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The Lake Michigan Ozone Study:
An Application of Satellite'Based

Land-Use and Land-Gover Mapping to
Large-Area Emissions Inventory Analysis
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Abstract
Recent research has revealed that emissions arising from
both man-made (anthropogenic) and vegetative (biogenic)
sources contribute to ground-Ievel ozone problems on a re-
gional scale. To properly estimate emissions for the Lake
Michigan Air Quality Region, a photochemical reactive grid
model has been implemented based upon a comprehensive
Iand-use and land-cover inventory derived from the classifi-
cation of 71 scenes of Landsat-S Thematic Mapper data. The
characterization of land use and land cover for large geo'
graphic areas presents unique problems, and this paper dis-
cuises the development of the inventory, the rclationships
between biogenic/anthropogenic sources, as well as the spe'
cialized procedures devised to successfully complete the re-
mote sensing analysis. af particular interest is the use of
IJ.5. Census TTGER dato to stratify the c]assification of urban
versus rural areas, a variation of the traditional principal
components transformation approach to reduce the amount
of waveband data, and the strategies employed to conduct
accuracy assessment.

Introduction
The Clean Air Act Ammendments of 1990, which ended
nearlv a decade of political stalemate over the nation's air
qualiiy laws, imposed new federal standards regarding urban
smog, toxic air pollution, and acid rain. Based upon existing
air quality levels, various political iurisdictions within the
United States have been segregated into designated nonat-
tainment areas. There are several such nonattainment areas
pertaining to ground-level ozone in the vicinity of ,Lake
Michigan, and they are collectively referred to as the Lake
Michigan Air Quality Region (I-vaQn), comprising nearly
lzo,Doo square kilometres (Figure 1). Despite the adoption of
emission control measures within the t vRqR during the
1980s, the states of Illinois, Indiana, Michigan, and Wiscon-
sin have continued to experience numerous violations of the
ozone National Ambient Air Quality Standard (NaaQs)' The
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Lake Michigan Ozone Studyl (I-rraos) was initiated by the
Lake Michigan States to develop a regional solution to the
ground-leve1 ozone problem. The goal of the s-tudy is to. pre-
pare a photochemical reactive grid model of the formation
ind transport of ozone that will be used to support the de-
velopment of a regional control plan.-Both 

man-made (anthropogenic) and natural (biogenic)
precursor emissions (e.g., hydrocarbons- and oxides of nitro-
gen) contribute to ozone air quality pro-b1ems. Research ex-
Iending back to the mid-t96os has established that biogenic
emissions arising from organic compounds may b9 compara-
ble to, or even eiceed, the non-methane hydrocarbon-based
emissions from anthropogenic sources on a regional scale
(Table 1). Biogenic emissions have been found to be highly
reactive compbunds which can contribute to the formation of
tropospheric ozone (Winer, 1989) and ryay perform an im-
poit".tl role in the production of ground-level ozone, While
\,Viner acknowledges the fact that many vegetative species
emit significant amounts of hydrocarbons is well-docu-
mented, there is essentially little or no quantitative informa-
tion on emission factors for agricultural crops. The dearth of
information is attributed to the emphasis given to assessing
biogenic emissions for selected v-egetative--species including
forJsts, scrublands, and grasslands, as well as those which
are prevalent within urban airsheds.

The total assigned plant emissions (rapn) provides an
approximation of ihe relative emissions factors for differing
piint species, and the various agricultural crops examined in
ihe Winer study can be qualitatively grouped by orders of
magnitude using rnPE emission rates (Table 2). Pasture/
wh6at and alfalfa/cherry/sorghum are shown to be included
in the low- and medium-emissions categories, respectively,
which are agricultural crops of particular importance within
the LMAQR. In a related study, it was revealed that there was

lThe Lake Michigan Ozone Study is jointly funded by the U.S. Envi-

ronmental Protection Agency and the states within the Lake Michi-

gan Air Quality Region, and is administered by the Lake Michigan

Air Directors Consortium.
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Figure 1. Lake Michigan Air Quality Region. Each dot rep
resents an urban or built-up area, with the larger dots de-
lineating the largest urbanized areas within the LMAQR.

at least two orders of magnitude difference in the non-meth-
ane hvdrocarbons fruuHc) emissions between alfalfa/wheat
and corn. Furthermore, tire emission rates for deciduous for-
est species are comparable to or exceed that of corn, with
one coniferous species (loblolly pine) exhibiting NMHC emis-
sions several orders of magnitude higher than those of agri-
cultural crops or deciduous forest species (Table 3). In
airsheds such as the LMAQR where both forest and agricul-

Tnerr 1. Nolr-Merunrur HvoRocnRaoN Elrssrorrr TotnLs roR THE LAKE
MrcHrcAN Arn Qunlrrv REGToN (SouRcE: LMADCO).

Source Category Emissions (kg/day)

Motor Vehicles

Point Sources
(lndustrial Operations)

Area Sources
(Commercial/Consumer Operatrons)

Biogenics

Tolal Emissions

Taett 2. Qunlrrnrrve GRouprNG or AcRrcurruRnL CRops av Rlres (trrc
HR 1GM 1) or Tornl AssrcNED Plrrr Evrssror'rs (rnov Wrruen, 1989).

Low
< l

Middle
1 - 1 0

High
> 1 0

Pistachio
Rice
Tomato

tural plant species are abundant, and whose biogenic emis-
sions can surpass anthropogenic sources, these sources must
be accounted for in any regional emissions inventory.

When combined with land-use data or biomass distribu-
tion maps, data from emissions studies permit calculation of
an explicit gridded emissions inventory (Figure 2). In the
past, such inventories have customarily been based upon
generalized land-use and land-cover information, including
U.S. Geological Survey Land Use and Land Cover and Asso-
ciated Map data (uscs LUILC) (Loelkes et aL.,1983), county-
level comprehensive plans, and state-level land-use and
Iand-cover inventories, among others. Such data sources lack
sufficient taxonomic resolution to account for the significant
differences in biogenic emissions acquired from recent re-
search. For example, the USGS Lu/LC classification system
(Anderson et aL, 1976) aggregates row crops and pasture at
Level II (e.g., category 021, Cropland and Pasture), two agri-
cultural crops which possess differences in emissions rates
of several orders of masnitudes. Furthermore, the USGS LU/LC
data are seriously outdited for much of the LMoS project
area, with the dates of the source materials extending from
1971 through 1982. Given the factors of temporal and spatial
variability in biogenic and anthropogenic emission rates
across the LMAQR, a current inventory of land-use and land-
cover databases needed to be develooed which exceeded the
spatial and taxonomic resolution of previous emissions in-
ventories. After much discussion and debate, a compromise
classification scheme incorporating 1B land-use and land-

TABLE 3. Evrssror'r RArE ESTMATES (30'CXtrc cv 1 HR'.1) (rRov WrrurR,

Type Examples Is0prene a-Pinene Other NMHC

High isoprene
Low isoprene
Deciduous,

n0 is0prene
Coniferous
Agriculture

Water

Bean
Nectarine
Olive
Orange
Pasture
Wheat

Alfalfa
Almond
Apricot
Carrot
Cheny
Cotton
Grape
Lemon
Orange
Peach
Plum
Safilower
Sorghum
Walnut

570,000

630,000

750,000

1,400,000

3,350,000

0  1 . 8
0 2.3
1.4 4.3

Oak
Sycamore
Maple

22.9
8.4
0

ILoblolly Pine
Alfalfa, Wheat
Tobacco
Corn
Olher

2.8 8.0
n n l E

0.35
2.0
0.015'145 pg m-'z ha'
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Figure 2. Non-methane hydrocarbon emissions from bio-
genic sources in the Lake Michigan Air Quality Region.

TneLe 4. LAKE MtcHtcAN Ozone Sruov CrnsstncnrtoN ScHEME.

lnformation Class Comments Abbrev.

High Density Urban

Medium Density Urban

Low Density Urban

Transportation

Row Crops
Small Grains
Grassland & OtherAg.
Orchards
Upland Deciduous Forest
Lowland Deciduous Forest
Upland Coniferous Forest
Lowland Coniferous Forest
Mixed Upland Forest
Mixed Lowland Foresl
Undifferentiated Water

Undifierentiated Wetland
Rangeland
Barren Land

Commercial/industrial ; >90% impervious
surlace

Commercial/residential ; 50-90% impervi0us
surface

Residential/open space:<50% impervious
surlace

Major roadways derived from USGS DLG
TransDortation

Major Commodity crops. e.9.. c0rn/soybeans
Major Commodity crops, e.9.. wheaVoats/rye
Prtjdominately open space, scrubland, hay
Maior orchards derived from USGS LU/LC

Permanant open water; lakes and p0nds,
rivers, etc.

Persistent, mostly palustrine wetland habital

Quarries, ruderal land, etc.

HD

MD

LD

TR

RC
SG
GR
OR
DU
DL
CU
CL
MU
ML
WA

WT
RA
BL

late spring/early summer "snapshot" of the LMOS study area'
Eleven TM scenes were selected with acquisition dates incor-
porating three calendar years and spanning almost two
monthJin vegetative phenology (Figure 3). Given-that impor-
tant phenological changes occur in the upper Midwest ap--
proximately at the ratebf 7 to 10 days for every-degree of
geographic-latitude, the 5' latitudinal extent of the LMos pro-

cover categories was adopted [Table a). These categories
were selected both for their compatibility with satellite'based
sensor systems as well as their importance in maintaining
the principal objectives of the LMos project.

Data Sources
Selection of an Appropriate Primary Data Source
The LMos photochemical reactive grid model uses a three-di-
mensional grid structure to cover ihe region of interest. The
horizontal dimension of the grid cell model is typically on

the order of 4 to 5 kilometres, and emissions information for

this spatial scale, or smaller, is anticipated for the proposed

modeling. The need for land-use and land-cover data on this

scale over the entire LMAQR therefore imposes special limita-

tions on potential data sources. Landsat-S Thematic Mapper
(ru) satellite data were selected as the primary data source

for development of the land-use and land-cover database, ap-
propriate given the potential range in spatial resolution para-
meters expected for the grid model. To ensure that important
contrasts in vegetative phenology were captured, multitem-
poral data sets were initially considered; however, budgetary
ionstraints resulted in the acquisition of a single coverage'

PE&RS

Figure 3. Landsat 5 tv scene selection. Due to persist-
ent cloud cover over Path 22/Row 29, portions of two TM
scenes were useq.
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iect area constituted an additional, important factor in the se-
lec t ion  o f  the  sa te l l i te  da ta .

AII rv data sets had pre-processing procedures applied
and included (1) geocoding of the image data to the Univer-
sal Transverse Mercator Projection, UTM Grid Zone 1.6, and
resampling to a 25- by 2S-metre spatial resolut ion, and (2)
terrain correction. Even though the local relief within any
single Landsat Tv data set does not exceed 150 metres, the
terrain correction procedure performed by STX Corporation
also ensures the mosaicking ability of adjacent ttr,t scenes. To
facilitate the proposed grid modeling, a convenient means for
subsetting the completed land-use and land-cover map data
was required. Accordingly, each TM data set was subse-
quently trimmed to conform to the USGS 1:100,000-scale
quadrangle areas contained within the respective TM scene
area (Figure 4).

Selection of Ancillary Data Sources
The physical dimensions of the lvos project area precluded
any systematic field verification. Two additional sources of
image data were acquired to complement the tM data sets
and provide the higher resolution necessarv to conduct the
classlfication and pbst-classification u""t,.uiy assessment pro-
cedures. A 15 percent sample, or approximately 700 individ-
ual frames of color-infrared photography from the National
Aerial Photography Program (Napp) and National High Alti-
tude Photography (NHat-z), was selected using a systematic
sampling scheme. The LMOS project area manifests no pro-
nounced topographic lineaments or other alignments; there-
fbre, this sampling approach ensured a proper level of
landscape stratification while also adhering to budgetary con-
straints. While much of the photography differed by 1 to 2
years and some as much as 4 years in calendar date from the
TM scene data, with several frames differine onlv bv several
days, the majority of the photography spanied only 1 month
in phenology. This meant that persistent landscape features
such as forested land, wetland, water, etc., could be accu-
rately interpreted. Because the nominal photographic scales,
orientation, and location of all flightlines are known, system-
atic variables for the NAPP/NHAP-2 programs, an ARC/INFO GIS
map coverage was created which defined the areal extent of
each frame of photography.

A second photographic data source involved the acquisi-
tion of usDA-ASCS 35-mm Color Compliance photography.
Each slide is acquired in a near-vertical orientation and por-
trays approximately one PLSS section (259 hectares) of land
area. Typically acquired in the upper Midwest during the
summer months, the photography portrays an unusually high
level of feature detail (Figure 5). While the photography is it-
self  valuable, i t  is the ASCS-s78 and aSCs-tsoEZ crop report
information developed from a combination of photointerpre-
tation and farm manager data at the local ascs office that is
of even more interest. For a modest charge, the individual
county ASCS office can compile a lithographed "photo-map"
delineating each field and specific crop type for a desired
crop year (Figure 6). The ASCS Compliance information was
acquired for a sample of 26 counties which were determined
to be representative of the diversity and prevalence for agri-
cultural crops within the LMoS study area. The UTM coordi-
nates for the centroids of all fields identified within these
data were digitized for each TM scene area and encoded with
the crop type. This approach significantly improved the abil-
ity to characterize agricultural lands with a measured level
of accuracy, a landscape which combines spatial diversity
with a high degree of spectral and temporal variation.

LO24
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Figure 4. Landsat TM scene areas as subsetted by uscs
1:10o,000-scale map coverage. Compare with Figure 2.

Analysis

Data Reduction by Pilncipal Components Transfomation
Because of the large-scale nature of the study, a method of
reducing the substantial amount of image data was deemed

Figure 5. USDA-ASCS 35-mm color compliance photography
acquired over Sun Prairie Township in Dane County, Wis-
consin during June, 1990. Compare with Ascs Crop Re-
port information shown on Figure 6.
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Figure 6. AScs Crop Report "photo-map" corresponding
to Figure 5. Older aerial photography is typically utilized
as the base for annotating the individual fields. Approxi-
matelv one PLSS section of land is enclosed.

amount of data which needed to be processed to only 43
percent of the original waveband information.' 

Component iis actually what i:" referred to as a "total
brightnesi image" (Richards, 1986) because most of the ttu
bands load high on that component. This factor pattern is
typical of remote sensing applications which employ the
siindard (initial) principal components transformation, actu-
ally an unrotated-factof method' The authors elected instead
to utilize a varimax rotation method for the PCA transforma-
tion, a standard PCA option in most statistical program pack-
ages such as SAS, SPSS, and BIOMED, qm-ong others. The
advantage of this approach is that, while the amount of total
variancJ is unchanged, the interpretability of the output
component images is greatly enhanced. After varimax rota-
tion, the factor loading matrix exhibits a strong pattern of
correlated bands for the first three components (Table 5d)
and can be visually interpreted much like the original Land-
sat TM data set (Figure 7). This is an important consideration
because many decisions concerning the identification of
landscape elements are ultimately still-dependent upon the
analyst'i direct interpretation of the color and/or tone.

Ple4lassification Procedures
ERDAS image processing software was utilized for the maior-
ity of the image analysis and raster GIS operations. Prior to
the classification stage, spectral signatures were extracted
from each pcA data set utilizing an Isodata K-means cluster-
ing procedure (Duda and Hart, 1'973), and experimentation
indiiated that 200 to 250 spectral clusters should be derived
for each data set. The separability of all possible pairwise
combinations was assessed utilizing the transformed diver-
gence statistic (Whitsitt and Landgrebe, L977), and the
iuthors discovered that equal or greater separability is main-

necessary, and a principal components transformation (pca)
was selected because it is a widely recognized and efficient
procedure for eliminating the redundancies inherent in mul-
tispectral data (Table 5a) (Showengerdt, lg83; Richards,
rSao; Gong and Howarth, 1990). Table 5b presents the factor
loading matrix for the Path 23lRow 30 scene data after the
initial stage of the PCA model, with the first three compo-
nents accounting for 98.97 percent of the total variance (Ta-
ble 5c). Because the greatest drop-off in eigenvalues occurs
between Component 3 and Component 4 and this has tradi-
tionally been used as a cut-off criterion (Rummel, rgzo),
components beyond this level were eliminated from any fur-
ther consideration. This procedure effectively reduced the

TABLE 5a. CoRRELATtoN/CovARtANcE Mnrntx or TM ScENE Perr. 23/Row 30.

BAND 1 BAND2 BANDS BAND4 BANDS BAND6

tained at Iower transformed divergence values when utilizing
nrineinal comnonent feature bands as compared to untrans-incipal component feature bands as compared to untrans-prrnclpal component leatule uarlus ils uurrrPdr

iormed image data sets, due presumably to the independent
nature of the component data. A transformed value of 1600
for all ru scene aieas was utilized as the threshold of separa-
bility, reducing the original 200 to 250 clusters to approxi-
mately 100 merged clusters.

Tb ensure that the spectral signatures for urban and

TABLE 5c. Etceruvnlues nt.to PnopoRrton or Vnntnrucr ron TM Scere 23/30
DAIA SET.

PCAl PCA2 PCA3 PCA4 PCAS PC46

20.59 8.59 0.91
12.00 7 .67

0.70% 0'29o/o 0.03%
99.68% 99.97% 100.0%

BAND 1
BAND 2
BAND 3
BAND 4
BAND 5
BAND 6

0.8624
0.9356
287.42
-64.47
417.77
329.56

/ vo.\r.t
609.47
27.191o
92.59"/"

186.86
I  oo .4  /

6.38%
98.97%

2%.881^ 0.90$'z
130.42" 83.92
235.57 150.22
-70.88 - 1 6.30
271.99 194.94
233.31 160.37

0.0311 0.301 7 0.4709
0.0044 0.4135 0.5935
0.0200 0.5545 0.7318
721.74 0.0599 0.0036
217 .66 r095.20 0.8434
-36.87 690.61 516.36

Eioenvalue 1 ,915.24
Difrerence 1,118.91
Variance 65.40%
Cumulative 65.40'/.

rvariance;'Pearson Product MomentConelation; 3Covariance

TreLE 5d.
Tnale 5b. Inrrrnl Fncron METHoD: PRtt'lctpnr Coptponenrs FncroR Lonotltc

PnrrenN ron TM Scerue 23/30.

PCA RoTATED FnctoR Lonotruc Pnrrrnu MntRtx Rornrtou MEtHoo:
VARTMAX.

Component 1 Component 2 Component 3
Component 1 Comqonent 2'Visiote' 'Mid-lR' Component 3'Nbar-lR'

BAND 5
BAND 6
BAND 3
BAND 2
BAND 1
BAND 4

0.97323
0.96364
0.8711 9
0.79518
0.71278
0.1 3648

0.14250
-0.1 8443
-0.32041
-0.26284
-0.36798
0.97841

-0.16697
-0.10566
u .J3  t o  I
0.52610
0.57888
0.1 5248

BAND 1
BAND 2
BAND 3
BAND 5
BAND 6
BAND 4

0.94430
0.91463
0.83177
0.33549
0.47490
-0.09195

0.27455
U . J / O  I Y

0.53206
0.91430
0.86122
0.06855

-0.10724
-0 .01018
-0 .10168
0.21648

-0.08097
0.99298
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Figure 7. Landsat rM image acquired on 24 June 1990,
and displayed using Principal Components 1,, 2, and 3.
The field patterns shown in Figures 5 and 6 are at the
scene center.

Digital Line Graphs were imposed upon the final classifica-
tion maps by a raster cts model

. It was impossible to delineate the Orchards category through
spg:tral classification. This category was delineated princil
pally by imposing the Orchards category derived from Level
II, USGS LU/LC data onto the final classification. A raster crs
model was used to preserve certain landscape elements (e.g.,
forested and grassland areas) within the qeneralized orcharid
areas in order to impart a more ',natural';app"*an"e.

. The compromise classification scheme tequired that forested
tracts within the LMoS study area be sepaiated into upland
and lowland phases. The uie of the r:zi0,oo0-scale oivs
proved to be of little use due to the three-arc-second resolu-
tion, especially within the southern half of the project area
where the occurrences of forest were primarily iestricted to
riverine areas. Buffers created along the perennial streams de-
rived from the uscs 1:100,000-scale or_c Hydrography were
used to reclassifu upland forest to their rejpective towlana
counterparts. This methodology was refined in the northern
portion of the proiect area where extensive tracts of lowland
forest do exist. The Marsh category from the DLG Hydrogra-
phy was used as a Boolean mask to reclassifu not onlv iow-
Iand forests, but also to segregate wetland habitat from the
Grassland & Other Agriculture cateqorv.

o The urban and non-urban classificalion maps were subse-
quently combined using a raster cls model and recoded to
create a single 18-category classification map for each TM area
(Figure 9). Every effort was also made to eniure the transition
between classification maps derived from differine dates of
imagery was as consistenf as possible (Figure 10)."A con-
strained.logical filter was applied to the completed maps to
remove isolated artifacts while preserving linear features.

Accuracy Assessment Analysis
Sampling Scheme and Sample Size
While sufficient research has been conducted on the topic of
s.ampl-e size determination to establish general guidelines,
there have been_few systematic investigations c"ritically eval-
uating the sampling schemes used to aisess the accur;cy of

built-up lands were properly characterized during the un-
supervised training stage, the Place Boundaries for all
incorporated areas (Figure 1) were extracted from the 19g0
post-Census fIGER database and used to separate urban areas
from the PCA data sets (Figure B). Subsequently, 100 to 12b
spectral clusters for each rtGER-based pca data set were de-
rived and, in contrast to the non-urban pCA data sets, no sig-
nature merging was performed in order that subtle urban
landscape elements were not inadvertently combined. This
innovative use of TIGER data was demonstrated throughout
the-LMoS-project to be very effective, especially in a large-
scale- study where urban and built-up lands constitute i
small but important percentage of the overall landscape.

Classiflcation Procedures
The performance of several standard classifiers, including
minimum-Euclidean distance, minimum-Mahalanbois dis-
tance, and non-thresholding maximum-likelihood, were
evaluated for a test area prior to the classification of the pCA
data sets. The results indicated greater improvement in clas-
sification accuracy would be achieved from the use of a max-
imum-likelihood classifier, and this is supported by recent
research (Gong and Howarth, 1990).

Post4lassifi cation Procedures
The result of the classification stage were two classification
maps (urban and non-urban) for each TIra scene area, each
comprised of approximately 100 spectral classes. Several
post-classification procedures were imposed upon the classi-
fication maps:

. Because a fundamentally unsupervised approach was
utilized, each spectral class was assigned io the most appro-
priate LMos category through careful comparison to all availa_
ble ancillary information.

o The final classification maps often delineated the transporta-
tion network inconsistently. Therefore, maior roadwayJ, rail-
roads, and airports derived from the USGS 1:100,000-scale

LO26

Figure 8. Landsat TM data set acquired on 30 June
1989, which has been clipped for the Milwaukee, Wis-
consin area using the 1990 TtcER Incorporated prace
Boundaries. Principal Components 1,2, and 3 are dis-
played.

PE&RS
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Figure 9. Final classification of the Milwaukee, TIGER-
based pcA data set. White delineates high-density urban
land cover, while the medium-gray and dark-gray toned ar-
eas represent medium and low-density urban land cover,
respectively.

mean. Simple random sampling performs ade-qrrately {o1 all.
three landscapes, and stratified random sampling is advised
to ensure that small but important landscape areas are sam-
pled.' 

The LMOS project area contains significant tracts of both
forested and agiicultural land cover' Furthermore, the agri-
culture categoiy is subdivided into three subclasses, creating
numerous rmuil a."as and increasing the spatial complexity
of this landscape. A random sampling scheme stratified by
landscape category was therefore deemed most appropriate.
A second levef of-stratification was also emplaced upon the
sampling by utilizing the ARC/INFo coverage created for the
refeienc6 airial photography as a binary mask to stratify - -
sample point selection, such that all map areas outside of the
pholo areas were disallowed for sampling'

Because of the diversity in scene acquisition dates, varia-
tion in TM scene quality, and changes in phenological condi-
tions across the t-vos prolect area induced both by latitude
and the year-to-year differences in ground conditions, the
computei classification was conducted on a scene-by-scene
basii. this required that the accuracy assessment procedures,
and therefore ihe point sampling, also be carried out on the
same basis. The stlpulated level of mapping accuracy for the
project was stated such that only the overall accuracy-must
ittain at least 85 percent. Each classification map can be con-
sidered as a separate statistical population posses-sing a-bino-
mial distribution, and the appropriate sample is derived as
follows (from Iensen, 1986J:

r u : a ' P ' q
E2

where p : expected percent accuracy (e.g., s5 percent), Q
: 1o0 - p, ana E : allowable enor (".g.' 5 percent).

Because the accuracy assessment phase included no ac-
tual field work, lowering the allowable error assists in offset-
ting procedural errors (Fitzpatrick-Lins, 1981), thereby
deireasing the probability of chance error' Reducing the al-
lowable eiror slightly to a value of 4 produces a minimum
sample size (M of sis points for each TM scene area' Table 6
is thle contingency matrlx showing the disposition of all sam-
ple pixels deiived from the sampling of classification maps
lor the 11 TM scene areas. Although the accuracy assessment
procedures were carried out orr a scene-by-scene basis, the
iccuracy/error statistics for all t1 scene areas have been
composited into a single contingency_matrix for the purpose
of discussion. This was accomplished by weighting the indi-
vidual categorical accuracy/error data contributed from each
TM scene aiea utilizing the respective ground areas for each
mapping category.

Classiflcation Accutacy versus Classification Eror
Traditionally, the omission and commission errors are pre-
sented in conjunction with the contingency matrix. The for-
mer represenf those sample pixels pertaining.to an actual
class oir the landscape which the computer classification has
failed to recognize (off-diagonal column elements), while the
latter refers td those sample pixels from other landscape clas-
ses which the computer classification has incorrectly as-
signed as belonging to'the particular landscape class of
in-terest (off-diagonal row elements). The interpretation of
omission and commission errors is often a source of confu-
sion to the user, and it is sometimes more expedient to have
a simple measure of categorical accuracy. The terms 'lProdu-

cer's iccuracy" and "user's accuracy" have therefore been

land-use and land-cover maps derived from remote sensor
data. Congalton (1gs8) used three generalized landscape clas-
ses (e.g., forested, agricultural, and rangeland) to evaluate
five most commonly used sampling strategies, including sim-
ple random sampling, stratified random sampling, cluster
sampling, systematic sampling, and stratified systematic una-
ligned sampling. He concluded that systematic and stratified
systematic unaligned sampling should not be used within
predominantly agricultural landscapes, because these two
iampling schemes consistently overestimate the population

Figure 10. Juncture of classification maps derived from
two separate Landsat TM scene areas. The join line has
been purposely enhanced to depict the transition area.
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HD
MD
LD

*13
O S G

r3R
TDU
; P,f
Rbi
dH'i

WA
WT
BL

Total

R e l e r e n c e  D a t a
HD MD LD TR RC SG GR OR DU DL CU CL MU ML WA WT

O J

I

1
4 0 6 3 2 5

25 1
6 3 4 1 4  2  2  I  1  3

4 1 4 6  2  3  I
1 1 8 3  I  1 1

1 1 7  1 1
7  3  6 1 5 7  1  4
1  3  1 5  1
1  161

5 2 1 2 66

3 2
2

z 5
3 7 2

902 13 65
5 92 13

76 50 796

2  6 3 7
5 3 9

1

1
1 1
2 2

1

9 0 4 2
5 1 1 8  4
4 1 0 6 3

Total Total
BL Samples Km2

1 103 2,174.5
1 132 3,265.5
1 87 929.6

39 781.8
983 35,464.7
111 3,427.3
988 37,860.1
26 435.2

714 18,733.6
180 3,720.1
96 1,759.6
20 248j
79 1,637.5
21 496.4

164 7,506.9
80 1,605.2

38 42 246.8

41 3,864 120,292.8

uA(%)* cE(%)* t(%)*
83.6 20.9 82.9
90.7 8.6 89.9
71.3 37.6 7A.7
91.7 10.7 91.6
91.8 8.4 88.0
79.2 16.9 77.9
79.1 23.2 73.0
97.9 4.1 97.9
90.0 10.8 87.5
84.2 16.1 83.2
82.7 20.7 82.0
89.1 0.9 89.1
75.1 32.0 73.7
75.5 38.2 75.3
98.3 1.7 98.3
72.3 17.7 71.7
92.6 17.8 92.6

x=85.0 t=15.7 i=83.8

J

104 142 72 37 998 '65 936 26 691 179 98 20 79 22 164 90

PA(%)* 89.780.388.599.889.060.481.993.3 g2.g79.7 80.082.380.876.S ss.271.296.1 i=84.8

oE (%)* 10.319.7 11.5 0.2 11.0 39.618.1 6.7 7.7 20.320.017.71g.22g.2 0.828.8 3.9 '=15.2

* User's Accuracy (UA), Commission Enor (CE), Kappa Coefficient (R), Produce/s Accuracy (PA), and Omission Error (OE) vatues have
been composited from the eleven TM scene areas and areally weighted. Information classbs ire in same order as Tibls4.

advanced (Story and Congalton, 19B6), and these measures
have been included as part of the contingency matrix for this
paper. The producer's accuracy is so-called because the pro-
ducer (or originator) of the classified map is principally in-
terested in how well sample pixels from the reference data
can be mapped using the remote sensing data. In contrast,
the_user's accuracy is an indication of the probability or reli-
ability (Congalton and Rekas, 19Bb) that a iample from the
classification map actually represents that category on the ac-
tual landscape.

Comparison of the omission error and producer's accura-
cies in Table 6 shows they are associated in a simple, in-
verse manner (e.9., PAo/o : lOO - OE% or OE"/o : 1OO -
PA%). Unfortunately for the user, although authors have as-
sociated the user's accuracy with commission error, these
two measures are not similarly related. The commission er-
rors and user's accuracy are computed using the column and
row marginal totals, respectively, an important distinction
because these totals can be quite different. In contrast to
omission error and producer's accuracy, there may be little
actual correlation between commission error and user's accu-
racy (Figures 11 and 12). Nevertheless, because it is the user
who must ultimately be reassured as to the integrity of the
maps interpreted from the remote sensing data, the categori-
cal data for Figures 11 through 1S (x-axis) have been ordered
according to the user's accuracy.

From the viewpoint of the user, when the classified
maps for the entire LMOS proiect area are summarized, the
weighted overall mean for user's accuracy is 85.01. percent,
Furthermore, the overall weighted -"un ior commiision er-
ror is 15.7 percent. From the standpoint of the producer, the
weighted overall mean for producer's accuracy is 84.B per-
cent with a corresponding weighted overall omission eiror of
15.2 percent (Table 6). In the absence of any universal stan-

LO2A

dard regarding what level of error should be considered sig-
nificant, it is suggested that the widely accepted standard 6f
85 percent classification accuracy (Anderson, 1976; Ginevan,
1979; Hay, 1979; Aronoff, 1gB2; Rosenfield and Fitzpatrick-
Lins, 19B2; Congalton, 1983) could be uti l ized to estlblish an
ad hoc criterion for classification error. Consequently, classi-
fied maps o_r individual map categories which 

-ex"""d 
15 p".-

cent error should be identified and the patterns of error 
-

should be examined more closely. Utiliiing these two crite-
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Figure 11. User's and producer's accuracy.
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Figure 12. Commission and omission errors.
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Figure 14. Kappa coefficient of agreement.
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ria, the overall interpretation of the remote sensing- data for
the LMoS project is ihown to be at the threshold of accepta-
bility.

h 
"rrtsoty 

inspection of Figure 1.1. reveals that several of
the individual map categories exceed a user's accuracy of 85
percent or higher,' indicit ive of good reliabil i ty' The map-
ilass which registered the lowest user's accuracy is Lo urban
land cover (zt.s percent), perhaps not surprising given that
this landscape class tends to be more contextual in nature
and not speitrally distinct' The associated commission error
is significint (37.-6 percent) (Figure 12) and is comp-rised of
sample pixels frorrrseven other landscape-classes. Con-
,rersely,lhe LD urban class achieved a high producer's accu-
racy (ae.s percent) and therefore low omission errors (11.5

percent), indicative that comparatively little of the reference
data was misclassified.

Inspection of Figures 11 and 12 also shows that the sG

class is'distinctive in terms of the disparity between user's/

oroducer's accuracies and the associated commission/omis-
.io.r 

"rrorr. 
The success in characterizing this highly spa-

tiallv and temporallv variable cover type lies in iudicious Tvt
scene selection, andwhile the May-fune period should cap-
ture much of the winter wheat in the Lrraos project area, the
manv other small grains (e.g., barley, oats, spring wheat, etc')
are dxtremely difhiult to consistently discriminate' The dif-
ferences in farm management practices, most importantly.
those arising from part-icipation in state/federal conservation
reserve programs, cause ai much local variation in reflec-
tance patter"ns as does the TM scene acquisition date (Figures

I
8 8 5
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Figure 15. User's accuracy versus Kappa.
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Figure 13. Ninety-five percent upper and lower confidence
limits.
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5 through Z). While the acceptable user's accuracy (79.2 per-
cent) may gile the impression that the category has been
pa.pqgd reliably, the low producer's accrltuiy joo.e percent)
is indicative that a signifiCant amount of the referenie infor-
mation has been omitted from that landscape class.

The above discussion can easily be extbnded to all map
categories, but the fundamental concern to the users of the'
classified^map data is ]row the patterns of accuracy/error re-
late to differences in the spatial allocation of anthropogenic
and biogenic emission rates. For example, commissibn errors
for the GR category, comprising 31.b percent of the total
LMOS area, are conspicuous in that they are distributed
across ten landscape classes. Unfortunitely, the majority of
the omission and commission errors associated witir the cn
class_occur with nC agriculture and ou forest, two categories
which possess biogenic emission rates several orders oi
magnitude higher than any vegetative category. What is for-
tuitous is that the emission rate for grasslandls more compa-
rable to that of small grains and theiefore does nor
signifi cantly_ affect thJ proposed mod eling for that landscape
class. It is, therefore, important to recognize the pattern of
such errors in order thaf they may be compensatld for in the
photochemica-l grid modeling. One method- of increasing the
reliability of the proposed model is to merge selected cit"go-
ries which are c-ompatible in terms of biogenic/anthropogelnic
emission rates (for example, SG-+cR), thereby minimizing the
errors of commission and omission

Confidence Level Testing
The estimated mean probability of correct classification for
each land-use and land-cover category is a random variable
with a binomial probability distribution. The associated sta-
tistical enor of an accur-acy estimate is computed based upon
estimates of the mean of each binomial distribution, and ii is
useful to express this error in the form of an interval within
which the true accuracy of each map category lies. As such,
it provides an additional, important source of information to
the map user. The two-tailed 95 percent confidence limits for
a binomial distribution are determined as follows (from Rich-
a rds ,1986 ) :

/ ' '{n - x)x + " t .92 'L + 1.960.1/^ ' : : -  - : : l  +  0.960
t n

n + 3.842

where n is the number of samples for a category or entire
map arrd x is the number of correct sample pixbts.

. The great disparity in the confidence limits among the
various mapping categories is evident in Figure 13, with the
ML and CL tbrest, OR, and SG categories having the greatest
uncertainty attached to them. With the exceptlon of the sc
class for the reasons explained above, this uncertainty can be
directly attributed to the inability of the stratified sampling
procedure to provide sufficient numbers of test pixels, "

The confidence limits computed for the overall classifi-
cation yielded acceptable results, with a lower limit of eq.gS
percent and an upper limit of eZ.gZ percent, and the large
number of test samples ensured the narrow ranqe of ,rn".-"r-
tainty of 2.67 percent. Because it is of principafinterest to
assess how well the overall classification mei the minimum
standard of 85 percent accuracy, a one-tailed lower confi-
d-ence limit is more appropriate and is determined as follows
(from fensen, 1986):

1030
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where p is the accuracy of the classification map expressed
as.a.percent, p is the overall percentage correct from the
original error matrix, q : 10O - p, and n is the sample size.

The lower confidence limit for the overall classi^fication
is computed to be 85.20 percent, and thus the user can be
confident that the analysis exceeds the 85 percent overall ac-
curacy criterion.

Kappa Coefficient of Agreement
The individual measures discussed above each estimate error
and assess accuracy utilizing only a portion of the contin-
genc-y matrix, and the differing interpretations which result
can be a source of unnecessary confusion to the map user.
The Kappa coemcient of agreement is both gaining irr..u"r-
ing. acceptance in the remote sensing commirnity ("Hudson
and Ramm, 1987) and is attractive in that it effectivelv sum-
marizes the entire error matrix to a single statistic. Originally
devis-ed by Cohen (1960) and Bishop iszs), and recori-
mended for use in remote- sensing applications by Congalton
et al. fisas) and Rosenfield and Fitipatrick-Llns irgao)] the
Suppu coefficient is a quantitative m-easure of the difference
between the observed agreement between two images/maps
(the traditional "overall-percentage correct,,) and tf,e agree-
ment that may be contributed solely by the chance malching
of the two images/maps (derived piiniipallv from lhe off-di]
agonal elements). In effect, the Kappa cbefficient adjusts the
overall percentage correct measure by subtracting the esti-
mated contribution of chance agreement, which i"s to infer
that_the agreement between the two images/maps cannot be
attribuled exclusively to the "success" oT the computer clas-
sification. An excellent, general discussion of the kappa co-
efficient of agreement is iontained in Campbell (rg8oi and is
derived as follows (from Hudson and Ramm, rcAz): 

'

r ^ r  T  . .
llV Lt Aii - X,*t '  X t J

(* - ,4 X,*.X*,)
where N : total number of sample points,

x,, : cell value of rlh row and rth column,
x+i : sum of row values in rth column, and
xi, :  sum of column values in j th row.

Table 6 shows that the estimate of the Kappa coefficient
for the overall classification performed 83.B p6ricent better
than if the. sample pixels_weie assigned to random map cate-
gories. This is strong evidence that chance occurrencels not
an important factor in the performance of the overall classifi_
cation. In order to assess the accuracy of individual map cat_
egories in comparison to the referenc-e data, the condit ional
Kappa coefficient must be utilized and is derived as follows
(from Gong and Howarth,1.992):

The estimated conditional Kappa coefficients for individ-
ual classes indicate that chance oiir.r"n"" is potentiallv
significant in several map categories, primarily those faliing
below fr : B0 percent {Figure i+;. nxamination of Figures i
to 6 suggests a variety of reasons for the lowered con-ditional
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Kappa coefficient values, including unsatisfactory confidence
ranges, a high proportion of errors of omission or commis-
sion, or decreases in user/producer accuracy percentages.
Figure 15 reveals that there is a strong positive relationship
(Pearson's r: 0.9841, r 'z : 96.85 percent) between the con-
ditional Kappa coefficient values and the user's accuracies
for the weighted categorical data contained in Table 6. Fur-
thermore, when the original, unweighted categorical data for
the 1L TM scene areas are utilized instead of the summarized
data shown in Table 6, this strong relationship is maintained
(Pearson's r : 0.9934, .r" : 98.68 percent). This high correla-
tion may in part be obvious, because the determinant of the
conditional Kappa coefficient incorporates the summation of
classifi.ed data, which is the basis for calculating the user's
accuracy.

The relationship between user's accuracy and the condi-
tional Kappa coefhcient was also determined for all Luos
categories on a scene-by-scene basis. Despite the significant
correlation (Pearson's -r2 > 99 percent) between the condi-
tional Kappa coefficient and user's accuracy for the maiority
of individual categories, Figure 15 shows small disparities
for a few categories (cn, nc, and DU classes, respectively),
though the correlation is still quite high (Pearsons rQ = 94.'L
percent, 97.1 percent, and 98.1 percent, respectively). These
disparities are associated with map classes that have the-larg-
est numbers of test samples (see Table 6), and are related to
the fact that the conditional Kappa coefficient uses the total
number of sample points (N) as a weight. The conditional
Kappa coefficient is therefore sensitive not only to tt-re num-
bei of sample points in each map class, but also to the distri-
bution of off-diagonal elements within the contingency
matrix. Because the user's accuracy does not incorporate N
in its derivation, the largest disparities between these two
statistical measures will occur within individual map classes
with larger numbers of test samples, in which the potential
for higher proportions of off-diagonal elements is greater. Co-
incidentally, the Grassland & Other Agriculture, Row Crops,
and Deciduous Upland forest categories were the most
highly-sampled map classes in the Lake Michigan Ozone
S[di, indiiative of their respective dominance within the
study area. Furthermore, these land-cover categories also re-
quired substantially more effort in their interpretation from
the remote sensor data (as is manifested in the larger propor-
tion of off-diagonal errors).

Conclusions
The creation of a comprehensive land-use and land-cover in-
ventory utilizing Landiat rM data has been completed for a
first-time application of such data with air quality modeling.
The anthropbgenic and biogenic emission rates for each of
the map caiegories has been established, and the increased
spatial and taxonomic resolution of the completed database
will facilitate photochemical grid modeling at an order of
magnitude higher than heretofore has been accomplished
with land-use and land-cover information.

During the year-long extent of the project, the authors
experienced many procedural and conceptual problems
wliich are fiuther magnified when attempting such a large-
scale mapping projeci as the Lake Michigan Ozone Study.
Even though much research has been conducted on classifi-
cation and accuracy assessment techniques as they apply to
map products derived from remote sensing data, after more
than iwo decades of land-based remote sensing, there ate as
yet no universally accepted strategies. For example, the au-

thors suggest that further investigation is warranted to clarify
the many, subtle interrelationships existing among-the vari-
o,rt a"".ltu"y/ertor measures currently utilized with maps- de-
rived from iemote sensing data. The question is not whether
one particular statistical measure should be utilized in place
of another, but rather, how can the comparability be im-
proved regarding map products produced from remote sens-
ing data. tl,rch irore fundamentil research is needed to
esiablish standard approaches, and, until then, the producers
of remote sensing dita products must carefully document the
procedures empl6yed for the users of such information.
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