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The Lake Michigan Ozone Study:
An Application of Satellite-Based
Land-Use and Land-Cover Mapping to
Large-Area Emissions Inventory Analysis

Donald E. Luman and Minhe Ji

Abstract

Recent research has revealed that emissions arising from
both man-made (anthropogenic) and vegetative (biogenic]
sources contribute to ground-level ozone problems on a re-
gional scale. To properly estimate emissions for the Lake
Michigan Air Quality Region, a photochemical reactive grid
model has been implemented based upon a comprehensive
land-use and land-cover inventory derived from the classifi-
cation of 11 scenes of Landsat-5 Thematic Mapper data. The
characterization of land use and land cover for large geo-
graphic areas presents unique problems, and this paper dis-
cusses the development of the inventory, the relationships
between biogenic/anthropogenic sources, as well as the spe-
cialized procedures devised to successfully complete the re-
mote sensing analysis. Of particular interest is the use of
U.S. Census TIGER data to stratify the classification of urban
versus rural areas, a variation of the traditional principal
components transformation approach to reduce the amount
of waveband data, and the strategies employed to conduct
accuracy assessment.

Introduction

The Clean Air Act Ammendments of 1990, which ended
nearly a decade of political stalemate over the nation’s air
quality laws, imposed new federal standards regarding urban
smog, toxic air pollution, and acid rain. Based upon existing
air quality levels, various political jurisdictions within the
United States have been segregated into designated nonat-
tainment areas. There are several such nonattainment areas
pertaining to ground-level ozone in the vicinity of Lake
Michigan, and they are collectively referred to as the Lake
Michigan Air Quality Region (LMAQR), comprising nearly
120,000 square kilometres (Figure 1). Despite the adoption of
emission control measures within the LMAQR during the
1980s, the states of Illinois, Indiana, Michigan, and Wiscon-
sin have continued to experience numerous violations of the
ozone National Ambient Air Quality Standard (NAAQS). The
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Lake Michigan Ozone Study’ (LMOS) was initiated by the
Lake Michigan States to develop a regional solution to the
ground-level ozone problem. The goal of the study is to pre-
pare a photochemical reactive grid model of the formation
and transport of ozone that will be used to support the de-
velopment of a regional control plan.

Both man-made (anthropogenic) and natural (biogenic)
precursor emissions (e.g., hydrocarbons and oxides of nitro-
gen) contribute to ozone air quality problems. Research ex-
tending back to the mid-1960s has established that biogenic
emissions arising from organic compounds may be compara-
ble to, or even exceed, the non-methane hydrocarbon-based
emissions from anthropogenic sources on a regional scale
(Table 1). Biogenic emissions have been found to be highly
reactive compounds which can contribute to the formation of
tropospheric ozone (Winer, 1989) and may perform an im-
portant role in the production of ground-level ozone. While
Winer acknowledges the fact that many vegetative species
emit significant amounts of hydrocarbons is well-docu-
mented, there is essentially little or no quantitative informa-
tion on emission factors for agricultural crops. The dearth of
information is attributed to the emphasis given to assessing
biogenic emissions for selected vegetative species including
forests, scrublands, and grasslands, as well as those which
are prevalent within urban airsheds.

The total assigned plant emissions (TAPE) provides an
approximation of the relative emissions factors for differing
plant species, and the various agricultural crops examined in
the Winer study can be qualitatively grouped by orders of
magnitude using TAPE emission rates (Table 2). Pasture/
wheat and alfalfa/cherry/sorghum are shown to be included
in the low- and medium-emissions categories, respectively,
which are agricultural crops of particular importance within
the LMAQR. In a related study, it was revealed that there was

"The Lake Michigan Ozone Study is jointly funded by the U.S. Envi-
ronmental Protection Agency and the states within the Lake Michi-
gan Air Quality Region, and is administered by the Lake Michigan
Air Directors Consortium.
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Figure 1. Lake Michigan Air Quality Region. Each dot rep-
resents an urban or built-up area, with the larger dots de-
lineating the largest urbanized areas within the LMAQR.

TABLE 2. QUALITATIVE GROUPING OF AGRICULTURAL CROPS BY RATES (UG
HR 'GM ') oF ToTaL AssIGNED PLant EMIssions (FrRom WINER, 1989).

at least two orders of magnitude difference in the non-meth-
ane hydrocarbons (NMHC) emissions between alfalfa/wheat
and corn. Furthermore, the emission rates for deciduous for-
est species are comparable to or exceed that of corn, with
one coniferous species (loblolly pine) exhibiting NMHC emis-
sions several orders of magnitude higher than those of agri-
cultural crops or deciduous forest species (Table 3). In
airsheds such as the LMAQR where both forest and agricul-

TasLe 1. Non-MEeTHANE HYDROCARBON EMISSION TOTALS FOR THE LAKE
MicHican Alr QuaLiTy ReGION (Source: LMADCO).

Low Middie High
<7 1-10 >10

Bean Alfalfa Pistachio
Nectarine Almond Rice
QOlive Apricot Tomato
Orange Carrot
Pasture Cherry
Wheat Cotton

Grape

Lemon

Orange

Peac

Plum

Safflower

Sorghum

Walnut

tural plant species are abundant, and whose biogenic emis-
sions can surpass anthropogenic sources, these sources must
be accounted for in any regional emissions inventory.

When combined with land-use data or biomass distribu-
tion maps, data from emissions studies permit calculation of
an explicit gridded emissions inventory (Figure 2). In the
past, such inventories have customarily been based upon
generalized land-use and land-cover information, including
U.S. Geological Survey Land Use and Land Cover and Asso-
ciated Map data (USGS LU/LC) (Loelkes et al., 1983), county-
level comprehensive plans, and state-level land-use and
land-cover inventories, among others. Such data sources lack
sufficient taxonomic resolution to account for the significant
differences in biogenic emissions acquired from recent re-
search. For example, the USGS LU/LC classification system
(Anderson et al., 1976) aggregates row crops and pasture at
Level II (e.g., category 021, Cropland and Pasture), two agri-
cultural crops which possess differences in emissions rates
of several orders of magnitudes. Furthermore, the USGS LU/LC
data are seriously outdated for much of the LMOS project
area, with the dates of the source materials extending from
1971 through 1982. Given the factors of temporal and spatial
variability in biogenic and anthropogenic emission rates
across the LMAQR, a current inventory of land-use and land-
cover databases needed to be developed which exceeded the
spatial and taxonomic resolution of previous emissions in-
ventories. After much discussion and debate, a compromise
classification scheme incorporating 18 land-use and land-

TaBLE 3. Emission Rate EsTiMaTES (30°C)(uG cm—* HR ) (FROM WINER,

1989)
Source Category Emissions (kg/day)
: Type Examples Isoprene  w-Pinene  Other NMHC
Motor Vehicles 570,000
High isoprene Oak 229 0 1.8
Point Sources 630,000 Low isoprene Sycamore 8.4 0 23
(Industrial Operations) Deciduous, aple 0 1.4 4.3
no isoprene
Area Sources 750,000 Coniferous Lobilolly Pine 0 28 8.0
(Commercial/Consumer Operations) Agriculture Alfalfa, Wheat o 0.015
Tobacca - 0.35
Biogenics 1,400,000 Com 2.0
- Other ~  we e 0.015
Total Emissions 3,350,000 Water e - 145ugmhr”
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Figure 2. Non-methane hydrocarbon emissions from bio-
genic sources in the Lake Michigan Air Quality Region.

cover categories was adopted (Table 4). These categories
were selected both for their compatibility with satellite-based
sensor systems as well as their importance in maintaining
the principal objectives of the LMOS project.

Data Sources

Selection of an Appropriate Primary Data Source

The 1.MOS photochemical reactive grid model uses a three-di-
mensional grid structure to cover the region of interest. The
horizontal dimension of the grid cell model is typically on
the order of 4 to 5 kilometres, and emissions information for
this spatial scale, or smaller, is anticipated for the proposed
modeling. The need for land-use and land-cover data on this
scale over the entire LMAQR therefore imposes special limita-
tions on potential data sources. Landsat-5 Thematic Mapper
(T™M) satellite data were selected as the primary data source
for development of the land-use and land-cover database, ap-
propriate given the potential range in spatial resolution para-
meters expected for the grid model. To ensure that important
contrasts in vegetative phenology were captured, multitem-
poral data sets were initially considered; however, budgetary
constraints resulted in the acquisition of a single coverage,

PE&RS

Tagle 4. LAKE MicHigan OzoNE STUDY CLASSIFICATION SCHEME.

Information Class Comments Abbrev.

High Density Urban Com?ercialfindustrialz >90% impervious HD
surface

Medium Density Urban Com;werciavresidential: 50-90% impervious MD
surface

Low Density Urban Residential/open space;<50% impervious LD
surface

Transportation Major roadways derived from USGS DLG TR
Transportation

Row Crops Maijor Commaodity crops, e.g., corn/soybeans RC

Small Grains Major Commodity crops, e.g., wheat/oatsirye SG

Grassland & Other Ag. Predominately open space, scrubland, hay ~ GR

Orchards Major orchards derived from USGS LU/L OR

Upland Deciduous Forest DU

Lowland Deciduous Forest DL

Upland Coniferous Forest cu

Lowland Coniferous Forest CL

Mixed Upland Forest MU

Mixed Lowland Forest ML

Undifferentiated Water Permanant open water; lakes and ponds, WA
rivers, etc.

Undifferentiated Wetland  Persistent, mostly palustrine wetland habitat  WT

Rangeland RA

Barren Land Quarries, ruderal land, etc. BL

late spring/early summer “snapshot” of the LMOS study area.
Eleven TM scenes were selected with acquisition dates incor-
porating three calendar years and spanning almost two
months in vegetative phenology (Figure 3). Given that impor-
tant phenological changes occur in the upper Midwest ap-
proximately at the rate of 7 to 10 days for every degree of
geographic latitude, the 5° latitudinal extent of the LMOS pro-

Figure 3. Landsat 5 TM scene selection. Due to persist-
ent cloud cover over Path 22/Row 29, portions of two ™™
scenes were used.
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ject area constituted an additional, important factor in the se-
lection of the satellite data.

All ™™ data sets had pre-processing procedures applied
and included (1) geocoding of the image data to the Univer-
sal Transverse Mercator Projection, UTM Grid Zone 16, and
resampling to a 25- by 25-metre spatial resolution, and (2)
terrain correction. Even though the local relief within any
single Landsat T™ data set does not exceed 150 metres, the
terrain correction procedure performed by STX Corporation
also ensures the mosaicking ability of adjacent ™ scenes. To
facilitate the proposed grid modeling, a convenient means for
subsetting the completed land-use and land-cover map data
was required. Accordingly, each T™ data set was subse-
quently trimmed to conform to the USGS 1:100,000-scale
quadrangle areas contained within the respective T™ scene
area (Figure 4).

Selection of Ancillary Data Sources

The physical dimensions of the LMOS project area precluded
any systematic field verification. Two additional sources of
image data were acquired to complement the T™ data sets
and provide the higher resolution necessary to conduct the
classification and post-classification accuracy assessment pro-
cedures. A 15 percent sample, or approximately 700 individ-
ual frames of color-infrared photography from the National
Aerial Photography Program (NAPP) and National High Alti-
tude Photography (NHAP-2), was selected using a systematic
sampling scheme. The LMOS project area manifests no pro-
nounced topographic lineaments or other alignments; there-
fore, this sampling approach ensured a proper level of
landscape stratification while also adhering to budgetary con-
straints. While much of the photography differed by 1 to 2
vears and some as much as 4 years in calendar date from the
T™ scene data, with several frames differing only by several
days, the majority of the photography spanned only 1 month
in phenology. This meant that persistent landscape features
such as forested land. wetland, water, etc., could be accu-
rately interpreted. Because the nominal photographic scales,
orientation, and location of all flightlines are known, system-
atic variables for the NAPP/NHAP-2 programs, an ARC/INFO GIS
map coverage was created which defined the areal extent of
each frame of photography.

A second photographic data source involved the acquisi-
tion of USDA-ASCS 35-mm Color Compliance photography.
Each slide is acquired in a near-vertical orientation and por-
trays approximately one PLSS section (259 hectares) of land
area. Typically acquired in the upper Midwest during the
summer months, the photography portrays an unusually high
level of feature detail (Figure 5). While the photography is it-
self valuable, it is the ASCS-578 and ASCS-156EZ crop report
information developed from a combination of photointerpre-
tation and farm manager data at the local ASCS office that is
of even more interest. For a modest charge, the individual
county ASCS office can compile a lithographed ““photo-map”
delineating each field and specific crop type for a desired
crop year (Figure 6). The ASCS Compliance information was
acquired for a sample of 26 counties which were determined
to be representative of the diversity and prevalence for agri-
cultural crops within the LMOS study area. The UTM coordi-
nates for the centroids of all fields identified within these
data were digitized for each T™ scene area and encoded with
the crop type. This approach significantly improved the abil-
ity to characterize agricultural lands with a measured level
of accuracy, a landscape which combines spatial diversity
with a high degree of spectral and temporal variation.
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Figure 4. Landsat T™M scene areas as subsetted by USGS
1:100,000-scale map coverage. Compare with Figure 2.

Analysis

Data Reduction by Principal Components Transformation
Because of the large-scale nature of the study, a method of
reducing the substantial amount of image data was deemed

Figure 5. USDA-ASCS 35-mm color compliance photography
acquired over Sun Prairie Township in Dane County, Wis-
consin during June, 1990. Compare with Ascs Crop Re-
port information shown on Figure 6.

PE&RS
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Figure 6. Ascs Crop Report *‘photo-map’’ corresponding
to Figure 5. Older aerial photography is typically utilized
as the base for annotating the individual fields. Approxi-
mately one PLSS section of land is enclosed.

necessary, and a principal components transformation (PCA)
was selected because it is a widely recognized and efficient
procedure for eliminating the redundancies inherent in mul-
tispectral data (Table 5a) (Showengerdt, 1983; Richards,
1986; Gong and Howarth, 1990). Table 5b presents the factor
loading matrix for the Path 23/Row 30 scene data after the
initial stage of the PCA model, with the first three compo-
nents accounting for 98.97 percent of the total variance (Ta-
ble 5¢). Because the greatest drop-off in eigenvalues occurs
between Component 3 and Component 4 and this has tradi-
tionally been used as a cut-off criterion (Rummel, 1970),
components beyond this level were eliminated from any fur-
ther consideration. This procedure effectively reduced the

amount of data which needed to be processed to only 43
percent of the original waveband information.

Component 1 is actually what is referred to as a “total
brightness image’” (Richards, 1986) because most of the T™
bands load high on that component. This factor pattern is
typical of remote sensing applications which employ the
standard (initial) principal components transformation, actu-
ally an unrotated factor method. The authors elected instead
to utilize a varimax rotation method for the PCA transforma-
tion, a standard PCA option in most statistical program pack-
ages such as SAS, SPSS, and BIOMED, among others. The
advantage of this approach is that, while the amount of total
variance is unchanged, the interpretability of the output
component images is greatly enhanced. After varimax rota-
tion, the factor loading matrix exhibits a strong pattern of
correlated bands for the first three components (Table 5d)
and can be visually interpreted much like the original Land-
sat T™™ data set (Figure 7). This is an important consideration
because many decisions concerning the identification of
landscape elements are ultimately still dependent upon the
analyst’s direct interpretation of the color and/or tone.

Pre-Classification Procedures
ERDAS image processing software was utilized for the major-
ity of the image analysis and raster GIS operations. Prior to
the classification stage, spectral signatures were extracted
from each PCA data set utilizing an Isodata K-means cluster-
ing procedure (Duda and Hart, 1973), and experimentation
indicated that 200 to 250 spectral clusters should be derived
for each data set. The separability of all possible pairwise
combinations was assessed utilizing the transformed diver-
gence statistic (Whitsitt and Landgrebe, 1977), and the
authors discovered that equal or greater separability is main-
tained at lower transformed divergence values when utilizing
principal component feature bands as compared to untrans-
formed image data sets, due presumably to the independent
nature of the component data. A transformed value of 1600
for all TM scene areas was utilized as the threshold of separa-
bility, reducing the original 200 to 250 clusters to approxi-
mately 100 merged clusters.

To ensure that the spectral signatures for urban and

TasLE 5a. CoORRELATION/CoVARIANCE MaTRix oF TM Scene PatH 23/Row 30.
TaBLE 5c.  EIGENVALUES AND ProPORTION OF VARIANCE FOR TM Scene 23/30
BAND 1 BAND 2 BAND 3 BAND 4 BAND 5 BAND 6 DatA SET.
BAND 1 22388' 0.9053° 08624  0.0311 0.3017  0.4709
BANDZ 30.42° 892 0.9356 g,oom 04135 05335 PCA1 PCA2 PCA3 PCA4 PCAS PCA6
BAND3 ~ 23557 15022 287.42 0.0200 05545 07318 pigenvaue 191524 79633 18686 2059 859 091
i e e A IOD'5°559290 0006 Diference 111891 60947 18627 1200 767
BAND 6 53331 16037 329‘55 3687 69061 5:?&_35 Variance 65.40% 27.19% 6.38% 0.70% 0.29% 0.03%
2 * ) ke 0. Cumulative 65.40%  92.59%  98.97%  99.68% 99.97%  100.0%
"Variance: 2Pearson Product Moment Correlation; *Covariance
TasLe 5d. PCA RoTaten FAcTOR LoADING PATTERN MaTRix RoTtation METHOD:
TagLE 5b.  INmAL Factor MEeTHOD: PRINcIPAL COMPONENTS FACTOR LOADING VARIMAX.
PatTern ForR TM Scene 23/30.
Component 1 Component 2 Component 3
Component 1 Component 2 Component 3 ‘Visible” ‘Mid-1R" ‘Near-IR’
BAND 5 0.97323 0.14250 -0.16697 BAND 1 0.94430 0.27455 -0.10724
BAND 6 0.96364 -0.18443 -0.10566 BAND 2 0.91463 0.37619 -0.01018
BAND 3 0.87119 -0.32041 0.35161 BAND 3 0.83177 0.53206 -0.10168
BAND 2 0.79518 -0.26284 0.52610 BAND 5 0.33549 0.91430 0.21648
BAND 1 0.71278 -0.36798 0.57888 BAND 6 0.47490 0.86122 -0.08097
BAND 4 0.13648 0.97841 0.15248 BAND 4 -0.09195 0.06855 0.99298
PE&RS 1025
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Figure 7. Landsat TM image acquired on 24 June 1990,
and displayed using Principal Components 1, 2, and 3.
The field patterns shown in Figures 5 and 6 are at the

scene center.

built-up lands were properly characterized during the un-
supervised training stage, the Place Boundaries for all
incorporated areas (Figure 1) were extracted from the 1990
post-Census TIGER database and used to separate urban areas
from the PCA data sets (Figure 8). Subsequently, 100 to 125
spectral clusters for each TIGER-based PCA data set were de-
rived and, in contrast to the non-urban PCA data sets, no sig-
nature merging was performed in order that subtle urban
landscape elements were not inadvertently combined. This
innovative use of TIGER data was demonstrated throughout
the LMOS project to be very effective, especially in a large-
scale study where urban and built-up lands constitute a
small but important percentage of the overall landscape.

Classification Procedures

The performance of several standard classifiers, including
minimum-Euclidean distance, minimum-Mahalanbois dis-
tance, and non-thresholding maximum-likelihood, were
evaluated for a test area prior to the classification of the pca
data sets. The results indicated greater improvement in clas-
sification accuracy would be achieved from the use of a max-
imum-likelihood classifier, and this is supported by recent
research (Gong and Howarth, 1990).

Post-Classification Procedures

The result of the classification stage were two classification
maps (urban and non-urban) for each T™ scene area, each
comprised of approximately 100 spectral classes. Several
post-classification procedures were imposed upon the classi-
fication maps:

® Because a fundamentally unsupervised approach was
utilized, each spectral class was assigned to the most appro-
priate LMOS category through careful comparison to all availa-
ble ancillary information.

® The final classification maps often delineated the transporta-
tion network inconsistently. Therefore, major roadways, rail-
roads, and airports derived from the USGS 1:100,000-scale

1026

Digital Line Graphs were imposed upon the final classifica-
tion maps by a raster GIs model.

® It was impossible to delineate the Orchards category through
spectral classification. This category was delineated princi-
pally by imposing the Orchards category derived from Level
II, USGS LU/LC data onto the final classification. A raster Gis
model was used to preserve certain landscape elements (e.g.,
forested and grassland areas) within the generalized orchard
areas in order to impart a more “natural”” appearance.

® The compromise classification scheme required that forested
tracts within the LMOS study area be separated into upland
and lowland phases. The use of the 1:250,000-scale DEMs
proved to be of little use due to the three-arc-second resolu-
tion, especially within the southern half of the project area
where the occurrences of forest were primarily restricted to
riverine areas. Buffers created along the perennial streams de-
rived from the USGS 1:100,000-scale DLG Hydrography were
used to reclassify upland forest to their respective lowland
counterparts. This methodology was refined in the northern
portion of the project area where extensive tracts of lowland
forest do exist. The Marsh category from the LG Hydrogra-
phy was used as a Boolean mask to reclassify not only low-
land forests, but also to segregate wetland habitat from the
Grassland & Other Agriculture category.

® The urban and non-urban classification maps were subse-
quently combined using a raster Gis model and recoded to
create a single 18-category classification map for each T™ area
(Figure 9). Every effort was also made to ensure the transition
between classification maps derived from differing dates of
imagery was as consistent as possible (Figure 10). A con-
strained logical filter was applied to the completed maps to
remove isolated artifacts while preserving linear features.

Accuracy Assessment Analysis

Sampling Scheme and Sample Size

While sufficient research has been conducted on the topic of
sample size determination to establish general guidelines,
there have been few systematic investigations critically eval-
uating the sampling schemes used to assess the accuracy of

Figure 8. Landsat TM data set acquired on 30 June
1989, which has been clipped for the Milwaukee, Wis-
consin area using the 1990 TIGER Incorporated Place
Boundaries. Principal Components 1, 2, and 3 are dis-
played.

PE&RS



PEER-REVIEWED ARTICLE

Figure 9. Final classification of the Milwaukee, TIGER-
based PCA data set. White delineates high-density urban
land cover, while the medium-gray and dark-gray toned ar-
eas represent medium and low-density urban land cover,
respectively.

land-use and land-cover maps derived from remote sensor
data. Congalton (1988) used three generalized landscape clas-
ses (e.g., forested, agricultural, and rangeland) to evaluate
five most commonly used sampling strategies, including sim-
ple random sampling, stratified random sampling, cluster
sampling, systematic sampling, and stratified systematic una-
ligned sampling. He concluded that systematic and stratified
systematic unaligned sampling should not be used within
predominantly agricultural landscapes, because these two
sampling schemes consistently overestimate the population

Figure 10. Juncture of classification maps derived from
two separate Landsat TM scene areas. The join line has
been purposely enhanced to depict the transition area.

PE&RS

mean. Simple random sampling performs adequately for all
three landscapes, and stratified random sampling is advised
to ensure that small but important landscape areas are sam-
led.
K The LMOS project area contains significant tracts of both
forested and agricultural land cover. Furthermore, the agri-
culture category is subdivided into three subclasses, creating
numerous small areas and increasing the spatial complexity
of this landscape. A random sampling scheme stratified by
landscape category was therefore deemed most appropriate.
A second level of stratification was also emplaced upon the
sampling by utilizing the ARC/INFO coverage created for the
reference aerial photography as a binary mask to stratify
sample point selection, such that all map areas outside of the
photo areas were disallowed for sampling.

Because of the diversity in scene acquisition dates, varia-
tion in T™ scene quality, and changes in phenological condi-
tions across the LMOS project area induced both by latitude
and the year-to-year differences in ground conditions, the
computer classification was conducted on a scene-by-scene
basis. This required that the accuracy assessment procedures,
and therefore the point sampling, also be carried out on the
same basis. The stipulated level of mapping accuracy for the
project was stated such that only the overall accuracy must
attain at least 85 percent. Each classification map can be con-
sidered as a separate statistical population possessing a bino-
mial distribution, and the appropriate sample is derived as
follows (from Jensen, 1986):

_4-p-q
N="@

where p = expected percent accuracy (e.g., 85 percent), g
= 100 — p, and E = allowable error (e.g., 5 percent).
Because the accuracy assessment phase included no ac-
tual field work, lowering the allowable error assists in offset-
ting procedural errors (Fitzpatrick-Lins, 1981), thereby
decreasing the probability of chance error. Reducing the al-
lowable error slightly to a value of 4 produces a minimum
sample size (N) of 319 points for each TM scene area. Table 6
is the contingency matrix showing the disposition of all sam-
ple pixels derived from the sampling of classification maps
for the 11 T™ scene areas. Although the accuracy assessment
procedures were carried out on a scene-by-scene basis, the
accuracy/error statistics for all 11 scene areas have been
composited into a single contingency matrix for the purpose
of discussion. This was accomplished by weighting the indi-
vidual categorical accuracy/error data contributed from each
TM scene area utilizing the respective ground areas for each
mapping category.

Classification Accuracy versus Classification Error

Traditionally, the omission and commission errors are pre-
sented in conjunction with the contingency matrix. The for-
mer represent those sample pixels pertaining to an actual
class on the landscape which the computer classification has
failed to recognize (off-diagonal column elements), while the
latter refers to those sample pixels from other landscape clas-
ses which the computer classification has incorrectly as-
signed as belonging to the particular landscape class of
interest (off-diagonal row elements). The interpretation of
omission and commission errors is often a source of confu-
sion to the user, and it is sometimes more expedient to have
a simple measure of categorical accuracy. The terms *'produ-
cer’s accuracy” and ‘“‘user’s accuracy’’ have therefore been
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TABLE 6, CONTINGENCY MATRIX AND WEIGHTED SUMMARY STATISTICS FOR LMOS PROJECT AREA.

Reference Data

Total Total

HD MD LD TR RC SG GR OR DU DL CU CL MU ML WA WT BL Samples Km? UA(%)* CE(%)* &(%)*

HD 90 4 2 3 2
MD 5 118 4 2 1
LD 4 10 63 2 5 { 1
s TR 37 2
s RC 1 3 902 13 65 1
Q SG 5 92 13 1
~ GR 1 6 3 76 50 796 0 6 3
S OR 25 1
= DU 1 2 6 37 63 14 2
<DL 5 3 9 4 146
® cu " 1 1 83
o h%li] 1
= 7 3 6
© M 1 1 3
WA 1 1 1
WT 2 2 5 2
BL 3 1

1 1 108 21745 836 209 829
1T 1 182 32655 907 86 899
1 87 9296 713 376 707

39 7818 917 107 916

983 354647 918 84 880

111 34273 792 169 779

2 5 988 37.860.1 79.1 232 73.0
26 4352 979 41 979

9 1 3 714 18,7336 900 108 875
2 3 8 180 37201 842 161 83.2
8 T 1 96 17596 827 207 820
T 20 248.1  89.1 09 891
57 1 4 79 18375 751 320 737
15 1 21 4964 755 382 753
161 164 75069 983 1.7 983

1 2 66 80 16052 723 177 717

38 42 246.8 926 178 926

Total 104 142 72 37 998 165 936 26 691 179 98 20 79 22 164 90 41 3,864 120,292.8 %=85.0 X=15.7 X=83.8

PA(%)* 89.7 80.3 88.5 99.8 89.0 60.4 81.9 93.3 92.3 79.7 80.0 82.3 80.8 76.8 99.2 71.2 96.1 x=84.8

OE (%)* 10.319.7 115 0.2 11.039.6 18.1 6.7 7.720.3 20.017.719.223.2 0.828.8 3.9 x=15.2

* User's Accuracy (UA), Commission Error (CE), Kappa Coefficient (&), Producer's Accuracy (PA), and Omission Error (OE) values have
been composited from the eleven TM scene areas and areally weighted. Information classes are in same order as Table 4.

advanced (Story and Congalton, 1986), and these measures
have been included as part of the contingency matrix for this
paper. The producer’s accuracy is so-called because the pro-
ducer (or originator) of the classified map is principally in-
terested in how well sample pixels from the reference data
can be mapped using the remote sensing data. In contrast,
the user’s accuracy is an indication of the probability or reli-
ability (Congalton and Rekas, 1985) that a sample from the
classification map actually represents that category on the ac-
tual landscape.

Comparison of the omission error and producer’s accura-
cies in Table 6 shows they are associated in a simple, in-
verse manner (e.g., PA% = 100 — OE% or OE% = 100 —
PA%). Unfortunately for the user, although authors have as-
sociated the user’s accuracy with commission error, these
Iwo measures are not similarly related. The commission er-
rors and user’s accuracy are computed using the column and
row marginal totals, respectively, an important distinction
because these totals can be quite different. In contrast to
omission error and producer’s accuracy, there may be little
actual correlation between commission error and user’s accu-
racy (Figures 11 and 12). Nevertheless, because it is the user
who must ultimately be reassured as to the integrity of the
maps interpreted from the remote sensing data, the categori-
cal data for Figures 11 through 15 (x-axis) have been ordered
according to the user’s accuracy.

From the viewpoint of the user, when the classified
maps for the entire LMOS project area are summarized, the
weighted overall mean for user’s accuracy is 85.01 percent,
Furthermore, the overall weighted mean for commission er-
ror is 15.7 percent. From the standpoint of the producer, the
weighted overall mean for producer’s accuracy is 84.8 per-
cent with a corresponding weighted overall omission error of
15.2 percent (Table 6). In the absence of any universal stan-
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dard regarding what level of error should be considered sig-
nificant, it is suggested that the widely accepted standard of
85 percent classification accuracy (Anderson, 1976; Ginevan,
1979: Hay, 1979; Aronoff, 1982; Rosenfield and Fitzpatrick-
Lins, 1982; Congalton, 1983) could be utilized to establish an
ad hoc criterion for classification error. Consequently, classi-
fied maps or individual map categories which exceed 15 per-
cent error should be identified and the patterns of error
should be examined more closely. Utilizing these two crite-

User's Accuracy

- Producer's Accuraéy
90 @ ] N -

95 =

80 | " - - A . —

Accuracy (%)

70

65

60 - ; ; ' ;
WA OR BL RC TR MD DU CL DL HD CU SG GR ML MU WT LD

LMOS Category

Figure 11. User's and producer's accuracy.
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Figure 12. Commission and omission errors.
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95
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80
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Figure 14. Kappa coefficient of agreement.

ria, the overall interpretation of the remote sensing data for
the LMOS project is shown to be at the threshold of accepta-
bility.

A cursory inspection of Figure 11 reveals that several of
the individual map categories exceed a user’s accuracy of 85
percent or higher, indicative of good reliability. The map
class which registered the lowest user's accuracy is LD urban
land cover (71.3 percent), perhaps not surprising given that
this landscape class tends to be more contextual in nature
and not spectrally distinct. The associated commission error
is significant (37.6 percent) (Figure 12) and is comprised of
sample pixels from seven other landscape classes. Con-
versely, the LD urban class achieved a high producer’s accu-
racy (88.5 percent) and therefore low omission errors (11.5

100

g5 N - _. —_— —
oY | | I I

75
70— — ~ -
65
60 : =
55
50 — = N -
45

Range (%)

0 . - -
WA OR BL RC TR MD DU CL DL HD CU SG GR ML MU WT LD
LMOS Category

Figure 13. Ninety-five percent upper and lower confidence
limits.

percent), indicative that comparatively little of the reference
data was misclassified.

Inspection of Figures 11 and 12 also shows that the SG
class is distinctive in terms of the disparity between user’s/
producer’s accuracies and the associated commission/omis-
sion errors. The success in characterizing this highly spa-
tially and temporally variable cover type lies in judicious ™
scene selection, and while the May-June period should cap-
ture much of the winter wheat in the LMOS project area, the
many other small grains (e.g., barley, oats, spring wheat, etc.)
are extremely difficult to consistently discriminate. The dif-
ferences in farm management practices, most importantly
those arising from participation in state/federal conservation
reserve programs, cause as much local variation in reflec-
tance patterns as does the T™M scene acquisition date (Figures

100 ————— —
Legend
[l user's Accuracy

_- Kappa

95 — —-

90

85

Percent (%)

70 LR . _ _
WA OR BL RC TR MD DU CL DL HD CU SG GR ML MU WT LD
LMOS Category

Figure 15. User's accuracy versus kappa.

PE&RS

1029




PEER-REVIEWED ARTICLE

5 through 7). While the acceptable user’s accuracy (79.2 per-
cent) may give the impression that the category has been
mapped reliably, the low producer’s accuracy (60.4 percent)
is indicative that a significant amount of the reference infor-
mation has been omitted from that landscape class.

The above discussion can easily be extended to all map
categories, but the fundamental concern to the users of the
classified map data is how the patterns of accuracy/error re-
late to differences in the spatial allocation of anthropogenic
and biogenic emission rates. For example, commission errors
for the GR category, comprising 31.5 percent of the total
LMOS area, are conspicuous in that they are distributed
across ten landscape classes. Unfortunately, the majority of
the omission and commission errors associated with the GR
class occur with RC agriculture and DU forest, two categories
which possess biogenic emission rates several orders of
magnitude higher than any vegetative category. What is for-
tuitous is that the emission rate for grassland is more compa-
rable to that of small grains and therefore does not
significantly affect the proposed modeling for that landscape
class. It is, therefore, important to recognize the pattern of
such errors in order that they may be compensated for in the
photochemical grid modeling. One method of increasing the
reliability of the proposed model is to merge selected catego-
ries which are compatible in terms of biogenic/anthropogenic
emission rates (for example, SG-GR), thereby minimizing the
errors of commission and omission.

Confidence Level Testing

The estimated mean probability of correct classification for
each land-use and land-cover category is a random variable
with a binomial probability distribution. The associated sta-
tistical error of an accuracy estimate is computed based upon
estimates of the mean of each binomial distribution, and it is
useful to express this error in the form of an interval within
which the true accuracy of each map category lies. As such,
it provides an additional, important source of information to
the map user. The two-tailed 95 percent confidence limits for
a binomial distribution are determined as follows (from Rich-
ards, 1986):

2 — X
X+ 1.921 + 1.960-\/"—“]————] + 0,960
n

n + 3.842

where n is the number of samples for a category or entire
map and x is the number of correct sample pixels.

The great disparity in the confidence limits among the
various mapping categories is evident in Figure 13, with the
ML and CL forest, OR, and SG categories having the greatest
uncertainty attached to them. With the exception of the sc
class for the reasons explained above, this uncertainty can be
directly attributed to the inability of the stratified sampling
procedure to provide sufficient numbers of test pixels.

The confidence limits computed for the overall classifi-
cation yielded acceptable results, with a lower limit of 84.95
percent and an upper limit of 87.62 percent, and the large
number of test samples ensured the narrow range of uncer-
tainty of 2,67 percent. Because it is of principal interest to
assess how well the overall classification met the minimum
standard of 85 percent accuracy, a one-tailed lower confi-
dence limit is more appropriate and is determined as follows
(from Jensen, 1986):
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where p is the accuracy of the classification map expressed
as a percent, p is the overall percentage correct from the
original error matrix, § = 100 — p, and n is the sample size.

The lower confidence limit for the overall classification
is computed to be 85.20 percent, and thus the user can be
confident that the analysis exceeds the 85 percent overall ac-
curacy criterion.

Kappa Coefficient of Agreement

The individual measures discussed above each estimate error
and assess accuracy utilizing only a portion of the contin-
gency matrix, and the differing interpretations which result
can be a source of unnecessary confusion to the map user.
The Kappa coefficient of agreement is both gaining increas-
ing acceptance in the remote sensing community (Hudson
and Ramm, 1987) and is attractive in that it effectively sum-
marizes the entire error matrix to a single statistic. Originally
devised by Cohen (1960) and Bishop (1975), and recom-
mended for use in remote sensing applications by Congalton
et al. (1983) and Rosenfield and Fitzpatrick-Lins (1986), the
Kappa coefficient is a quantitative measure of the difference
between the observed agreement between two images/maps
(the traditional ““overall percentage correct”) and the agree-
ment that may be contributed solely by the chance matching
of the two images/maps (derived principally from the off-di-
agonal elements). In effect, the Kappa coefficient adjusts the
overall percentage correct measure by subtracting the esti-
mated contribution of chance agreement, which is to infer
that the agreement between the two images/maps cannot be
attributed exclusively to the “success” of the computer clas-
sification. An excellent, general discussion of the Kappa co-
efficient of agreement is contained in Campbell (1986) and is
derived as follows (from Hudson and Ramm, 1987):

WN-X X, - XX, -X.)

K

(N ~ E X.-X.)

where N = total number of sample points,
x;; = cell value of ith row and ith column,
x,; = sum of row values in jth column, and
x;, = sum of column values in ith row.

Table 6 shows that the estimate of the Kappa coefficient
for the overall classification performed 83.8 percent better
than if the sample pixels were assigned to random map cate-
gories. This is strong evidence that chance occurrence is not
an important factor in the performance of the overall classifi-
cation. In order to assess the accuracy of individual map cat-
egories in comparison to the reference data, the conditional
Kappa coefficient must be utilized and is derived as follows
(from Gong and Howarth, 1992):

: N-x; — X, * %,
K =—
Nex, — % X

The estimated conditional Kappa coefficients for individ-
ual classes indicate that chance occurrence is potentially
significant in several map categories, primarily those falling
below & = 80 percent (Figure 14). Examination of Figures 4
to 6 suggests a variety of reasons for the lowered conditional
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Kappa coefficient values, including unsatisfactory confidence
ranges, a high proportion of errors of omission or commis-
sion, or decreases in user/producer accuracy percentages.
Figure 15 reveals that there is a strong positive relationship
(Pearson’s r = 0.9841, r* = 96.85 percent) between the con-
ditional Kappa coefficient values and the user’s accuracies
for the weighted categorical data contained in Table 6. Fur-
thermore, when the original, unweighted categorical data for
the 11 T™ scene areas are utilized instead of the summarized
data shown in Table 6, this strong relationship is maintained
(Pearson's r = 0.9934, 1* = 98.68 percent). This high correla-
tion may in part be obvious, because the determinant of the
conditional Kappa coefficient incorporates the summation of
classified data, which is the basis for calculating the user’s
accuracy.

The relationship between user’s accuracy and the condi-
tional Kappa coefficient was also determined for all LMOS
categories on a scene-by-scene basis. Despite the significant
correlation (Pearson’s r? > 99 percent) between the condi-
tional Kappa coefficient and user’s accuracy for the majority
of individual categories, Figure 15 shows small disparities
for a few categories (GR, RC, and DU classes, respectively),
though the correlation is still quite high (Pearsons r* = 94.1
percent, 97.1 percent, and 98.1 percent, respectively). These
disparities are associated with map classes that have the larg-
est numbers of test samples (see Table 6), and are related to
the fact that the conditional Kappa coefficient uses the total
number of sample points (N) as a weight. The conditional
Kappa coefficient is therefore sensitive not only to the num-
ber of sample points in each map class, but also to the distri-
bution of off-diagonal elements within the contingency
matrix. Because the user's accuracy does not incorporate N
in its derivation, the largest disparities between these two
statistical measures will occur within individual map classes
with larger numbers of test samples, in which the potential
for higher proportions of off-diagonal elements is greater. Co-
incidentally, the Grassland & Other Agriculture, Row Crops,
and Deciduous Upland forest categories were the most
highly-sampled map classes in the Lake Michigan Ozone
Study, indicative of their respective dominance within the
study area. Furthermore, these land-cover categories also re-
quired substantially more effort in their interpretation from
the remote sensor data (as is manifested in the larger propor-
tion of off-diagonal errors).

Conclusions

The creation of a comprehensive land-use and land-cover in-
ventory utilizing Landsat TM data has been completed for a
first-time application of such data with air quality modeling.
The anthropogenic and biogenic emission rates for each of
the map categories has been established, and the increased
spatial and taxonomic resolution of the completed database
will facilitate photochemical grid modeling at an order of
magnitude higher than heretofore has been accomplished
with land-use and land-cover information.

During the year-long extent of the project, the authors
experienced many procedural and conceptual problems
which are further magnified when attempting such a large-
scale mapping project as the Lake Michigan Ozone Study.
Even though much research has been conducted on classifi-
cation and accuracy assessment techniques as they apply to
map products derived from remote sensing data, after more
than two decades of land-based remote sensing, there are as
yet no universally accepted strategies. For example, the au-
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thors suggest that further investigation is warranted to clarify
the many, subtle interrelationships existing among the vari-
ous accuracy/error measures currently utilized with maps de-
rived from remote sensing data. The question is not whether
one particular statistical measure should be utilized in place
of another, but rather, how can the comparability be im-
proved regarding map products produced from remote sens-
ing data. Much more fundamental research is needed to
establish standard approaches, and, until then, the producers
of remote sensing data products must carefully document the
procedures employed for the users of such information.
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