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Multidate SAR/TM Synergism for
Crop Classification in Western Canada

B. Brisco and R. J. Brown

Abstract

Multidate synthetic aperture radar (SAR) and Thematic Map-
per (T™) visible and near-infrared (VNIR) data were evaluated
for classifying crops frequently grown in western Canada.
The VNIR data were superior to the SAR data for single date
classifications due to the multispectral information content.
Multidate classifications with SAR data improved classifica-
tion accuracy from 30 to 74 percent although multidate VNIR
produced the highest single sensor result of 90 percent cor-
rect classification. This was slightly improved to 92 percent
by including the SAR data with the VNIR data. However,
transformed divergence statistics show that the SAR and VNIR
channels are both found in the top eight channels, and, in-
deed, the best two SAR channels and the best two VNIR chan-
nels, based on their transformed divergence statistics,
produced an overall classification accuracy of 85 percent.
Furthermore, the May ™ data combined with the SAR data
yielded an 87 percent correct classification because the grain
and alfalfa classes were much better separated when VNIR
data was combined with SAR data. These results demonstrate
significant synergism between the two sensors and suggest
the need for a feature selection approach, or at least a
knowledge based system incorporating the synergism effect,
once multidate, multisensor data become available on a reg-
ular basis. The substitution of SAR data beneath cloud cov-
ered terrain in T™ data is used to demonstrate another
aspect of SAR/VNIR synergism.

Introduction

Remote sensing techniques have become an important tool
for resource management, with successful mapping and mon-
itoring projects demonstrated for a wide variety of applica-
tions. One such application is crop identification and
monitoring (Ryerson et al., 1985; Boatwright and Whitehead,
1986; Sharman, 1990). One of the limitations of using remote
sensing data for this application is data availability due to
cloud cover and the relatively long repeat cycle of the high
spatial resolution optical sensors. This has led to the imple-
mentation of a Crop Information System (CIS) within Canada
which utilizes a compositing procedure using low resolution,
high temporal coverage data, provided by the Advanced Very
High Resolution Radiometer (AVHRR), into weekly images
(Brown et al., 1990). These weekly images are used to gener-
ate normalized difference vegetation indices (NDVI) which are
the basis for the crop condition assessment. The increased
information content in the finer spatial resolution Thematic
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Mapper (TM) and SPOT HRV imagery is offset by the uncer-
tainty of data availability.

The impending launch of RADARSAT and other existing
spaceborne synthetic aperture radar (SAR) sensors, such as
the European Remote Sensing Satellite (ERS-1) and the Japa-
nese Earth Resource Satellite (JERS-1), is changing this situa-
tion. Due to the all-weather, day or night capabilities of SAR,
imagery will be available on a regular and timely basis. The
synergism of SAR and visible and near-infrared (VNIR) data
has been previously demonstrated for some applications
(Ahern et al., 1978; Ulaby et al., 1982; Brisco, 1985) and will
be expanded upon within this paper. SAR has the potential to
provide unique information on a timely basis due to it's all
weather day/night capabilities. Because of these implications,
the Canada Centre for Remote Sensing (CCRS) is undertaking
research to develop the procedures to integrate SAR data into
the CIS. The research program is using microwave data from
ground-based and airborne platforms to achieve this objec-
tive (Brown, 1987).

During the summer of 1988, an extensive multidate air-
borne SAR data set was acquired of a site near Saskatoon,
Saskatchewan. Early and mid-season cloud-free TM imagery
were also available. This data set provided an excellent op-
portunity to investigate the synergism of SAR and VNIR data
for crop classification in western Canada. Specifically the ob-
jectives of the study presented in this paper were

® To evaluate the crop classification accuracy achieved using c-
HH SAR and T™ data alone and in combination for crops com-
monly grown in western Canada,

e To demonstrate the impact on crop classification accuracy of
replacing cloud covered T™ data with saAR data, and

® To evaluate the improvement in crop classification accuracy
using multidate ™ and SAR data.

Study Area, Data Set, and Approach
The test site is located east of Saskatoon, Saskatchewan in a
predominately agricultural area where there are fields of can-
ola, barley, wheat, summerfallow, and alfalfa (Figure 1). This
area is characterized as a glaciolacustrine plain with minor
areas of hummocky topography. The surficial geological de-
posits are predominantly glaciolacustrine clays and silts
which have developed into Dark Brown soils. Annual precip-
itation is approximately 350 mm per year.

Geocoded cloud-free T™M scenes from 28 May and 16 July
1988 were obtained, but only T™ channels 2 through 5 were
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Figure 1. The location of the study site near Saskatoon,

Saskatchewan.

considered in this analysis. T™M channel 1 is susceptible to at-
mospheric effects, channel 6 is the low resolution thermal
band, and channel 7 is very highly correlated to channel 5
(Crist and Cicone, 1984). C-HH SAR data were acquired on 25
May, 24 June, 21 July, and 10 August 1988 using the CCRS
SAR (Livingstone et al., 1987) in narrow swath mode (45 to
76 degrees incidence angle) with a 6-metre resolution. The
SAR imagery used in this analysis was the output from the
real-time processor on board the aircraft (seven-look ampli-
tude data) which was resampled to 25-metre pixel spacings
using the nearest-neighbor algorithm and then registered to
the T™ data. A 3 by 3 median filter was then applied to each
SAR channel to further reduce the effects of fading.

The maximum-likelihood algorithm was used to classify
all single channels (both VNIR and SAR) and various multi-
channel combinations. Due to the difficulty in separating bar-
ley from wheat, these two crops were combined into a grain
class. The training areas for grain, canola, alfalfa, and sum-
merfallow crops were outlined on a per-field basis. Sloughs,
wooded areas, buildings, field edges, and other non-culti-
vated areas were excluded from the training area. This train-
ing area mask was registered to the T™ data, Approximately
a 30 percent training sub-sample of each field was used from
the crop mask for generating class statistics, with the remain-
ing 70 percent used for testing the classification accuracy.
All classifications were done on a per-pixel basis with equal
a priori probabilities for each class. Unless otherwise stated,
total classification accuracy is the criteria used to evaluate
the classifications throughout the paper.
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The approach of training and testing on pixels taken
from the same field (but not the same pixels) was followed
because of our concern that the variations in reflectances/
backscatter between fields would not be the same in the opti-
cal and microwave portions of the spectrum. If this were the
case, we would not be able to adequately address the objec-
tive of assessing the synergy between the VNIR and SAR
bands. Although the classifications were done on a per-pixel
basis, it would have been preferable to use a segmentation
and field classifier approach for the analysis in order to re-
flect operational approaches. Unfortunately, the crop map
available for this study did not cover enough fields to sup-
port this approach. However, the results of this analysis can
still be used to meet the stated objectives of comparing SAR
and VNIR data for crop separability information. A summary
of the number of fields and pixels per class are given in Ta-
ble 1.

The multichannel combinations were chosen to assess
SAR versus T™M information content and synergism from a
multisensor and multidate perspective. Thus, all various
combinations of the four dates of SAR were classified (i.e., all
one-, two-, three-, and four-channel combinations) as well as
each four-channel T™™ data set (i.e., each date). The two dates
of T™ were also combined for an eight-channel classification.
Each date of TM imagery was also combined with various
multidate combinations of SAR data (i.e., into five-, six-,
seven-, and eight-channel combinations) and classified. Fi-
nally, all 12 channels (i.e., four dates of SAR and two dates of
TM) were also classified to evaluate the maximum classifica-
tion accuracy achievable with this data set.

To further evaluate which channel(s) provided the best
information for crop separability, the total average trans-
formed divergence was calculated for each of the 12 chan-
nels. Average transformed divergence was used as the
evaluation criteria because very high correlations with classi-
fication results have been demonstrated (Kramber ef al.,
1988) and it provides a useful measure of separability (Swain
and Davis, 1978; Goodenough et al., 1978). The best two SAR
channels and the best two VNIR channels, as identified by the
value of their transformed divergence statistic, were then
classified using the maximum-likelihood classifier in the
same manner as described above.

As a simulation of the effect of cloud cover on crop clas-
sification using T™M data, a cloud mask was generated (i.e.,
saturate the DN values) and imposed on the 16 July T™
scene. Approximately 30 to 40 percent of the study area was
““cloud covered” using this technique. A maximum-likeli-
hood classification was then performed on these data using
the class statistics generated previously. The area beneath
this mask was then replaced with the 21 July SAR classifica-
tion and the crop classification accuracy was recalculated.
This allowed us to evaluate the effect of replacing the cloud
covered T™ data with SAR data for crop classification pur-
poses.

Tagle 1. THE NUMBER OF FIELDS AND PIXELS FOR THE CROP CLASSES GRAIN,
CANOLA, ALFALFA, AND SUMMERFALLOW.

Crop Type Number of Fields Number of Pixels
Summerfallow 38 52,618
Grain 40 48,680
Alfalfa 5 8,924
Canola 4 7,116
PE&RS
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Results and Discussion

The classes exhibited Guassian or near Guassian distribu-
tions. Equal a priori probabilities were used because unequal
a priori probabilities were inappropriate for our objectives.
Unequal a priori probabilities are useful when attempting to
minimize risk or ensure that all of a particularly large class
be correctly identified. For example, if 80 percent of a region
were wheat, then one could force a high classification accu-
racy of wheat by using a proportionatley high a priori proba-
bility. However, this would give no insight into how well
one could distinguish between wheat and the minority
clases. In this study, the objective was to evaluate separabil-
ity between the various classes.

The single channel classification accuracies for the T™
and SAR data can be found in Table 2. In general, the July
data are superior to the other dates in correctly classifying
the crop types in both the VNIR and microwave regions. This
time period has been found to be superior for crop classifica-
tion purposes in other multitemporal studies (Brisco et al.,
1992; Foody et al., 1989; Brown et al., 1984, Brown et al.,
1980) and has been attributed to the crops being at maxi-
mum phenological development during this time.

There are some other interesting observations in Table 2.
For example, the alfalfa crop is most accurately identified in
the May T™ channels 2 and 3 and the June SAR data. Alfalfa
is the first crop to green up after the winter and thus be-
comes separable from the other cultivated areas in the visible
channels of the T™ sensor. The repeated harvest of the alfalfa
crop throughout the growing season influences the radar
backscatter because uncut and cut alfalfa have different sig-
natures. The importance of the crop calendar on class sepa-
rability for alfalfa and other hay crops using SAR data has
been previously reported (Brisco ef al., 1984). For example,
the alfalfa is poorly classified in the August C-HH image, per-
haps because of recent harvest operations.

Also note that, although canola is most accurately identi-
fied in July and then August, it becomes separable (72 per-
cent correct classification) as early as June in the SAR data.
Canola is a broadleaf crop with high moisture content, and
thus only a little plant growth is required before significant
backscatter occurs in the microwave region (Brown et al.,
1984). The crop must be in flower before accurate identifica-
tion in the VNIR region (Brown et al., 1980). Summerfallow
can be identified with greater than 80 percent accuracy on
T™M channels 2 and 3 in July and on the C-HH SAR channel by

August. However, a single SAR image alone may give deceiv-
ing results when identifying summerfallow fields. The radar
backscatter value will be strongly dependant upon whether
the field has been cultivated to reduce weed growth and on
the soil moisture content.

Finally, note the poor separability of grains throughout
the growing season if only one channel is being considered.
The poor separability of the wheat and barley crops in both
the microwave and VNIR regions of the electromagnetic spec-
trum has been previously reported as well (Brown et al.,
1984; Brisco et al., 1989). This is due to the very similar
structure and color of the grain crops. This problem may be
overcome by using crop rotation information, historical aver-
ages, crop calendar differences, and/or other ancillary infor-
mation. CCRS is pursuing these approaches to solving the
small grain classification problem and will report on the pro-
gress in the future.

An increase in the number of dates of SAR used in the
analysis results in increased total classification accuracy un-
til a maximum of 74 percent is achieved with four dates (Ta-
ble 3). Bush and Ulaby (1978) predicted reaching 90 percent
accuracy with four dates of microwave data in a simulation
study but the revisits were ten days apart. The SAR data used
in this study were acquired approximately a month apart,
which may be too long a time period to maximize changes in
target properties (dielectric and geometric) as a function of
the crop calendars. Multitemporal observation certainly does
increase classification accuracy, as many other studies have
observed (Brisco et al., 1992; Le Toan et al., 1989; Foody et
al., 1989; Brisco et al., 1984; Hoogeboom, 1983). The suc-
cessful launch of ERS-1 and JERS-1 and the upcoming
RADARSAT and ERS-2 spaceborne SARs means that more and
more SAR data will be available in future years. As SAR cali-
bration techniques have recently improved (Freeman, 1992),
it is feasible to expect calibrated products to become more
routinely available from these platforms. This will make it
possible to effectively use data from different sensors which
will enhance using multidimensional approaches, including
multitemporal, for crop classification.

This same effect is seen in the T™ data (Table 4). For
this analysis, all four channels of the T™ data (i.e., T™ 2 to 5)
were used in the classification algorithm for each date and

TaBLE 3. MuLTIDATE Crop CLassiFicaTion Accuracy Using C-HH SAR Data
(25 May, 24 Jung, 21 Jury, anp 10 AucusT 1988).

% Correctly Classified el
TABLE 2. SINGLE-CHANNEL CroP CLASSIFICATION RESULTS Using 1988 TM ano  Channel Summer- Accuracy
C-HH SAR Dara. Combination fallow Grains Alfalfa Canola % = Std. Dev.
% Correctly Classified Overall 2 Channel
Summer- Accuracy May/June 50 1 72 75 5‘0 + 34
Channel fallow Grains Alfalfa Canola % + Std. Dev. May/July Gz 54 40 92 63 & 22
May/August 76 53 22 81 38 = 35
25 May C-HH 23 18 21 51 28 £ 15 June/July 68 52 58 91 67 + 17
28 May TM 2 67 0 73 41 45 + 33 June/August 71 45 61 82 65 = 16
™ 3 69 0 71 55 49 + 33 July/August 71 58 47 89 66 * 18
™ 4 55 33 43 54 46 = 10
™ 5 63 i 46 22 44 + 17 3 Channel
24 June C-HH 56 0 65 72 48 + 33 May/June/July 67 53 63 92 69 = 17
16 July TM-2 85 22 17 77 50 = 36 May/June/Aug 72 46 66 84 67 = 16
T™-3 88 4 55 79 57 = 38 May/July/Aug 68 62 60 90 70 = 14
TM-4 78 54 0 B84 54 + 38 June/July/Aug 73 59 68 89 72 + 13
TM-5 78 38 56 84 64 + 21
21 July C-HH 78 54 19 91 61 = 32 4 Channel
10 Aug C-HH 82 55 4 81 56 * 37 May/Jun/Jul/Aug 75 62 69 91 74 = 12
PE&RS 1011
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TaBLE 4. SINGLE DATE aND Two-DATE TM CroP CLASSIFICATION ACCURACIES

TaBLE 6. THE TOTAL AVERAGE TRANSFORMED DIVERGENCE STATISTICS FOR CROP

(1988). TyPE FROM EACH SAR anD TM CHANNEL.
% Correctly Classified Overall Total
Summer- Accuracy Transformed
Channels fallow Grains Alfalfa Canola % + Std. Dev. Channel Divergence
TM 2-5 (28 May) 63 58 82 53 64 + 13 28 May 1988 TM-2 2.2
TM 2-5 (16 July) 89 73 63 90 79 + 13 ;g mgl’ }ggg $ﬁi 3‘3
M 7. 4 . !
TM 2-5 (both dates) 91 91 88 90 90 + 1 56 Ma§ $550 Al T d
16 July 1988 TM-2 3.2
16 ]uly 1988 TM-3 4.5
TaBLE 5. SAR/TM MuLn SEnsor Crop CLASSIFICATION ACCURACIES (1988). 16 July 1988 TM-4 5.2
THE C-HH SAR DaTA WERE ACQUIRED ON 29 May, 24 JunEg, 21 July, aND 10 16 July 1988 TM-5 5.6
Augusr. 25 May 1988 C-HH SAR 0.1
— 24 June 1988 C-HH SAR 2.0
% Correctly Classified Overall 21 July 1988 C-HH SAR 5.5
Summer- Accuracy 10 Aug 1988 C-HH SAR T
All four SAR fallow Grains Alfalfa Canola % + Std. Dev.
+ TM 2-5 (28 May) 87 85 85 91 B7 £ 3
+ TM 2-5 (16 July) 90 80 76 92 85 + 8 TABLE 7. TRANSFORMED DIVERGENCE STATISTIC FOR ALL CLASS PAIRS AND EACH
+ TM 2-5 (both dates) 91 94 89 94 92 + 2 OF THE 12 CHANNELS BEING CONSIDERED. (FAL=SUMMERFALLOW, GRN=GRAIN,
May, June, July C-HH a0 79 72 93 84 + 10 ALF=ALFALFA, AND CAN=CANOLA).

+ TM 2-5 (16 July)

then for both dates together. The ™ sensor performs much
better on a single date then the SAR because of the multis-
pectral information content. Indeed, the two dates of T™M
vield an overall total classification accuracy of 90 percent.
This is only slightly improved to 92 percent by adding all
four dates of SAR to create a 12-channel data set (Table 5).
This accuracy is sufficient for most crop identification appli-
cations.

To be of most use to present crop forecasting ap-
proaches, the timeliness and/or accuracy of the information
must improve on the early August date already achievable
with conventional approaches. In one example, we assumed
only one date of T™M data was available (from July), and it
was combined with May, June, and July SAR data to evaluate
classification accuracy achievable by mid-July. Although the
results indicate only an 84 percent classification accuracy
(Table 5), this is close to the operational goal of 90 percent
correct classification and only improves to 85 percent by
adding the August SAR channel. As another example, if only
a May T™ scene were available and it was combined with all
four dates of SAR, then an overall accuracy of 87 percent cor-
rect classification was achieved. These results show that only
one date of VNIR data combined with multitemporal SAR data
will provide suitable classification accuracies.

The total average transformed divergence for each of the
12 channels is presented in Table 6. July T™ channel 5 has
the overall highest separability, followed very closely by the
July and August SAR data. July T™ channels 4, 3, and 2 are
next, followed by May T™ channels 2, 3, and 4 and the June
SAR. Note that May ™ channel 5 and, in particular, the May
SAR provide the least separability. These results further dem-
onstrate the synergism of both the T™™ and SAR sensors and
the optimum date for data acquisition.

The synergism is related to both the different informa-
tion on crop type as a function of wavelength and the change
in information with time. Table 7 provides the transformed
divergence statistic for each class pair and all 12 channels
being considered. The July/August T™M and SAR data provide
the most separability at a given time because of maximum
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Channel Fal/Grn Fal/Alf Fal/Can Grn/Alf Grn/Can Alf/Grn
May C-HH 0.02 0.03 0.02 0.02 0.01 0.00
Jun. C-HH 0.07 0.12 0.58 0.18 0.28 0.81
Jul. C-HH 0.49 0.02 1.84 0.34 1.10 1.75
Aug. C-HH 0.43 0.15 1.95 0.09 1.37 1.51
T™-2 May 0.33 1.02 0.24 0.25 0.01 0.35
TM-3 Ma}' 0.35 1.12 0.29 0.35 0.01 0.45
TM-4 May 0.36 0.10 0.32 0.59 0.01 0.58
TM-5 Mﬂy 0.25 0.61 0.10 0.14 0.04 0.24
T™-2 ]l.l]y 0.89 0.96 1.22 0.02 0.08 0.02
T™-3 ]Ll]'\-r 1.05 1.11 1.62 0.10 0.18 0.41
T™-4 ]ul_v 0.20 0.05 1.87 0.05 1.33 1.66
TM-5 [ul}r 1.04 0.62 1.81 0.29 0.53 1.30

differences in crop phenology. This is followed by the addi-
tion of May T™ data, which incorporates the change due to
the crop growth stages in the separability information. Note
that the May T™ data provide the best summerfallow/alfalfa
and grain/alfalfa separability. As discussed earlier, this can
be related to the physical interaction of the radiation with
the crops. For example, T™ is superior for separating sum-
merfallow from grain classes due to the marked spectral dif-
ference (i.e., green versus brown/black). However, the SAR
data are superior for separating canola, especially early in
the growing season, due to the high backscatter from the
broad-leafed crops as opposed to the lower backscatter from
grains and summerfallow. Also note that the grain class sepa-
rability benefits from the combined SAR and T™ data largely
because of reduced confusion with alfalfa and summerfallow
on T™ data and increased separability from canola on the
SAR data.

To demonstrate this, the best four channels, as identified
by the transformed divergence statistics, were classified with
the results given in Table 8. The overall accuracy of 85 per-
cent obtained with two July T™ channels, and the July and
August SAR data are better then that obtained with the four-
channel SAR (74 percent) or the four-channel July T™ data
(79 percent). It is also approximately the same accuracy as
that obtained by using all four SAR images with either date of
T™ data.

A final example of the synergism of SAR and T™ data is

PE&RS
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TaBLe 8. Crop CLASSIFICATION RESULTS Using 16 JuLy TM3+4, 21 Jury C-
HH SAR, anp 10 August C-HH SAR Data. OveraLL CLASSIFICATION ACCURACY
|s 85 + 5 PERCENT.

% Correctly Classified

Crop Type Summerfallow Grains Alfalfa Canola
Summerfallow 87 17 3 1
Grain 10 77 11 10
Alfalfa 3 2 86 1
Canola 0 4 0 89

TasLe 9. THE Simuatep Errect oF CLoup Cover on TM Crop CLASSIFICATION
ACCURACY AND THE RESULT OF REPLACING THE TM DaTA witH C-HH SAR Dara.

% Correctly Classified Overall
Accuracy

Feature Summer- % +
Description fallow Grains Alfalfa Canola Std. Dev.
16 July T™M 2-5 89 73 63 90 79 = 13
16 July TM 2-5 with 57 51 50 60 1T
30 - 40% “Cloud”
Cloudy 16 July TM 2-5 86 68 52 91 74 + 18
with 21 July C-HH
SAR

the cloud simulation results presented in Table 9. By replac-
ing cloud covered pixels in a T™ scene by SAR data for the
same area, similar overall accuracies can be obtained. Thus,
if a July T™ scene were available for crop classification, it
would be preferred due to the multispectral information con-
tent. If small areas of the scene were cloud covered, they
could be replaced with SAR data with little effect on the
overall classification accuracy. Indeed, multidate SAR data
could be used to maintain the high classification accuracies
obtainable with the ™™ data. With such an approach of re-
placing cloud corrupted T™ data with SAR data, the T™ data
can be used to aid the classification of the SAR only areas by
correlating SAR imagery to the T™ data within the areas of
data overlap.

Summary

Multidate T™M and C-HH SAR data were used to evaluate classi-
fication accuracy for canola, grain, alfalfa, and summerfallow
crop types. The results of maximum-likelihood classification
and transformed divergence statistics show that multidate ac-
quisitions considerably improve classification accuracy for
both VNIR and SAR data. The time between SAR acquisitions
(one month) may be too long to effectively use phenological
changes during the growing season for improving crop classi-
fication. Satellite SARs such as ERS-1 and RADARSAT will al-
low for more observations throughout the growing season to
further study this question. Revisits on a weekly time scale
may be more useful. Although July is the best time for single
date classifications, there is additional information available
in the other time periods. There is also considerable syner-
gism between the two types of sensors, suggesting that both
electromagnetic regions be used for operational crop informa-
tion systems. This suggests the need to consider feature se-
lection as a tool for picking appropriate channels for analysis
and/or the use of knowledge based systems which take ac-
count of multisensor synergism. Environmental conditions

PE&RS

and the regional crop calendars will also influence the chan-
nel selection process.
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