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Modified Highest Confidence First Classification

Paul C. Van Deusen

Abstract

A classification procedure is developed that distinguishes be-
tween pixels that are clearly associated with a given class
versus those where class assignment is uncertain. Alterna-
tively, most commonly used classification algorithms force
each pixel into a single class without regard to certainty. By
classifving pixels in order of certainty and considering spa-
tial context, pixels with weak observational evidence for
classification are prevented from contributing to their neigh-
bor’s decisions. Subsequently, a better decision is made for
the uncertain pixels by considering the previously classified
neighbors. Degrees of certainty measures can assist in later
map accuracy assessment by allowing for stratified sampling
of zones having similar certainty levels.

Introduction

The objective of this work was to develop a classification
procedure that recognizes that pixels have varying degrees of
observational evidence favoring membership in a single
class. A degree of certainty (DOC) measure is defined for each
pixel and utilized in determining the manner and order in
which the pixel is assigned to a class. The pOC is then avail-
able for other uses, such as creation of certainty strata for
map accuracy assessment. Related work (Wood and Foody,
1989; Foody et al., 1992; Trodd et al., 1989) has discussed
utilizing information on strength of class membership de-
rived from maximum-likelihood calculations to identify po-
tentially misclassified cases and for directing ground surveys.

The algorithm developed here is called the modified
highest confidence first (MHCF) procedure, because it is moti-
vated by the highest confidence first (HCF) algorithm of Chou
and Brown (1990). Both HCF and MHCF can be viewed as
modifications of the iterated conditional modes (ICM) proce-
dure developed by Besag (1986). ICM initializes all pixels by
committing them to the class determined by application of
the standard maximum-likelihood (ML) classifier. ML utilizes
observed data associated with each pixel to make the classifi-
cation without reference to information from neighbors. Sub-
sequent passes of ICM utilize neighborhood information
within a Bavesian theoretical framework to refine the classifi-
cation.

Klein and Press (1992) criticize 1CM for its final outcome
being heavily dependent on the initial classification and they
propose modifications to all stages of 1ICM. Likewise, 1CM has
been criticized for the way it handles neighborhood informa-
tion in later stages. Specifically, Owen (1986) noted that if a
pixel has eight A neighbors all with a-posteriori A-probabili-
ties of 0.99, then 1CM handles it the same way as the situa-
tion where three pixels were 0.99 and five were 0.51. The
point of these criticisms is that ICM and ML in their usual
forms fail to consider the level of certainty with which a
pixel is associated with a given class.
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A review is given of the ML and 1CM™ classification algo-
rithms in the next two sections. Then the DOC measure and
the MHCF algorithm are described. After a discussion on
choosing the DOC cutoff value for MHCF and a critique of
MHCF versus HCF, applications are made to classifying a hu-
man face image and a Landsat T™M image.

Maximum-Likelihood Classifier
One of the most widely employed methods for pixel classifi-
cation is the ML procedure. A brief review is given to clarify
the details of the implementation used here. Denote a pixel
location by i and its observed data vector by y, which con-
tains the spectral information for the pixel. The unobserved
class, x,, may be one of K unordered class values. Although a
pixel may contain more than one class in reality, we seek
here a unique assignment to the most likely class.

The ML procedure consists of maximizing the likelihood
function

Livix) = 11 fiy,1x) (1)

which assumes that the observational evidence, y, given x; is
independently distributed for each pixel. If a multivariate
normal distribution is assumed, this is equivalent to mini-
mizing, for each pixel, the function

D(x) = 5 (v, = uee) T, v, — ulx)) + SloglZl (@)

where u(x,) is the mean vector for the class x, and E_ is the
covariance matrix for each class. The mean and covariance
for each class are derived from a reference (training) set of
observations. In the case where each class has the same co-
variance matrix, D(x) is equivalent to linear discriminant
analysis.

Iterated Conditional Modes Classifier

One feature of the standard ML classifier that may be unde-
sirable is that no spatial information is included. In recogni-
tion of this deficiency, Switzer (1980) has developed a
simple modification that incorporates average y values from
neighbors into the ML approach. Haslett (1985) developed a
more formal ML approach to incorporate observed y values of
certain neighbors of pixel i. An approach developed in the
seminal paper of Geman and Geman (1984) utilized Gibbs
distributions within a Bayesian framework to incorporate
spatial information. Besag (1986) developed a procedure that
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is motivated by Geman and Geman's work, but is computa-
tionally more tractable.
Formally, Besag's 10M procedure begins with Bayes rule

plx1y) = Liyv|x)p(x) (3)

where, p(x) represents a priori knowledge about the unobser-
ved true classification, L(v| x) is the likelihood function dis-
cussed above, and p(x|y) is the a posteriori distribution of x
given the observations. The a priori knowledge, p(x), in
Equation 3 is represented by a Markov random field (Mrf)
with a locally dependent conditional distribution (a Gibbs
distribution). Thus, if we let X_, denote the class labels eve-
rywhere except pixel i and let X, be the neighbors of i, we
have

p'{,\'l [ tY,..,J = p[X, | 4\"‘1] {4]

which simply states that the conditional a priori distribution
of the pixel label depends only on the neighboring pixel la-
bels. The neighborhood being considered here consists of the
eight nearest neighbors.

Besag’s ICM procedure is expressed in a form similar to
Equation 3 as

plx v, %) = flv,Ix)plx,| %) (5)

The “hats™ imply the use of estimated class assignments
from the previous iterations in the current iteration of 1CM.
The specific conditional Mrf considered here involves a K-
class distribution with pairwise interaction between neigh-
bors: i.e.,

plx=kl1X;) = exp(cr;_ = Z; Bmu,(_.f,‘) (6)

where B, = B, and u(j) is the number of neighbors with la-
bel (color) j. Besag (1986) demonstrated Equation 6 with a,
and g, being the same for all classes. Thus, «, is absorbed
into the proportionality constant to give the following 1cM
formulation:

Elx) = Dlx) — B ulx) (7)

where D(x) is given in Equation 2. This implementation of
ICM assumes a normal likelihood and a simple pairwise in-
teraction Mrf to describe the @ priori knowledge. The 1M
classification assigns the label to x, that minimizes the en-
ergy E(x). The energy analogy comes from Geman and Ge-
man's (1984) use of simulated annealing to find a maximum
a posteriori solution to Equation 3 (annealing refers to the
schedule for cooling metals to obtain good crystalline struc-
ture).

The method of implementing 1cM used here is to itera-
tively increase g from 0 to 0.5 to 1.0. This initializes the pro-
cedure with the standard ML classifier and no use of spatial
information. As B increases, the spatial information is given
more weight,

Modified HCF Algorithm

Chou and Brown (1990) present HCF as a modification of 1CM.
Rather than force every pixel into a class immediately, HCF
classifies the pixels in order according to a stability measure
that is related to differences of the energy function (Equation
7). MHCF classifies all pixels at once that exceed a user de-
fined DOC cutoff value. Thus, the formation of certainty strata
is more natural with MHCF than with HCF, and MHCF ap-
proaches ICM as the DOC cutoff approaches 0. Likewise, MHCF
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approximates HCF as the DOC cutoff approaches a value large
enough to allow only one pixel to be classified at each itera-
tion. Unfortunately, as discussed below, the HCF procedure is
prone to allowing the more certain classes to dominate the
final results to the point that other classes may be totally
suppressed.

The HCF and MHCF procedures are only meaningful
within a Bayesian context because, without spatial informa-
tion, they would lead to the same result as the ML procedure.
Unlike ICM or ML, HCF and MHCF require a null class into
which all pixels are initially assigned. Pixels in the null
class do not contribute to neighbors decisions, but commit-
ted neighbors help uncertain pixels make their decisions
later in the process.

The MHCF procedure is similar in spirit to HCF, but uses
a slightly different measure of certainty for each pixel, G,
and classifies all pixels with G, > G, where G, is a user de-
fined cutoff value. MHCF is identical to 1ICM when G. = 0.
Consider the sorted energy values (Equation 7) B, ..., E%),
where E', is the minimum and the associated x, value repre-
sents the class with minimum energy. With 1CM, the class as-
signment for pixel i would be determined solely by B, Now
define the DOC measure to be the likelihood ratio

Gr = E‘:!I Ft) E_1J {8]

which by definition has G, 2 0. This is the difference be-
tween the energy of the classes that are closest and second
closest to pixel i. Clearly, the closer G, is to 0, the less cer-
tain the class assignment.

Choosing the Cutoff Value

Selecting the initial G, value needs careful consideration. If
at least one pixel from each class doesn't exceed the G,
value, that class will never appear in the final results. This is
because, when D'* — DIV < (. for the first ML pass of MHCF,
the only way that G, can later be made to exceed G, is based
on neighborhood information. But if class k initially gets no
committed pixels, then clearly no G, value can later exceed
G, based on neighboring class k pixels. Two methods are
given for choosing G,. The first allows the user close control
over how many pixels are classified in the ML pass, and the
second method is based on analvtical considerations.

The first method begins by taking a sample of G, values
from the image to estimate percentiles of the G-distribution.
For example, if a sample of size 1000 is taken and GV, ...,
G represent the ordered G-values, then letting G, = G750
sets the cutoff value at the 75th percentile. This would lead
to approximately 25 percent of the pixels being classified by
the first iteration of MHCF. The B-parameter is set to 0.5 for
the second MHCF iteration and pixels with initial G-values
slightly below G, would have the potential to rise above G,
and be classified based on neighborhood information. This
process continues until the B=1.0 iterations are complete.
The G, value can be moved toward zero in subsequent itera-
tions holding B = 1.0 until all pixels are committed. In the
example applications in the next section, G, initially corre-
sponds to the 30th percentile and is moved to zero with two
intermediate steps: G/2 and G /4. Iteration can continue
with 8 = 1.0 and G, = 0 until no further changes occur. In
practice, this seems to require only one or two iterations.

Now consider the components of the DOC measure:

Dirlk = IB [UI,‘” — ulrli} [g}

where D" and D/® are the ML components and u" and u®

G, =E?— En = D& —
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Figure 1. The green band of the face image.

are the associated counts of neighboring pixels. In the later
stages of MHCF, uncommitted pixels will have D/* = D" so
we can assume that

G,o= —f (u* — u) (10)
Therefore, a pixel with eight neighbors of the same color in
the closest class has G, = *8 and with seven neighbors in
the closest class and one in the second closest has G, = B*(7
— 1). However, pixels with the weakest evidence in favor of
a class might have u/'' — u/® = 1, so setting G, = §,,,.*1.0
could be considered a minimum starting value, where 8, =
1.0 is suggested here. This will allow pixels with quite weak
observational and spatial evidence to commit in the final
stages of MHCF. Then B could be moved towards zero with
two intermediate steps, say G, = 0.5 and G, = 0.25. Any pix-
els that haven't committed before G. = 0 can be considered
very uncertain indeed.

The second method for choosing G, follows from the
above analytical discussions. Simply set G, = B, initially
and in the final iterations move G, toward zero according to
the schedule discussed above. The first method allows the
user complete control and for the opportunity to locate the
pixels with the highest boc values. The second method is
more expedient and requires no user input,

To summarize, there are two major differences between
HCF and MHCF. First, the G, values for committed pixels in
HCF are based on the difference between the current class as-
signment and the next closest class, rather than on the differ-
ence between the two closest classes as with MHCF. However,
in most cases these will be the same. The second difference
is more substantial and is related to choosing the cutoff
value, G,. HCF always classifies the pixel with the largest G,
value, which leads to the possibility that some classes may
never appear in the final result. Heuristically, this is because
the most certain classes commit first and then have an undue
spatial influence on uncommitted and less certain neighbors.
As discussed above, the MHCF user controls this undesirable
situation when selecting a G, value. MHCF would be essen-
tially identical to HCF if at each iteration G, were set equal to
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the maximum G, value so that only one pixel could commit.
This extreme situation would clearly be undesirable, and this
is why the HCF algorithm is not compared in the examples
below.

Example Applications

Comparing alternative classification procedures in a mean-
ingful way is difficult. Image summarization is more subtle
than it first appears, as Ripley (1986) demonstrates with two
classifications of heather that visually appear quite different,
but are indistinguishable according to several standard sum-
mary statistics. Because of this difficulty, the first application
uses a face as opposed to a natural scene because we know
what a face is supposed to look like and can therefore judge
the results of the classification algorithms quite easily. The
second application uses Landsat T™™ data of a natural scene.

The specific implementation of MHCF recommended and
used here is now outlined. First. the user selects a cutoff
value, G, as discussed above. For both applications, G, cor-
responds to the 30th percentile so that approximately 70 per-
cent of the pixels are classified in the first ML pass of MHCF.
Then the following steps are taken: (1) Initialize the classifi-
cation by accepting the ML results for all pixels where G, 2
G.: (2) accept the ICM results with g = 0.5 for all pixels with
recomputed G's such that G, 2 G; (3) repeat step 2 with g =
1.0; and (4) repeat step 2 with 8 = 1.0 and with each of
three G, values, i.e., G/2, G/4, G = 0. This particular im-
plementation of MHCF assures that all pixels will be classi-
fied and seems to work well, but it is by no means the only
possible implementation. One could iterate to convergence at
each step and move G, toward zero either more quickly or
more slowly.

The €M implementation used here involves just three it-
erations. First, initialize with the ML classification. Second,
implement 1CM as defined in Equation 7 with g = 0.5. Third,
iterate on the results of the second step with g = 1.0. Soft-
ware for these applications was programmed with MATLAB®
(The Math Works, Inc., Natick, Mass.).

Application to a Face

For the first application, the MHCF procedure is compared to
ML and 1cM by classifying a human face picture (Figure 1)
into four classes: hair, background, skin, and eves, which are
denoted as classes 1, 2, 3, and 4. This image was captured
with a digital camera in 24-bit RGB format consisting of 595
rows and 800 columns of pixels with the green band dis-
playved in Figure 1.

The ML result (Figure 2a) can be compared with 1CM
(Figure 2b) and MHCF (Figure 2d). The unclassified pixels
from the first MHCF pass are shown in white (Figure 2c). No-
tice that the “eye” class is rather generously distributed
around the perimeter of the face for all procedures. This is
because the training data for this class were obtained by
drawing a polygon around the eye to include the pupil and
the white of the eve, which leads to a highly variable class.
The “hair” class is also rather variable. The unclassified pix-
els (Figure 2¢) show much of the uncertainty to be in the
transition zones between the hair and background classes
and the skin and erroneous eve class bordering the face.
Thus, although the DOC measure has correctly picked up
some problem areas, it has missed much of the erroneous
“eye'" area.

The DOC G-values (Figure 3b) are shown over their asso-
ciated sample number. A 1 percent sample was taken from
the image systematically within rows with random starts for
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classification.

(c) (d)
Figure 2. (a) Maximum-likelihood classification of the face image into four classes: hair, background, skin, and eyes; (b) ICM
classification; (c) Result of the first pass of MHCF showing the pixels in white that did not exceed the g-cutoff value; (d) MHCF

each new row. The corresponding G, was slightly greater
than 2.0 and was quite consistent over repeated 1 percent
samples. The G-value plot (Figure 3b) gives an indication of
the overall distribution of G-values as well as the spatial dis-
tribution, because they are obtained by row scanning the im-
age beginning in row 1. The number of pixels, by class, that
have G-values greater than G, (significant G-values) in the
sample (Figure 3a) is also important to consider. As stated
above, there must be some pixels with significant G-values in
each class before MHCF begins, or that class will not appear
in the final result. This restriction places some limits on the
choice of G,.. With this particular example, letting G, corre-
spond to the 50th percentile left none of the hair class signif-
icant.

Table 1 shows which classes made up the G-values of
the 1 percent sample. The rows are the closest class and the
columns represent the second closest class. For example, 569
pixels were closest to the hair class and second closest to the
background class. The diagonals of Table 1 must be empty
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by definition. Table 2 gives the same information for the pix-
els that exceeded G,. Tables 1 and 2 indicate which classes
are likely to be confused, but should not be interpreted in
the same way as an actual confusion matrix. Because skin
only appears as the second closest class to the eve class, one
can assume that the skin spectral emissions make it reasona-
bly distinct. On the contrary, the eye class appears fre-
quently as second closest to every other class. Thus, one can
assume that the eye class will be frequently confused, and
this is evident in the final classification (Figure 2).

The ML classification (Figure 2a) shows its characteristic
salt-and-pepper appearance and shows the greatest error in
the eye class. 1ICM (Figure 2b) smooths over much of the salt-
and-pepper appearance from ML, but otherwise is quite simi-
lar to ML. The first iteration of MHCF (Figure 2c) indicates
uncertainty in the hair class and transition zones between
face and hair. The final MHCF result (Figure 2d) has more
skin in the chin area correctly classified than do either ML or
ICM. This is due to the fact that these areas were initially left
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unclassified and benefitted by neighboring pixels that were
correctly classified as skin. Otherwise, there appears to be no
major difference between the results of MHCF and either ML
or ICM.

Application to TM Data

A Landsat Thematic Mapper image from September, 1984
(Figure 4) of the area around Bay St. Louis, Mississippi is
put into four classes for this example: (1) water, (2) marsh,
(3) forest, and (4) non-forest. TM bands 1 to 4 are used for
this analysis, and Figure 4 is based on a composite of bands
4, 3, and 1. The results of the classification by ML, ICM, and
MHCF are given in Figure 5. The ML classification (Figure 5a)
exhibits somewhat of a salt-and-pepper appearance, although
the bay and the Jourdan River that enters it are classified
with little error. The 1CM classification (Figure 5b) has a

1000 1

Count

500 7

Class

(a)

5180
© 100

50 I

I

] 100 BRRAA RN il Ll

2000 2500 3000 3500 4000 4500 S000
Sampla Number

(b)

Figure 3. (a) The number of pixels by class in a 1 percent
sample of the Kim image that exceeded the g-cutoff
value. Class 1 is hair, class 2 is background, class 3 is
skin, class 4 is eyes; (b) The degree of confidence meas-
ures from a 1 percent sample of the face image.

l 1000 1

TaBLE 1. ELEMENT R,C SHOwS THE NumBer oF TIMES CLass R Was CLOSEST
AND CLASS © WAs SeconD CLOSEST TO EACH PIXEL IN THE INITIAL 1 PERCENT
SAMPLE FOR APPLICATION 1.

Hair Background Skin Eye
Hair 0 569 0 869
Background 171 0 0 1292
Skin 0 51 0 1119
Eve 263 253 173 0

TABLE 2. OnLY THE PIXELS FROM TABLE 1 THAT Exceep G, ARE INCLUDED

Hair Background Skin Eve
Hair 0 253 0 357
Background 60 0 0 1218
Skin 0 51 0 947
Eye 197 1495 56 0
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Figure 4. Landsat TM image of Bay St. Louis, Mississippi
derived from bands 1, 3, and 4.

much smoother appearance and has clarified some of the
well defined components of the image. For example, Inter-
state 10 runs diagonally through the scene north of the bay
and is better defined by 1M than by ML.

The pixels remaining unclassified after the first MHCF
pass (Figure 5¢) are shown in white and include much of the
water area. However, unlike with the first example, ML cor-
rectly classified most of these uncertain pixels so that the fi-
nal MHCF (Figure 5d) result shows fewer noticeable
differences from the ML result. The final MHCF result is some-
what smoother than the 1CM result, which may be due as
much to the additional iterations involved as to the fact that
only the most certain pixels can commit after each iteration.
icM would also result in some further smoothing if another
iteration were allowed with g = 1.

Tables 3 and 4 show the closest and second closest clas-
ses for the sample pixels for Application 2. Table 3 indicates
that water would most frequently have marsh as the second
closest class with 645 entries. However, marsh only had wa-
ter as the second closest class 246 times. The most confused
class appears to be non-forest, which is second closest to for-
est 1006 times and has all other classes as second closest a
number of times.

Figure 6a shows that all classes will be present after the
first iteration of MHCF, which is necessary for them to appear
in the final result. Figure 6b shows the distribution of the G,
values for the initial 1 percent sample. In this case, G, =
0.48, which indicates that many of the G, values were quite
small.

Summary and Conclusions

A modified highest confidence first classifier has been devel-
oped. The MHCF procedure is an extension of the ICM proce-
dure of Besag (1986), and is the same as ICM when the cutoff
value (G)) is set to zero. The user of MHCF must select a G,
value that allows commitment of some pixels to each class
in the first iteration of MHCF. Suggestions were given for do-
ing this along with demonstrations of diagnostic aids in the
example applications. Spatial information is incorporated in
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Figure 5. (a) Maximum-likelihood classification of the TM image into four classes: water, marsh, forest, and non-forest; (b) Icm
classification; (c) Result of the first pass of MHCF showing the pixels in white that did not exceed the g-cutoff value; (d) MHCF
classification.

MHCF after the first iteration to allow previously classified
pixels to influence neighbors decisions.

The motivation for leaving the most uncertain pixels un-
classified in early iterations is clear; only the more certain
pixels should be initially influencing the decisions of neigh-
bors. However, the choice of G for MHCF allows the user to
prevent highly certain classes from completelv overwhelming

TaBLe 3. ELEMENT R,C SHOWS THE NumBER OF TIMES CLASS R Was CLOSEST
AND CLass ¢ Was SeconD CLOSEST TO EACH PIXEL IN THE INITIAL 1 PERCEPT

less certain classes as may happen with the HCF procedure of
Chou and Brown (1990). In fact, MHCF would be nearly
equivalent to HCF if G, were reset after each iteration to be
large enough to allow only one pixel to be classified, but it
was shown that this would be generally undesirable.

MHCF is also very amenable to the formation of strata in-
dicating the certainty of classification. These strata could be
used to guide sampling for the determination of map accu-
racy. One approach to strata formation would be to choose

SAMPLE FOR APPLICATION 2 TaBLE 4. OnLy THE PIXELS FROM TABLE 3 THAT ExcEED G, ARE INCLUDED
Water Marsh Forest Non-Forest Water Marsh Forest Non-Forest
Water 0 645 0 48 Water 0 341 0 42
Marsh 246 0 2 48 Marsh 126 0 0 13
Forest 0 11 0 1006 Forest 0 51 0 844
Non-Forest 134 137 421 0 Non-Forest 115 109 300 0
424 PE&RS
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Figure 6. (a) The number of pixels by class in a 1 percent
sample of the T™M image that exceeded the g-cutoff value.
Class 1 is water, class 2 is marsh, class 3 is forest,
class 4 is non-forest; (b) The degree of confidence meas-
ures from a 1 percent sample of the TM image.

percentile-based strata boundaries. For example, pixels
having G, values greater than or equal to the 75th percentile
could go in the first strata, pixels with G, between the 50th
and 75th percentiles in the second strata, etc. Another ap-
proach would be to have strata correspond to the iteration
when the pixel was first committed to a class.

Classification results are also heavily influenced by the
choice of training data. The act of selecting the G, value and
being made aware of the location of uncertain pixels may
make the user realize that the training data for a particular
class are inadequate and revisit this stage of the process. The
pDOC measures defined by Equation 8 can also be viewed as
useful diagnostic aids like the probability measures dis-
cussed in Foody et al. (1992), but there is only one DOC
value per pixel rather than K probability measures to store.
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