlined in Table 1) represent the remaininq amount of
evidence which could not be ascribed to a part lcular class
within the frame of discernment (D (in this tase, O is the set
of classes 11,,2,31). This residual uncertainty must instead be
assumed to be distributed in some unknown manner among
the class proposit ions, and, as a result,  the evidence is as-
signed to @ (after Garvey et al., 1981,).

With reference to the desisn criteria identified at the be-
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TneLe 1. ExAMpLE Covputnttotl or EvtoerurtnL SuppoRr VALUES FRoM THE
Crnss Tnnntttc Dlu FneQuerucv DlsrRtBUTloNS Snowll ttt Ftcune 1. Pu ls rHE
Prxa Vnrue rN THE VEcroR {110, 6, 315) ro Bt Clrsstrteo; TS, ls rHE TorAL

NuvarR or PtxELs nt Encn Crnss Tnntntt'tc Snvple; f ls rug FnEQuencv or
OccuRnrruce or Pu rn EncH TRntlrtruc SnvprE. Evtorlrtlr Sueeonr (S) ron
EncH Crnss ts Covpurgo ns f + TSn, WHERE 0 < S < 1. Bot-o EnrntEs
DEruorr rne Crnss WtrH rHe GRentesr Avourur or Evtoeruce sv SouRce'

Evrorrucr Nor Covvtrreo ro Aruv Crnss (C) ls AsSIGNED ro tHs FRnvE or
DrscrRruent (S((9) : 1 tS(C,) Suowru ns BolorncE Erurntes), nno

REpRESENTs rHE REsTDUAL Utcenrnttrv Assoctereo wtrr EvtoencE FRoM EAcH
SouncE (GnRvEv ET AL., I9A\.

or generalization of frequency distributions is applied' and-
theiefore the original piecision of training data is Preserved'

For an individual training data value i, the method
works by first multiplying its frequency of occurrence /by a
specified constant equal to the bin size. The constant is then
cl^ecremented by 2, multiplied by /, and added to the frequen-
cies of occuuence of the two next adiacent values (i + 1,
i - 1). This is continued over the entire bin' Therefore, val-
ues which lie within a given bin are transformed as follows:
for Class c, given a training sample value i with a-frequency
of occurrence f(i) : a and a specified bin size b' the evi-
dence for value f (f(j) > o) belonging to Class c would be in-
cremented as

Source 1
Pu  :  110

Source 2
P v - 6

Source 3
r u  =  J t 5

Class TSn Support Support Support
f l t : f ( t +ox (b -2x t i - i t ) (4 )

1
2
3

ginning of this section, the first three have been satisfied by
fhe method outlined. The frequency-based technique for gen-
erating support values has been shown to be (1) not re-
str icted by stat ist ical assumptions or models, (2) able to
process mult isource data at any level, and (s) equipped with
a mechanism to quantify and incorporate uncertainty into
the classification process. The remaining two design criteria
deal with extending knowledge from training samples to en-
compass a greater range of values within the multisource im-
age domain, The next section describes a transformation
approach to facilitate the classification of values which do
not occur in training data.

Knowledge Domain Processing by Bin Transfomation
The method developed for unrestricted knowledge domain
processing operates by transforming the frequency distribu-
iion of training data using weighted functions applied over a
specified range, or bin size. This approach enables informa-
tion to be both interpolated within the numerical range of
class training data (Design Criterion 4J, and extrapolated be-
yond that range (Design Criterion 5).' 

Knowledge from training samples of quantitative data
sources is extended by propagating the evidence (frequency

of occurrence) from individual data values to its neighbors,
with the propagation function weighted by proximity to the
original training data value. The approach utilizes a multipli-
cative linear-weighted distance decay function and is based
on two premises: (1) i f  a value i  occurs in training data for
Class c, then similar values are also indicative of that class
(e.g., for quanti tat ive data, i  -+ 1 e c); and (Z) the probabil i ty
(p) that similar values represent Class c increases with prox-
imitv to i, or

where l t  -  i  |  <  b-Z ( i .e . , i  l ies wi th in the b in) .
The specified bin size is applied to each value of all

class training samples for all valid sources (i.e., quantitative
data selected for bin transformation). Once all frequency dis-
tributions have been processed, evidence is computed for a
given input value as discussed earlier' The training- sample
iize (rsn) used in the denominator of the evidential support
equation is adiusted to reflect the increased frequency total
produced through the bin transformation process.^ 

This approach is illustrated by example in Table 2. A
bin size of-S is applied to a training data set containing four
samples (rsn : 4lfor an arbitrary Class c. This small bin
size and a small number of samples was chosen to simplify

TnsLe 2. ExnvplE FnrQueltcv TRnnsroRvnrtot'ts or TnntntNc Dnrn Ustt'lc n

BrN SrzE or 5. Tsr OntctuL FnrQuencv or Two TRatrutltc Snvere Vnr-ues (70

nno 72, SHowtl tt't Boro tn Row 1) ARE TRANSFonvEo truro Locnr

DrsrRrBUTroNS rN TABLES 24 nr"ro 28, RespEcrlvrLv. ADJAcENT Vnlues lrucluoeo

rru rue Tnnnsronvnrton ARr Suowll ttt BRAcKETS tru Row 1or EncH Tlerg.

TnerE 2C SHows rHE Aootrtou or rHe Two TRnlsroRvro Dtsrntgurtolls, ruE

UponrEo FREeuENoES ."- afi:#il:#?Jff ResuLtttrtc co|purattot'r or

150  2A
1 .25  28
1 3 1  4 6

0 .  1 3
o.22
0.35

39
"t"I
2 2

o.26
0 .09
o . " t 7

o. ' t2
0 .13
0.00

1 8
^t7

0

0.30(,) o.4B 0 .75

1. Pixel  Values:
2. Original Frequency:
3.  Bin Transformat ion:
4. Transformed Frequencies:
5.  + Or ig inal  FrequencY:
6. Transformed Local

Frequency Distribution:

(68) {6e) (71)  {72)

1
"I

3
3

7D
1

1
6

3
3

+

B :

1. Pixel  Values:
2. Original Frequency:
3. Bin Transformation
4. Transformed Frequencies:
5. + Originai Frequency:
6. Transformed Local

Frequency Distribution:

(70) (7" t )  72
3

1 3 5
3  S  1 5

3
3  I  1 8

+

(73)

3
o

s

( 7  4 )

1
3

3

p ( i t 1 €  c ) > p ( i + 2 e c ) ( 3 )
L , :

In the current implementation, the bin size is specif ied
by the user and can vary by individual feature. The bin size
is necessari ly odd so that propagation of evidence is sym-
metrical about the data value being considered. It should be
noted that the bin transformations described here are distinct
from the a priori division of histograms into fixed cells
(sometimes referred to as bins). That process involves com-
pressing the range of values in a histogram, with an associ-
ated loss of precision. In this implementation, no reduction
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1. Pixel  Values:
2. Transformed Frequencies:

(from Table 2A; Pv : 7O)
3. Transformed Frequencies:

( f rom Table 29;Pv :  72)
4.  I  ota l  Frequencres:  /  -

(adjusted TSn :  56)
5.  Evident ia i  Support :

.f = TSft

68  69  70  71  72  73  74
1 3 6 3 1

3  I  1 8  I  3

1 3 9 7 2 1 9 9 3

0 .018  0 .0s4  0 .1610 .274  0 .339  0 .161  0 .054
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the illustration (in practice, these values will usually be con-
siderably larger). In the example, there is one occurience of
the value 70 in the training sample, and three occurrences of
the value 72 (Tables 2.{ and 2B, respectivelv). The bin trans-
fo rmat ion  is  app l ied  to  each sample-va lue ,  ind  the  f requen-
cies are accumulated in Table 2C. The TSn value is adiusted
and evidential support is computed as shown in the bottom
line. The resulting frequency spread is better suited to recog-
nize_an input value in the range 68 to 74 as being a member
of Class c. For example, without applying the bin transfor-
mation process, there would be no evidence for assigning an
input value of 71. Io the class which contained Z0 (once) and
ZZ (three times) in its training data. The fact that 71 was not
in the training set is almost certainly due to the chance loca-
tion of the sample data, and not because the value is not rep-
resentative of that class. This is an example of interpolation
within training data (Design Criterion 4). Evidence Can also
be extrapolated beyond the range of training sample data.
This occurs when the transformation process is applied to
extreme values within the training data frequency distribu-
tion. In the example (Table 2), evidence generated for the
values 68, 69, 73, and 74 would be considered as extrapo-
lated support (Design Criterion 5). In this research, a linear
relationship is assumed between numerical proximity and
probability of membership during the bin transformation pro-
cess; however, more complex relat ionships (e.g., square-roor
functions, logarithmic decay) may provide improved results
when Iarger bin sizes are applied.
Bin Size Considerations
The selection of bin size is an important parameter in this
implementation of an evidential classifler. Different bin sizes
may be specified for different sources, with a given bin size
selected with reference to the nature of the data being classi-
fied and the precision of the classes under consideratlon.
Ideally, alt vilid data values which represent a given class
wou ld  be  incorpora ted  in to  the  expanded t ra in i ig  sample
through the bin transformation procedure, with nb values ex-
ceeding known class limits. In practice, however, training
data hom different classes often are not mutuallv exclusive
for all data sources, and training data overlap among classes
is inevitable. Although bin transformation increases the like-
Iihood of overlap, the effects are minimal. This is because,
for a given feature, the same bin size is used for all class
training samples, and, as a result, the overlap from Class a to
Class b caused by the bin transformation would have no con-
sequence because the frequency of the Class b training value
would be increased bv the full amount within its own bin.
This serves to cancel out any negative impact on the ability
to discriminate Class b. It also suggests that there may not be
a maximum bin size beyond which classification accuracy
would be expected to d-egrade ( i .e.,  overal l  accuracy wil l i ta-
bilize at and beyond a sufficiently large bin size, piovided
the bin sizes do not exceed the numeric ranee of the data).
Therefore, providing sufficient memory exist"s, a general rule
is to select large bin sizes to ensure sufficient expansion of
training data values to be representative of its cliss. This
also permits classification based on fewer training samples,
because the information provided bv each samole value is
propagated  over  a  w ider  iange o f  d ig i ta l  va lues ,  However ,  be-
cause larger bin sizes require more memory and computation
time, this method of bin size selection may be l imited in
practice by available resources, In this case, the theoretical
optimal bin size would be the minimum bin size which can
still yield the maximum level of classification agreement
(i .e.,  the bin size at which classif icat ion accuracy begins to
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stabilize). A more refined approach is required to determine
this region of stability. Early results frorrrempirical analyses
of hislograms, descriptive statistics, and moments of training
sample frequency distributions suggest that a reasonable ini-
tial bin size can be determined as one-fifth of the samole
r_ange for a given class training set (for multi-modal triining
data, the range of individual data groupings identified in the
histogram should be used). However, this will likely varv bv
data source, application, and training sample size; thereiore,
some iteration and experimentation with bin sizes may be
necessary to achieve optimal results. For example, wi ih
larger training sample sizes, one could expect maximum
classif icat ion accuracy to be reached using smaller bin sizes.
Conversely, if the training sample size is small, larger bin
sizes would l ikely be required.

The bin traniformation process cannot be applied to
quali tat ive data ( i .e.,  nominal and ordinal level data) be-
cause, at these scales of measurement, magnitude of differ-
ence between data values is either inappropriate or un-
known. However, this generally does not timlt the utility of
the frequency-based approach for classifying qualitative data
because these variables often possess a limiied ranqe of val-
ues .  fo r  wh ich  the i r  o r ig ina l  f requency  d is t r ibu t ion i  a re  usu-
ally representative. For the same reason, frequency transfor-
mations are not always necessary for quanti tat ive data which
possess a limited dynamic range or a very large training sam-
ple. In these cases, the user would specifv that no bin trans-
formation of training data is to be peiformed for that feature.
Add i t  ionol F u ncti  ona I i tv
In addit ion to bin size, ieveral other options have been in-
corporated into the knowledge representation scheme to per-
mit greater control of the classification process if additional
information about the mult isource data is known a priori .
For_example, i t  is possible to assign weights of importance to
each input data variable if the relative quality of these varia-
bles is known with respect to the classei of interest. Reliabi l-
ity specifications such as these are often not available in
conventional statistical classifiers, despite the importance of
re l iab i l i t y  measures  fo r  mu l t i source  da ta  wh ich .  by  the i r  na-
ture, are more likely to contain variables with varying de-
grees of relevance to a particular application (Benediktsson
et  a1 . .  19901.

The weights of evidence concept has also been extended
in this implementation to allow, foi a given data feature, dif-
ferent weighting factors to be assigned for different classes.
This option permits the user to include detailed information
about how individual features and classes are related based
on information such as field surveys, aerial reconnaissance,
or laboratory analyses. Both of these optional evidential
weighting capabilities provide the user with ways to capture
more fully the additional information content availableln
multisource image data sets for optimizing classification re-
sults.

As a result of the disparate nature of multisource data
sets, individual data variables sometimes possess missine
values, undefined data fields, or informatibn with clifferJ t
propert ies. These inconsistencies create problems which
should be dealt with explicitly by a clasiifier. In this imple-
mentation, missing data values can be identi f ied by a daia
flag and excluded from the analysis. Undefined values can be
similarly flagged; however, in this case the user may choose
to include this information if it is warranted (e.g., flat terrain
has an undefined topographic aspect; however, ihis informa-
tion is useful for classification). No bin transformations are
permitted on undefined data.
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TneLe 3. Evtoerurtnr LANICoVER CL,qsstrtclrtol AccuRAcY wlrH INCREASING

BrN SrzE. THE BtN TRANSFoRvnrtoru Oprtoru Wls Nor UsEo roR ruE FtRsr

ErrRv or rHE Tnere (g): rHE LASr Et'lrnv SHows tHr HtcHrst AccuRncv

OBTATNED UsrNG THE FrnruRE-Spectrtc Btru Stzes Ltsreo ttt Tnere 4. Accunncv

ls EXPRESSED tru TEnvs or PEncrrur AcREEltenr AND rHE KAPPA CoEFFICIENT (K)

ron 455 INDEPENDENT Trsr  PtxeLs.

Bin Size

geomorphometric processing (slope, aspect, curvature, and

ieliefl applied to the DEM. Spectral texture and geomorphom-

etric image processing have been shown to provide the addi-

tional infirmation neiessary for increasing land-cover classi-

fication accuracy in complex, mountainous areas such as the

Ruby Range (Frinkl in, 1087; Peddle and Frankl in, 1991)'

However,"the higher dimensionality of the data set and the

fact that manv oT the new variables do not conform to a nor-

mal distribution complicated the use of conventional classifi-

ers, and resulted in ineed for the new classif ier presented

here.
Observations of land cover from field work and aerial

ohotointerpretat ion were compiled for 1'693 pixel si tes'

These pi*els were identified in the registered data sets, di-

vided iandomlv into a mutual ly exclusive set of 123B train-

ins  and +s5 te i t  p ixe ls ,  and wr j t len  to  d isk  as  independent

attiibute tabie files. These attribute tables were used in a se-

ries of 11 tests of the MERCURY@ evidential classifier using

different bin sizes. The full complement of available sPor

image bands, image texture, andgeomorphometric variables

was used in each classification to conduct a rigorous test un-

der conditions of high data variability and maximum availa-

ble data volume. This set of 12 variables has also been shown

to possess the highest amount of information content in a se-

r ies of empir ical inalvses (Peddle, 1993). Classif icat ion accu-

racy was determined with respect to ground data and ex-

pressed using percent agreement and the Kappa coefficient

ior the 4ss i id^ependenitest pixels. The experiments were

control led as fol lows: (r) in each test, the same bin size was

used for all sources; (2) all sources and classes were weighted

equally in each test; (3) separate test data were used for all

clissifrcation assessments to avoid overestimating accuracy;
(a) the same training and test samples were used in all clas-

sifications; and (5) all other parameters were kept constant

throughout the experiment' Bin size was the only parameter

altered between individual tests.
Table 3 shows the percent accuracy and kappa coeffi-

cients obtained as the bin size was increased from 3 to 39, in

increments of four. When the bin transformation option was

not used, classif icat ion accuracy was 56'2 percent (Kappa co-

eff icient: r  0.51). This was the lowest accuracy obtained in

the experiments, and suggested immediately.that-using only

the frequency of occurrence of original training data without

anv transformation was insufficient for acceptable classifica-

t ion accuracy. This would be expected because training-sam-

ples from higher level, quantitative data.rarely-possess the

iull range of values representative of a given class' A mini-

mal inciease in accuracy was found with a bin size of 3'

Again, many pixels which represent a given-class are still

nJt being incfuaed in the transformed sample. However,

with larglr bin sizes, significant increases in classification ac-

curacv were observed. The accuracy increased by 10 percent

and tLen by a further 13 percent using bin.sizes of z [67'9
percent, * b.os) and 11 (Bt percent, r  0.79), respectively.

ihis illustrates the positive effect of including a Sreater range

of pixels in the binlransformation process for generating evi-

dence within the MERCURY@ classifier. Classification accu-

racy increased further to 85 percent (r 0- '82) and to B5'7

percent (x 0.Ba) with bin sizes of 15 and 19, after which the

i""rrru"y stabi l ized at -86 percent- From-these results, there

appears to be a bin size threshold beyond which classif ica-

tibn accuracy reaches a maximum and remains constant'

However, be-cause computational requirements and the

amount of memory needed increase with bin size, i t  would

be desirable to avoid using unnecessari ly large bins' These

%

o
3
7

'1.1

1 5
1 S
2 3
2 7
3 1
3 5
3 9

3 0 . L

5 7 . 6
67 .5
8 1 . 0
85 .0
85.7
B6 .B
86 .4
86 .6
86.7
86 .6

0 . 5 1
0 . 5 3
0 .65
o ,79
o.B2
0 .84
0 .85
0 .84
0 .84
0 .85
0 .84

Variable
[see Tab]e 4)

91..2 0 .90

The bin transformation Process can also be controlled to
permit the correct incorporation of direct ional data (e.g.,

wind direction, solar azimuth data, terrain aspect) into the

evidential classification process. This is achieved by specify-

ing the actual or theoretical range of data values lvhich is

used to modify the bin transformation process accordingly
through the use of a wrapping function to ensure that the ap-
propriate frequency values are incremented.

Example Application
The approach described here for deriving evidence from

multiiource image data has been implemented in the C-pro-
gramming language as part of the nreacuRY@ evidential clas-

sif ier (Peddle, 1995), which runs under the UNIX, ULTRIX,
vAX/VMS, MS-DOS, and Apple Macintosh operating systems.
This software was shown to provide significantly higher clas-

sification accuracies than traditional maximum-likelihood
and linear discriminant analyses in an extensive comparison
of high-rel ief land-cover classif icat ions (Peddle, 1993). I t  was

also irucial for the complex environmental application of

oermafrost active laver depth classification (Peddle and
iranklin, 1993) through iti ability to handle disparate, multi-
source data which otherwise could not be processed by con-
ventional means. As a follow-up to those detailed studies, a

series of experiments is presented in this section to study the

effects of different bin sizes on land-cover classification accu-

racy. A brief description of the experimental design is given

her-e; however, for a full account of the study area, data sets,

and processing strategies, the reader is referred to Peddle
(1993) and Peddle and Frankl in (1993).

The sub-Arctic study area is located in mountainous ter-

rain of the Ruby Range, southwest Yukon Territory' Canada.
Vegetation and land cover vary through an elevation range of

900 m, and have been generalized into nine classes as fol-

lows: white spruce forest, woodland, upland shrub, alpine
shrub, alpine tundra, alpine barrens, organic terrain. exposed

slopes, and water (after Frankl in, 1987). The digital data
ro.,^rcet for this study include a cloud-free multispectral spor

HRV image acquired 21' ltlJy 1990 and a co-registered dense

grid digital elevation model (nau). Spectral image texture.
iras p.ocess"d from each spot image band using_ a spatial co-

o"".,it".t"" algorithm, with noise removal procedures and
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results confirm the earlier notion that the ootimal bin size
should be set as the'smallest bin size for which classif icat ion
accuracy is maximized. In this case, an optimal bin size of
19 was found for this data set when the bin size was held
constant for all features tested. Clearly, however, if memory
resources or processing speed are significant controlling fac-
tors, a trade-off exists between classification accuracy and
available computing resources.

Addit ional increases in classif icat ion accuracv are oossi-
ble using the feature-specific bin size option available in the
MERCURYO software. After experimentation with different bin
sizes for each feature, the highest classification accuracy
achieved was 91 percent (r 0.90). The bin sizes used in that
classification are shown in Table 4, and ranged from 11 to
27. In general, the bin sizes were larger for features with a
greater dynamic range of digital numbers. However, these se-
Iections of bin sizes are data dependent, and therefore the
optimal bin sizes found in this study (Table a) cannot be
readily generalized to other study areas or data sets. AIso, in
this example, all sources were assigned equal weights for
these experiments. Even higher classification accuracies may
be possible by weighting each feature according to relative
information content, or by introducing different weights for
each class, as discussed earl ier.

Conclusion
The Dempster-Shafer Theory of Evidence provides an estab-
lished and mathematically sound framework for consolidat-
ing evidence from multisource data for image classification.
However, current methods to first derive these measures of
evidence from image data prior to invoking the orthogonal
summation process have been shown to be arbitrary, subjec-
tive, and inconsistent, and have prevented the full power
and versatility of evidential classification from being real-
ized. To overcome these problems, a more objective method
for generating evidence from supervised training data has
been presented as an interface to a Dempster-shafer multi-
source image classifier. Evidence is computed from trans-
formed frequency distributions of training data, and without
reference to restrictive mathematical models or statistical as-
sumptions. The approach permits the integrated classification
of data at al l  scales of measurement ( i .e.,  nominal, ordinal,
interval, ratio), from different sources (e.g., thematic cIS data
together with remotely sensed imagery and ancillary infor-
mation), and with different or unique properties (e.g., direc-
tional data, or information sources which include undefined
or missing data points). The user may control the bin trans-
formation process and also has the option to specify individ-
ual feature weights and class weights as appropriate.

The approach to deriving evidence was illustrated in an
example application of alpine land-cover classification using
the MERCURY@ evidential classification software (Peddle,
1995). Information avai lable from 12 mult isource input varia-
bles comprised of spor imagery, image texture, and geomor-
phometry from a digital terrain model was used in a series of
experiments to test the effect of increasing bin size on classi-
fication accuracy. Classification accuracy increased steadily
frorn a kappa coefficient (x) of 0.5t using no bin transforma-
tion functions, to K 0.84 using a bin size of 19 for each data
feature. The results stabilized at this level using larger bin
sizes, from which it may be concluded that the optimal bin
size in terms of both memorv reouirements and overall clas-
sification Derformance is the-smallest bin size for which the
highest level of classification agreement is attained. In each
test, the bin size was kept constant over the entire data set;

Tnere 4. FrnruRe-Specrrrc Brw Srzes UsEo ro Oarnn tHe HrcHesr LEvEL or
EvIDENTTAL Lnru>CovEn CusstFtcnlorl AcReEvErur or 97.2 prRcenr. Knppn

CoEFFrcrENr 0.90

Feature Bin Size

SPOT Band r
SPOT Band z
SPOT Band 3
Image Texture: Band 1
Image Texture: Band 2
Image Texture: Band 3
Elevation
Aspect
Slope
Down Slope Convexity
Cross SIope Convexity
Relief

however, when the bin size was varied bv feature, a higher
overal l  c lass i f icat ion asreement  of  x  0.90 was achievedlAd-
ditional increases in cLssification agreement are also possi-
ble through the use of individual feature weights, and by
utilizing the class weighting option. These tests illustrate the
utility of the approach taken for representing training knowl-
edge as evidence for input to an evidential classifier, and the
importance of applying bin transformation procedures to
achieve higher levels of classification accuracy for multi-
source data sets. The continued development of improved
procedures for image processing and analysis wil l be vital if
we are to realize the full potential of powerful new computa-
tional techniques for extracting the increasingly rich informa-
tion content available from multisource data. The interface
developed for a Dempster-Shafer formalism and presented
here is one such example.
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