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Abstract
A classification procedure is developed that distinguishes be-
tween pixels that are clearly associated with a given class
versus those where class assignment is uncertain. Alterna-
tively, most commonly used classification algorithms force
each pixel into a single class without regard to certainty. By
classifying pixels in order of certainty and considering spa'
tial context, pixels with weak observational evidence for
classification are prevented from contributing to their neigh-
bor's decisions. Subsequently, a better decision is made for
the uncertain pixels by considering the previously classified
neighbors. Degrees of certainty measures can assist in Later
mop accuracy assessment by allowing for stratified sampling
of zones hoving similor certointy levels.

Introduction
The obiective of this work was to develop a classification
procedure that recognizes that pixels hav:e varying degrees of
observational evidence favoring membership in a single
class. A degree of certainty (noc) measure is defined for each
pixel and utilized in determining the manner and order in
which the pixel is assigned to a i lass. The ooc is then avai l-
able for other uses, such as creation of certainty strata for
map accuracy assessment. Related work (Wood and Foody,
1989; Foody et al. ,  1gg2: Trodd ef o1., rsao) has discussed
utilizing information on strength of class membership de-
rived from maximum-likelihood calculations to identify po-
tentially misclassified cases and for directing ground surveys.

The algorithm developed here is called the modified
highest confidence first (tvlHcr) procedure, because it is moti-
vated by the highest confidence first (scr') algorithm of Chou
and Brown (1s90). Both HCF and uucp can be viewed as
modif icat ions of the i terated condit ional modes (rcv) proce-
dure developed by Besag (1986). Ictr. l  ini t ial izes al l  pixels by
committing them to the class determined by application of
the standard maximum-likelihood (vtt ) classifier. ML utilizes
observed data associated with each pixel to make the classifi-
cation without reference to information from neighbors. Sub-
sequent passes of tcl'a utilize neighborhood information
within a Bayesian theoretical framework to refine the classifi-
cation.

Klein and Press (t0Sz) criticize ICM for its final outcome
being heavily dependent on the initial classification and they
propose modifications to all stages of lctr,l. Likewise, ICM has
been criticized for the way it handles neighborhood informa-
t ion in later stages. Specif ical ly, Owen (t9ao) noted that i f  a
pixel has eight A neighbors all with a-posteriori A-probabili-
ties of 0.99, then Ictvt handles it the same way as the situa-
tion where three pixels were 0.99 and five were 0.51. The
ooint of these criticisms is that ICM and ML in their usual
iorms fail to consider the level of certainty with which a
pixel is associated with a given class.
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A review is given of the ut and tctr,l classification algo-
rithms in the next two sections. Then the DoC measure and

the MHCF algorithm are described. After a discussion on
choosing the DoC cutoff value for tvtHcp and a critique of
MHCF velsus HCF, applications are made to classifying a hu-
man face image and a Landsat TM image.

Maximum-Likelihood Classif iet
One of the most widely employed methods for pixel classifi-
cation is the ML procedure. A brief review is given to clarify
the details of the implementation used here. Denote a pixel
location by i and its^observed data vector by y', which con-
tains the spectral information for the pixel. The unobserved
class, x,, may be one of K unordered Class values. Although a
pixel may contain more than one class in reality, we seek
here a unique assignment to the most likely class'

The vi procedure consists of maximizing the likelihood
function

rI
L ly tx ) :  l l  f l y , l x , )

i =  I

which assumes that the observational evidence, y,, given x, is
indeoendentlv distributed for each pixel. If a multivariate
nor-"l distribution is assumed, thii is equivalent to mini-
mizing, for each pixel, the function

u(x , ) ) '  I , '  ( y ,  -  u (x , ) )  +  1  tog  t I ,  t  Q)

where u(x,) is the mean vector for the class x,, and I, is the
covariance matrix for each class. The mean and covariance
for each class are derived from a reference (training) set of
observations. In the case where each class has the same co-
variance matrix, D(x,) is equivalent to linear discriminant
analysis.

Iterated Conditional Modes Classifier
One feature of the standard vI- classifier that may be unde-
sirable is that no spatial information is included. In recogni-
t ion of this deficiency, Switzer (1s80) has developed a
simple modification that incorporates average y values from
neighbors into the vL approach. Haslett ( t9as) developed a
moie formal nar, approach to incorporate observed y values of
certain neighbors of pixel i. An approach developed in the
seminal paper of Geman and Geman (1984) ut i l ized Gibbs
distributions within a Bayesian framework to incorporate
spatial information. Besag (1986) developed a procedure that

( 1 )

1 . ,
D(x , )  :  

t l y , -
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is motivated by Geman and Geman's work, but is computa-
tionally more tractable.

Formally, Besag's Ictr.l procedure begins with Bayes rule

p (x l y ) .  L ( y l x )p (x )  (3 )

where, p(x) represenls a priori knowledge about the unobser-
ved true classification, L(ylx) is the l ikelihood function dis-
cussed above, and p(x lyl is the a posteriori distribution of x
given the observations. The o priori knowledge, p(x), in
Equation 3 is represented by a Markov random field (Mrfl
with a locally dependent conditional distribution (a Gibbs
distribution). Thus, if we let d, denote the class labels eve-
rywhere except pixel i and let X,, be the neighbors of i, we
have

p(x,l X,,,) : p(x' lX,,) (4)

which simply states that the conditional a priori distribution
of _the pixel label depends only on the neighboring pixel la-
bels. The neighborhood being considered [ere consists of the
eight nearest neighbors.

Besag's ICM procedure is expressed in a form similar to
Equation 3 as

P(x'lY' k,,,) - f(y,lx,)p(x'l-t,,) (5)

The "hats" imply the use of estimated class assignments
from the previous iterations in the current iteration of tctr,l.
The specific conditional Mrf considered here involves a K-
class distribution with pairwise interaction between neigh-
bors:  i .e . ,

p(x, :k l  X. , ,1  ,  
"*p(o^ 

|  B  ̂ r , ( i l )  (61

where B,. = Fr; and u,(l is the number of neighbors with la-
bel (color) i. Besag (1986) demonstrated Equation 6 with a*
and B,^ being the same for all classes. Thus, a* is absorbed
into the proportionality constant to give the following ICM
formulation:

E ( x , ) : D ( x , ) - F u ( x , )  ( z )

where D(x,) is given in Equation 2. This implementation of
I(lM assumes a normal i ikelihood and a simple pairwise in-
teraction Mrf to describe the a priori knowledge. The rcrrl
classification assigns the label to x, that minimizes the en-
ergy E(x). The energy analogy comes from Geman and Ge-
man's (t98a) use of simr.rlated annealine to find a maximum
a posteriori solution to Equation 3 (annealing refers to the
schedule for cooling metals to obtain good crystall ine struc-
ture l.

The method of implementing ICM used here is to itera-
tively increase B from 0 to 0.5 to 1.0. This init ializes the pro-
cedure with the standard ML classifier and no use of soatial
information. As B increases, the spatial information is given
more weight.

Modified HCF Algorithm
Chou and Brown (1990) present HCF as a modif icat ion of rcv.
Rather than force everv pixel into a class immediately, uCn
c-lassifies the pixels in-oider according to a stability ,i'reur.r.ru
that is related to differences of the energy function (Equation
7), MHCF classif ies al l  pixels at once that exceed a user de-
f ined ooc cutoff value. Thus, the formation of certainty strata
is more natural with MHCF than with HCF, and MHCF ap-
proaches ICM as the IOC cutoff approaches 0. Likewise, HaHcp
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approximates HCF as the DOC cutoff approaches a value large
enough to allow only one pixel to be Classified at each iteri-
tion. Unfortunately, as discussed below, the HCF procedure is
prone to allowing the more certain classes to dominate the
final results to the point that other classes may be totally
suppressed.

The HCF and Mucp procedures are onlv meanineful
within a Bayesian context because. withoui spatjal i"nfo.rnu-
tion, they would lead to the same result as ttre ur procedure.
Unlike ICM or ML, HCF and lrHcr require a null claJs into
which all pixels are initially assigned. pixels in the null
class do not contr ibute to neighbors decisions, but commit-
ted neighbors help uncertain pixels make their decisions
later in the process.

The MHCF procedure is similar in spir i t  to HCF, but uses
a slightly different measure of certainty for each pixel, G,,
and c lass i f ies  a l l  p ixe ls  w i th  G,  >  G, .  where  G,  i s -a  n r " t  du-
fined cutoff value. MHCF is identical to ICM when G" : 0.
Consider the sorted energy values (Equation 7) E,), ,  . . . ,  E*),
whereS'),  js the minimum and the associated x, value repre-
sents the class with minimum energy. With rCM, the class as-
signment for pixel i would be determined solely by 81t,. Now
define the DOC measure to be the likelihood ratio 

-

G, : gtzt - Brtt (B)

which by definition has G, > 0. This is the difference be-
tween the energy of the classes that are closest and second
closest to pixel i .  Clearly, the closer G, is to 0, the less cer-
tain the class assignment.

Choosing the Gutoff Value
Selecting the initial G,. value needs careful consideration. If
at least one pirel from each class doesn't  exceed the G,.
value, that class will never appear in the final results. This is
because, when D,tz) - D.tr) < G" for the first ML pass of MHCr.
the only way that G, can later be made to exceed G. is based
on neighborhood information. But if class k initiallv sets no
committed pixels, then clearly no G, value can latei &ceed
G,. based on neighboring class k pixels. Two methods are
given for choosing G,. The first allows the user close control
over how many pixels are classif ied in the ul pass, and the
second method is based on analvt ical consideri t ions.

The first method begins by iaking a sample of G, values
from the image to estimate percentilei of the G-distribution.
For example, i f  a sample ofsize 1000 is taken and GI'),  . . . ,
G('nn") represent the ordered G-values, then letting G. : Qrzsol
sets the cutoff value at the Zbth percentile. This would lead
to  approx imate ly  25  percent  o f  the  p ixe ls  be ing  c lass i f ied  by
the lirst iteration of rragcp. The B-parameter is set to 0.5 for
the second MHCF iteration and piiels with initial G-values
slightly below G. would have the potential to rise above G,.
and be classified based on neighborhood information. This
process continues unti l  the F:1.0 i terat ions are complete.
The G. value can be moved toward zero in subsequent itera-
t ions holding P 

-- 1.O unti l  al l  pixels are committed. In the
example applications in the next section, G, initially corre-
sponds to the 30th percenti le and is moved to zero with two
intermediate steps: G,/2 and G"l4. I terat ion can continue
with B: 1.0 and G, :  O unti l  no further chanses occur. In
practice, this seems to require only one or twJiterat ions.

Now consider the componenti  of the DoC measure:

G ,  : f i t z t - E o ) : D t 2 ) - D t t )  - B ( u ! ' ? t  - p i t l ;  ( 9 )

where D-(t l  and Dtzl are the ML components and y,(r) 6nd y.tzt
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Figure 1. The green band of the face image.

are the associated counts of neighboring pixels. In the later
stages of MHCF, uncommitted pixels will have D-('r - f'{rr 36
we can assume that

G, :  -F  ( u ! ' ? t  -  p t l t ) (10)

Therefore, a pixel with eight neighbors of the same color in
the closest class has G, :  B*8 and with seven neighbors in
the closest class and one in the second closest has G, - B*(z
- 1). However, pixels with the weakest evidence in favor of
a class might have u-(1) - u-tzl  :  1, so sett ing G. - B,"".*1.0
could be considered a minimum starting value, where p,,,,,- :

1.0 is suggested here. This wil l  al low pixels with quite weak
observational and spatial evidence to commit in the final
stages of MHCF. Then B could be moved towards zero with
two intermediate steps, say G. :  0.5 and G, :  0.25. Any pix-
els that haven't committed before G, : 0 can be considered
very uncertain indeed.

The second method for choosing G, follows from the
above analytical discussions. Simply set G,. : B-"" initially
and in the final iterations move G,. toward zero according to
the schedule discussed above. The first method allows the
user complete control and for the opportunity to locate the
pixels with the highest Doc values. The second method is
more expedient and requires no user input.

To summarize, there are two maior differences between
HCF and MHCF. First, the G, values for committed pixels in
HCF are based on the difference between the current class as-
signment and the next closest class, rather than on the differ-
ence between the two closest classes as with MHCF. However,
in most cases these wil l  be the same. The second dif ference
is more substantial and is related to choosing the cutoff
value, G,.. HCF always classifies the pixel with the largest G,
value, which leads to the possibi l i ty that some classes may
never appear in the f inal result.  Heurist ical ly, this is because
the most certain classes commit first and then have an undue
spatial influence on uncommitted and less certain neighbors.
As discussed above, the MHCF user controls this undesirable
situation when selecting a G" value. MHCF would be essen-
tially identical to HCF if at each iteration G. were set equal to
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the maximum G, value so that only one pixel could commit.
This extreme situation would clearly be undesirable, and this
is why the HCF algorithm is not compared in the examples
below.

Example Applications
Comparing alternative classification procedures in a mean-
ingful way is difficult. Image summarization is more subtle
thin it first appears, as Ripley (roeo) demonstrates with two
classificationi bf heather that visually appear quite different,

but are indistinguishable according to several standard sum-

marv statistics. Because of this difficulty, the first application
useJ a face as opposed to a natural scene because we know

what a face is supposed to look like and can therefore iudge
the results of the classification algorithms quite easily. The

second application uses Landsat ttvl data of a natural scene.

The ipecific implementation of Iragcp recommended and

used here is now outlined. First, the user selects a cutoff

value, G., as discussed above. For both appl icat ions, G,'  cor-
responds to the 30th percentile so that approximately 70 per-

ce.rt of the pixels are classified in the first ML pass of rraucr'.
Then the following steps are taken: (1) Initialize the classifi-

cation by accepting the ML results for all pixels where G, )

G,; (2) aicept ihe rcrra results with B: 0.5 for al l  pixels with

recomputed G,'s such that G, > G.; (3) repeat step 2 with B :

r.O; and (4) repeat step 2 with B 
-- 1.0 and with each of

three G. valuei,  i .e.,  G,12, G,14, G,: 0. This part icular im-
plementation of trlricr assures that all pixels will be classi-

hed and seems to work well, but it is by no means the only

possible implementation. One could iterate to convergence at

each step and move G. toward zero either more quickly or

more slowlv.
The ICM implementation used here involves just three- it-

erations. First, initialize with the ML classification. Second,
implement ICM as defined in Equation 7 with p : 0.5.Third'
i teiate on the results of the second step with F: 1.0. Soft-
ware for these applications was programmed with MATLAB@
(The Math Works, Inc., Natick, Mass.).

Application to a Face
For the first application, the MHCF procedure is compared to
tuL and ICM by classifying a human face picture (Figure 1)

into four classes: hair, background, skin, and eyes, which are

denoted as classes 1,,2,3, and 4. This image was captured
with a digital camera in 24-bit RGB format consisting of sgs

rows and 800 columns of pixels with the green band dis-
played in Figure 1.

The ML result (Figure 2a) can be compared with ICM
(Figure 2b) and MHCF (Figure 2d). The unclassified pixels
from the first MHCF pass are shown in white (Figure 2c). No-

tice that the "eye" class is rather generously distributed
around the perimeter of the face for all procedures. This is

because the training data for this class were obtained by

drawing a polygon around the eye to include the pupil and

the while of the eye, which leads to a highly variable class.
The "hair" class is also rather variable. The unclassified pix-

els (Figure 2c) show much of the uncertainty to be in the

transition zones between the hair and background classes
and the skin and erroneous eye class bordering the face.
Thus, although the noc measure has correctly picked up

some problem areas, i t  has missed much of the erroneous
"eye" area.

The DoC G-values (Figure 3b) are shown over their asso-
ciated sample number. A 1 percent sample was taken from
the imase ivstematicallv within rows with random starts for



VIEWED ARI ICTE

(c)  (d)
Figure 2. (a) Maximum-likelihood classification of the face image into four classes: hair, backgiolnd, skin, and eyes; (b) rcM
classification; (c) Result of the first pass of MHCF showing the pixels in white that did not exceed the g-cutoff value; (d) wHcr
c lass i f icat ion.

each new row. The corresponding G, was slightly greater
than 2.O and was quite consistent over repeated 1 percent
samples. The G-value plot (Figure 3b) gives an indication of
the overall distribution of G-values as weli as the spatial dis-
tr ibution, because they are obtained by row scanning the im-
age beginning in row 1. The nr,rmber of pixels, by class, that
have G-values greater than G, (significant G-values) in the
sample (Figure 3a) is also important to consider. As stated
above, there must be some pixels with signif icant G-values in
each class before Ir,tgcp begins, or that class will not appear
in the f inal result.  This restr ict ion olaces some l imits on the
choice of G,. With this part icular example, lett ing G,. corre-
t:"T1 ," the 50th percenti le left  none of the hair class signif-

Table 1 shows which classes made uo the G-values of
the 1 percent sample. The rows are the cLosest class and the
columns represent the second closest class. For example, 569
pixels were closest to the hair class and second closest to the
Lackground class. The diagonals of Table 1 must be empty
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by definition. Table 2 gives the same information for the pix-
els that exceeded G,..  Tables 1 and 2 indicate which classes
are l ikely to be confused, but should not be interpreted in
the same way as an actual confusion matrix. Because skin
only appears as the second closest class to the eye class, one
can assume that the skin spectral emissions make i t  reasona-
bly dist inct. On the contraiy. the eye class appears t ie-
quently as second closest to everv other class. Thus, one can
assume that the eye class wil l  be frequentlv confused, and
this is evident in the f inal classif icat ion (Figure 2).

The MI- classif lcat ion (Figure 2a) shows i ts characterist ic
salt-and-pepper appearance and shows the greatest error in
the eye class. ICM (Figure 2b) smooths over much of the salt-
and-pepper appearance from ML, br-rt otherwise is quite simi-
lar to tr,lL. The first iteration of vHcR (Figure 2c) indicates
uncertainty in the hair class and transit ion zones between
face and hair. The final vucr result (Figure 2d) has more
skin in the chin area correctlv classif ied than do either ML or
Ictr,,t. This is due to the fact that these areas were initially left
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unclassified and benefitted by neighboring pixels that were
correctly classified as skin. Otherwise, there appears to be no
maior difference between the results of uHcr and either ML
oI ICM,

Application to TM Data
A Landsat Thematic Mapper image from September, 1984
(Figure 4) of the area around Bay St. Louis, Mississippi is
put into four classes for this example: (1) water, (2) marsh,
(3) forest, and (a) non-forest. Ttll bands 1 to 4 are used for
this analysis, and Figure + is based on a composite of bands
4, 3, and 1. The results of the classification by ML, ICM, and
MHCF are given in Figure 5. The tvtL classification (Figure 5a)
exhibits somewhat of a salt-and-pepper appearance, although
the bay and the Jourdan River that enters it are classified
with little error. The ICM classification (Figure 5b) has a

TneLe 1. ErrvErur R,c Sxows rHe NuMesn or TtvEs Cuss R W,qs Closrsr
nruo Cuss c Wns Secono Crosesr ro encs Ptxer tN tue lNtrnL 1 PERceNr

SnvprE ron APPLTCATToN 1.

Hair Background Skin Eye

Figure 4. Landsat TM image of Bay St. Louis, Mississippi
derived from bands 1, 3, and 4.

Tnale 2. Or.rrv rnE PrxELs FRoM TnerE 1 rnar ExceEo G. Ane lNct-uoro

Hair Background Skin Eye

much smoother appearance and has clarified some of the
well defined components of the image. For example, Inter-
state 10 runs diagonally through the scene north of the bay

and is better defined by tclra than by trlr,.
The pixels remaining unclassified after the first MHCF

pass (Figure 5c) are shor.in in white and include much of the
water area. However, unlike with the first example, ML cor-
rectly classified most of these uncertain pixels so that the fi-
nal Iragcr' (Figure 5d) result shows fewer noticeable
differences from the ML result. The final MHCF result is some-
what smoother than the ICM result, which may be due as
much to the additional iterations involved as to the fact that
onlv the most certain pixeis can commit after each iteration.
ICu would also result in some further smoothing if another
iteration were allowed with B : 1.

Tables 3 and 4 show the closest and second closest clas-
ses for the sample pixels for Application 2. Table 3 indicates
that water would most frequently have marsh as the second

closest class with 645 entries. However, marsh only had wa-

ter as the second closest class 246 t imes. The most confused
class appears to be non-forest, which is second closest to for-
est 1006 t imes and has al l  other classes as second closest a
number of t imes.

Figure 6a shows that all classes will be present after the
first iteration of tvlHcp, which is necessary for them to appear
in the final result. Figure 6b shows the distribution of the G,
values for the initial t percent sample. In this case, G, :

0.48, which indicates that many of the G, values were quite
small .

Summary and Conclusions
A modified highest confidence first classifier has been devel-
oped. The MHCF procedure is an extension of the ICM proce--

dure of Besag (198G), and is the same as ICM when the cutoff
value (G,.) is set to zero. The user of MHCF must select a G.
value that allows commitment of some pixels to each class
in the first iteration of uHcp. Suggestions were given for do-
ing this along with demonstrations of diagnostic aids in the
example applications. Spatial information is incorporated in
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Figure 3. (a) The number of pixels by class in a 1 percent
sample of the Kim image that exceeded the g-cutoff
va lue.  Class 1 is  hai r ,  c lass 2 is  background,  c lass 3 is
skin, class 4 is eyes; (b) The degree of confidence meas-
ures from a 1 percent sample of the face image.
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Figure 5. (a) Maximum-likelihood classification of the TN4 image into four classes: water, marsh, forest, and non-forest; (b) tcvt
classification; (c) Result of the first pass of vHcr showing the pixels in white that did not exceed the g-cutoff value; (d) tviHcr
c lass i f icat ion.

MHCr after the f irst i terat ion to al low previously classif ied
pixels to inf luence neighbors decisions.

Tl.re motivation for leaving the most uncertain pixels un-
classif ied in early i terat ions is clear; only the more certain
pixels should be init ial ly inl luencing the decisions of neigh-
bors. However, the choice of G, for tutt(;r '  al lows the user to
prevent highly certain classes from completelv overwhelming

TneLE 3. ELeverur R.c SHows rHE NUMBER or Trvrs Crnss R Wls Crosrsr
AND CLASS c Wns Secoro Crosrsr ro Encu Prxer rru rHe lNrrrnL 1 Pencepr

SAMPLE FoR AppLrclrrot 2

less certain classes as may happen with the HCF procedure of
Chou and Brown (1990). In fact, UHCF would be nearly
equivalent to HCF if G, rn,ere reset afler each iteration to be
large enough to al low only one pixel to be classif ied, but i t
was shown that this would be general ly r-rndesirable.

MH(IF is also verv amenable to the formation of strata in-
dicating the certainty of classif icat ion. These strata could be
used to guide sampling for the determination of map accu-
racy. One approach to strata formation would be to choose

TnerE 4. Orurv rHE PrxELs rRou TABLE 3 IHAT ExcEED G. ARe lrucruoro
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Figure 6. (a) The number of pixels by class in a 1 percent
sample of the TM image that exceeded the g-cutoff value.
Class 1is water, class 2 is marsh, class 3 is forest,
class 4 is non-forest; (b) The degree of confidence meas-
ures from a 1 percent sample of the TM image.
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percentile-based strata boundaries. For example, pixels
having G, values greater than or equal to the 75th percentile
could go in the first strata, pixels with G, between the 50th
and 75th percentiles in the second strata, etc. Another ap-
proach would be to have strata correspond to the iteration
when the oixel was first committed to a class.

Classihcation results are also heavily influenced by the
choice of training data. The act of selecting the G. value and
being made aware of the location of uncertain pixels may
make the user realize that the training data for a particular
class are inadequate and revisit this stage of the process. The
Doc measures defined by Equation B can also be viewed as
useful diagnostic aids like the probability measures dis-
cussed in Foody et al. (1's92), but there is only one Doc
value per pixel rather than K probability measures to store.
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