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A Fractal Approach to the
Glassification of Mediterranean Vegetation

Types in Remotely Sensed lmages
S.M. de Jong and P.A. Burrough

Abstract
A method is presented to assess fractal dimensions from re-
motely sensed images. The method is a three-dimensionol
version of the "walking dividers" method which has been
applied to two digital images of southern France to distin-
guish various types of Mediterranean \andscape units. The
first image is a Landsat Thematic Mapper image, while the
second image was acquired by the airborne Geophysical En-
vironmental Research Imaging Spectrometer. The method
has been tested on some artificial images to demonstrate
procedures and results. The method can distinguish runge-
Iands, maquis and closed garrigue and to a lesser extent ag-
ricultural regions on the TM image. Fractal dimensions for
open garrigue and badlands are similar. However, the rcf|ec-
tion properties of the land-cover units do not behave like
real fractals at the scale considered, and different methods
to compute the fractal dimension do not yield the same re-
su1fs. fiesu/fs of the airborne image arc disappointing, proba-
bly due to somewhat poor image quality. Finally, some
advantages and disadvantages of the method are discussed.

lntroduction
Many Meditenanean regions are affected by land degrada-
tion, resulting from past and present human activities. These
activities have caused the development of landscapes with
vegetation ranging from maquis, garrigue, and rangelands to
badlands (Grenon and Batisse, 1989; Tomaselli, tg8t; Le
Hou6rou, 1981). Mediterranean landscapes are vulnerable to
land degradation processes, and the natural conditions in
many Mediterranean areas are such that disturbed ecosys-
tems do not regenerate easily. Consequently, Mediterranean
areas need to be treated with care, and methods for sustaina-
ble Iand use need to be developed. In order to develop meth-
ods for sustainable land use, information is needed on the
present state of these areas, and knowledge is required on
the functioning of Mediterranean ecosystems.

As the Mediterranean regions are extended and complex,
remote sensing techniques may contribute significantly to
data acquisition of complex spatial patterns of vegetation
(LaGro, 1991; Briggs and Nellis, 1991). However, remote
sensing techniques that use only pixel-specific spectral signa-
tures to distinguish vegetation types have so far not been
very successful (Hill and M6gier, 1986; Lacaze ef o1., 1983).
Pixel-per-pixel classifiers do not recognize adiacent pixels as
belonging to the same vegetation class because of the great
variety of spatial patterns of vegetation cover and density of
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Mediterranean landscapes. Classification results may improve
if a quantitative measute of spatial heterogeneity is used as
additional information in spectral classification procedures
(e.g,, Strahler, 1980; De Jong, 1993; De long and Riezebos,
1s91). One of the basic assumptions of the current study is
that the various Mediterranean land-cover types show spatial
patterns of differing complexity or texture. This assumption
is supported by several other studies (Lacaze et al., 'l'g$ i
Brown, 1990; Qu6zel, 1981).

The aim of this paper is to introduce and test a robust
and practical method for improving the classification of im-
agery when individual, but neighboring, pixels have different
speciral signatures, and when the pattern of different signa-
tures is characteristic for a given land-cover type. Such a
method should capture the local variability of reflectance
properties. The technique must be simple and unambiguous
to use and be capable of distinguishing land-cover types.

Descilbing Spatial Vadation: CV and Vailograms
Local variability in a remotely sensed image can be de-
scribed by computing statistics of pixel values' e.g'' coeffi-
cient of variance or autocovatiance, or by fractals. The
underlying theory in each of these methods is that the com-
puted parameters express a kind of "natural characteristic"-of 

a spitially contiguous set of pixels for a given type of land
coner. Although the individual pixel values may vary, the
pattern is distinctive. Open types of natural vegetation such
as found in the Mediterlanean region often display such pat-
terns.

The coefficient of variance (cv) gives a measure of the
total relative variation of pixel values in an area and can be
computed quickly and easily, but it gives no information
about spatial patterns. The same applies for many other -
neighborhood operations such as diversity or variation filters:
their absolute outcome is easy to compare but they do not
reveal any information on spatial irregularities (Burrough,
1993b, 1986; Klinkenberg, L992; Snow and Mayer, 1992; Un-
win, 1989).

Spatial patterns can be described quantitatively in ̂ terms
of the semivariance function, which can be computed from
transects of data points measured on the ground or from im-
ages. This technique is based on the idea that the statistical
viriation of data il a function of distance. The variogram (the
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graph of semivariance versus sample spacing, or lag) relates
distances between sample points to the variance oflhe differ-
ences in the data. Experimentally derived semivariances are
commonly used to fit an approved mathematical function (a
variogram model) which is used for interpolation and opti-
mizing sampling networks. The parameters of a fftted mbdel
may include a range (a), a nugget (c0), and a sill (c+c0). The
fo^rqr of a typical variogram is shown in Figure 1. The range
of the variogram indicates a spatial scale ol the pattern, th-e
nugget is an indication of the level of spatially uncorrelated
variation in the data, and the sill reveals the total variation.
The shape of the variogram is related to the type of variation
in the data (Burrough, 1gs3b, 1987; Isaaks and Srivastava,
1989; McBratney and Webster, 1983; Webster, 1985; fournel
and Huijbregts, 1978).

Variograms of remotely sensed measurements should be
interpreted with care, because some aspects of these vario-
grams may differ from variograms resulting from ordinary
samples, In remote sensing, the support size (which is the
geostatistical term for the area or volume of material sam-
pled) equals the sample spacing, i.e., reflection values are av-
eraged over the "field of view" or pixel size of the measuring
device. Furthermore, the sensor's output is always a deriva- 

-

tive of the complex composition of radiation from the ter-
rain. Variograms of data collected by remotely sensed
devices are influenced by the shape and the distribution of
elements in the image (oi the transect). Some major points
for variogram interpretation are (Woodcock ef o1., f S-BAa;
Woodcock et al., 1.9BBb; Webster et al., 1,g9g; Curran, 19BB)

o the range is related to sizes of obiects in the terrain (e.g.,
batches of shrubs);

o the shape of the variogram is related to variability in size of
objects in the terrarn;

o the height of the variogram is influenced by the density of
coverage of the obiects and the spectral differences between
the obiects;

. regularization (coarsening the spatial resolution) reduces the
overall variance of the data and blurs fine scale variation;
consequently, the siII height will reduce, the range will in-
crease, and the nugget wiII increase; and

o anisotropy in the image is expressed by the variation of var'-
iogram parameters with the direction of the transect.

_ Variogram parameters could be useful for assessing spa-
tial patterns in remotely sensed images. The nugget re.reals
information on variability between adjacent pixels, the sill

gives information on the total variabilitv of the area consid-
ered, the range presents information on spatial dependence
of reflectance, and the type of variogram model oi the shape
of the variogram reveals information on the spatial behavi^or
of the data (Webster and Oliver, 1992; Ten Berge ef o1., 1983;
McBratney and Webster, 19S1). If one first delineates differ-
ent land-cover types by eye (or by other external criteria),
variograms can be computed for each delineation separatelv.
Statistical tests (e.g., ANovA) could be used to see if areas 

-

with app,arently similar patterns returned significantly simi-
lar or different values ofthe variogram parameters. This ap-
proach is only useful if an external delineation is provided.
It is more_ interesting to see if an analysis of the image pat-
terns could be used to distinguish different vegetation types
automatically by using the variogram.

If one were to characterize a part of a remotely sensed
image by using variograms, the conventional approach would
be to take a kernel or transect of a limited size, iompute the
experimental variogram, fit a variogram model, and ihen
write the values of the variogram parameters to the cell loca-
tion at the center of the kernel or transect. Such a orocedure
c-ould yield at least three new data layers per pixel, one for
the nugget, one for the range, and one for the iill. The ker-
nel/transect would then be moved up one pixel and the com-
putations would be repeated. The result would, in principle,
be a set of data layers that showed how the patterni in the
image varied in terms of estimated varioqram piilamerers,
which might reveal the differences in veletation or land-
cover pattern that are being sought.

Although the variogram seems to be a robust tool, a
number of disadvantages of variograms can also be identi-
f ied:

1 man] data points are required to compute a reliable vario-
gram (ten lags or more are needed to fit a variogram model);
consequently, an extended transect or a large kernel is re-
quired to perform the compulat ion:

o it is difficult to define "best model criteria', in an automatic
procedure for estimating variogram parameters;

o different samples (i.e., sets of observationsJ from the same
landscape units can yield different estimated variograms
(Webster and Oliver, 1992; Jsaaks and Srivastava, 19Sg);

I usin$ the transect method, there is no clearly defined central
pixel in which the computed variogram parimeters can be
stored:

r a local estimator is required Io analyze image patterns to
distinguish different land-cover types; the viribgram of a
transect is a global estimator and does not give information
on local  var iat ion;  and

. the compglation to derive the variogram and its parameters is
considerable.

An easier and more rapid method to assess spatial pat-
terns from remotely sensed images would be useful. A fractal
approach to assess spatial patterns from images meets the
needs of such a method. This article examines the use of
methods for assessing fractal dimensions of Mediterranean
vegetation types using digital images at two different spatial
resolutions, tests the usefulness of the fractal approachfor
distinguishing different types of vegetation, and compares it
with variogram methods.

Fractals
Fractals are a means of describing complicated, irregular fea-
tures of variation (Burrough, 1993a). Several authorJ have
discussed the use of fractals to quantify "roughness,, of sev-
eral types of objects (Xia, 1993; Snow ind Miyer, 1992; Klin-
kenberg and Goodchild, rsgz; Moussa, 1.991; ihornes, 1990:

range distance

Figure 1. Form of a typical variogram with sil l ,
nuEElet, and range.
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Burrough, 1981, 1989, 1993b; Turner et al., 1.g9g; Unwin,
1989; Cull ing, 1989; Dicke and Burrough, 19BB; Mark and
Aronson, 19Ba). Only a limited number of studies have been
canied out so far to assess the usefulness of fractals for im-
age analysis (De Jong, 1993; Vasil'yev and Tyuflin, 1992; Ar-
dini ef o1., tggt; LaGro, 1991; Walsh et al. 1.991.; De Cola,
1989; Jones et o1., 19Bg; Lovejoy, 1982). A fractal is an object
whose shape is independent of the scale at which it is re-
garded, also referred to as "self-similarity" (Turcotte, 1992).
The fractal dimension (D) is a quantitative measure of the ir-
regular features or "roughness" of phenomena (Burrough,
1993a; Burrough, 1993b). The variability of many natural
phenomena is often irregular and, sometimes, it can be ap-
proximated by a stochastic fractal such as the model of
Brownian motion (Mandelbrot, 1982). It is reasonable to sup-
Dose that different kinds of terrain might have characteristi-
ially different texture or roughness wf,ich could be
expressed in terms of different fractal dimensions (Klinken-
berg, 1992; Fox and Hayes, 1985; Barenblatt et 01., 1984;
Bradbury and Reichelt, 1983; Mark and Aronson, 1984).
Therefore, Iocal fractal analysis of remotely sensed images
may reveal information on patterns of vegetation and rock
outcrops much better than pixel-per-pixel procedures.

A single-band remote sensing image can be considered
as a kind of topographical surface: rows and columns of the
image matrix represent the spatial location while the pixel
value embodies the imaginary elevation. The "roughness"
described by D is determined by the variation in observed ra-
diance. Values of D for surfaces range by definition flom 2.0
for completely smooth surfaces to just below 3.0 for very ir-
regular surfaces (Turcotte, 1992). Overviews of available
methods to assess D are given by Xia (1993), Klinkenberg
and Goodchild (1992), and Burrough (198G).

Most methods for determining D at present only give
lumped values for an entire image or an entire catchment.
This lumped value is useless for detecting patterns of rough-
ness over the image, and local methods to assess D are re-
quired to provide a spatial map of patterns of differing
complexity or texture. Although several authors (Xia, 1993;
Lifton and Chase, 1992; Chase 1992; Turcotte, 1992; Klinken-
berg arrd Goodchild, 1992; Elliot, 1989; Culling and Dat\o,
1987) have shown that there is a relation between fractals
and landscape development or landscape patterns, the exact
relation is not yet fully understood. This paper examines the
hypothesis that D can be used to distinguish different land-
cover types.

Methods for Estimating Fractal Dimension Used.in this Study
Two methods to determine D wete used in this study: the
"variogram method" and a new local method based on the
"Triangular Prism Surface Area Method" (Clarke, 1986)'

Vadogram Method
In the variogram method, the fractal dimension (Du) is esti-
mated from the best fitting line of the log-transformed semi-
variance function computed from one-dimensional transects
from field data and from images. Transects are often used to
characterize vegetation patterns in the field (Mueller-Dom-
bois and Ellenberg, 1974; Kent and Coker, 1992) because the
transect method is easy and quick. The slope of the best fit-
ting line relates to Dr as slope : 4 - zDv (Mandelbrot,
1982). The essence of a log-transformed variogram of a true
Brownian fractal is that it has no single, unique range nor a
sill. Such a variogram will be a straight line on double log
paper. If the contribution of noise in the data of a true fractal
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increases, it will shift the variogram upwards along the vari-
ance axis, If noise is added to a variogram with a clear range
and sill, it will reduce the distinctiveness of the range and
sill, and the value of D" will inctease. The value of Du for
one-dimensional transects can vary byldefinition between 1.0
(completely smooth) and 2.0 (highly irregular)'

The variogram yields several kinds of information on
spatial patterni. If a variogram has a well-defined range- and
rill, the.t the data do not come from a real fractal. On the
contrary, if a clear range and sill is absent, then the dataset
can be tonsidered as a"candidate-fractal"'The linearity and
the slope of such a log-log variogram provide.information on
spatial patterns in the data. Furthermore, the break distance
of the log-log variogram (defi.ned by Klinkenberg-{1992) as
the maximum distance to which a least-squares line can be
fitted with a correlation greater than 0.90) indicates the dis-
tance of spatial independence of the data. Unfortunately, the
disadvantages mentioned for the common variograms are
also true if D is estimated from variograms: many data points
are required to obtain a reliable variogram, the necessary
computations are very laborious, and the various variograms
within one landscape unit do not yield the same results' The
objective of the new proposed local method to estimate D is
to overcome some of these disadvantages'

Tilangulal Prism Suilace Arca Method
The "Triangular Prism Surface Area Method" (rrsalr) is a
three-dimensional geometric equivalent of the "walking di-
viders" method proposed by Clarke (19s6)' This method
estimates lumped D-values from topographical surfaces or re-
motely sensed images. The method takes elevation values
(Digit;l Numbers) it the corners of squares, i.e., the center of
a pixel, interpolates a center value of the square by averag-
ing, divides the square into four triangles, and then uses Her-
on-'s formula to compute the surface areas of the imaginary
prisms resulting from raising the triangles to their given ele-
vations (Figure 2). This calculation is repeated for different
square sizei, yielding the relationship between the total area
of the surfaco and the spacing of the squares (resolution).
The computed surface area will decrease with increasing
square siie, because peaks and bottoms will smooth out. The
calculations stop if the size of the square is too big to fit on
the image. Surface area and spatial resolution are both log
transforired, and a linear funCtion is fitted through the calcu-
Iated points. One (lumped) value of D for the-entireimage is
then estimated by the slope of the regression line' The num-
ber of steps (squire sizes) to calculate the surface area de-
pends on-the size of the image. The required formulae to
iarry out the computation are given by Clarke (1980). The
"Triangular Prisrn- surface Area Method" provided good esti-
mates of D for images and for small phenomena such as par-
ticles and molecules (Clarke and Schweizer, 1991)'

A local method to assess the fractal dimension (Dr) was
developed by modifying the original "Trian-gular Prism Sur-
face Aiea Method." A kernel of I by I pixels is moved over
the digital image (Figure 3) and, at each position of the ker-
nel, D, is assesied by calculating 4 times the surface area at
different resolutions (squares of r by 1,2by 2, aby 4, and 8
by B pixels) within the kernel. The surface area is computed
in the same way as the lumped "Triangular Prism Surface
Area Method." Resolution and calculated surface area are
both log-transformed and D. is estimated from the linear
functioi fitted through these four points bY D" = 2 - Slope.
D, is written to the center cell of the kernel in a new image
file, the kernel is moved one pixel to the next position over
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Figure 2. Example of the "Triangular Prism Surface
Area Method" (Clarke, 1986) to calculate D. Within
a square of increasing size, the "surface area" of
the image is assessed. The surface area de-
creases with increasing square size, because
peaks and and bottoms are smoothed. The regres-
sion l ine of the log transformed surface area and
the log transformed square spacing yield an esti-
mate of the fractal dimension.

the image, and the calculation starts again. A kernel of I by
9 pixels is chosen as a compromise between computing time
and the number of points required to fit the function. The
new proposed local method is a type of convolution opera-
tion and results in a map of D, values for the entire image,
which can then be used as an indicator for the spatial varia-
bility of land-cover categories.

The advantages of the new local method are that it is
easy to use and quick, it renders information on spatial pat-
terns within the template size, no extended transects are re-
quired, and it can be used in relatively small areas. A spatial
continuous map of D, values is produced by writing the
computed D. value to the center pixel of the kernel. Due to
the size of the kernel (S by 0 pixels), two disadvantages of
the new local merhod can be identified:

. the surface area is calculated within the kernel for four
square sizes: L by 1., 2 by 2, 4by 4, and B by B pixels; conse-
quently, only four points are available for the linear regres-
sion of the log-transformed surface area and resolution; the
least-square fit might be strongly influenced by extreme val-
ues of the computed surface area; and

o the relatively large size of the kernel causes blurring or
smoothing of the output image, a very common, unfavorable
effect of spatial filtering (Gonzalez and Wintz, 19BZ), and the
size of the kernel causes some boundary effects.

A further limitation of the method is that it is not applicable
to multi-band images. Consequently, efficient data reduction
methods such as principal component analysis or ratioing
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should be applied first to the multi-band image. AIso, Xia
(1993) suggests that this method is generally less reliable
than the variogram method.

Fractal Dimension of Artificial lmages
Before the proposed "local D algorithm" was used for real
digital images, the approach was tested by applying it to arti-
ficial images which are not fractals. Some typical examples
are presented in Figure 4. The images at the left side of Fig-
ure 4 are artificial input images, while the images on the
right side show the results of the D, algorithm. The size of
each artificial image is 40 by 40 pixels, and the values of the
digital numbers are presented in the legend of the input im-
ages. The ranges of estimated "D, values" are by definition
between 2.0 and 3.0 and are presented in the legend of the
output images.

The first two images of Figure 4 show the effect on D, of
two intersecting lines. The previously described blurring ef-
fect of the Q algorithm is visible along the lines: D. values
start to increase at a distance of half the template size awav
from the line. The most complex part of the input image, i.e.,
the junction of the two lines, yields the largest D. values.
The central-left image of Figure 4 becomes more complex; it
consists of six small flat, homogeneous raised surfaces. The
smoothing and blurring effect of the local algorithm is visible
in the output image on the right. The sections in between the
flat areas yield the largest D. values, due to the position of
the kernel over thethe kernel over the edges of one high and two low areas. The
upper part of the third example in Figure 4 was created us-upper part of the third example in Figure 4 was created us-
ing a random number generator; digital numbers range from
0 to 99. The lower part is flat and homogeneous with digital
number zero. The required kernel size for the D. algorithm
causes some boundary effects. It is not possible to perform
computations close to the borders of the images. Therefore, a
few rows and columns at edge of the image are dropped and
filled with zeroes. The number of rows and columni-
dropped equals half the template size. This "boundary ef-
fect" is clearly visible at the borders of the output image. D.
values in the upper part range from 2.00 to 2.[8. Drde-
creases quickly towards the lower, homogeneous part of this
image.

A general trend of D. computations is that flat homoge-
neous areas yield low estimates of D, and, as the image's het-
erogeneity increases (intersection of lines, fringes of
homogeneous areas), D, increases too. The largest Q values
are found for areas with a very high spatial variability such
as the random part of the third example of Figure 4. The Dr.
method seems to perform satisfactorily in this study and dis-
tinguishes areas with different variability of pixel values.
This is in contrast with results reported bv Klinkenbers and
goodchild (1992) and Xia (1ss3). The former merely found
Iow D values using the "walking dividers" method and con-
cluded that this method has low discriminating power. Xia
(1993) states that this method onlv produces reasonable re-
sults when careful considerations-ii siven to the selection of
the maximum cell size and the r-squ"ared value.

Case Study
In the study presented here, two methods are used to esti-
mate D: the first method (variogram method) is suitable to
determine D,, for one-dimensional field transects; the second
method (local D algorithm) yields a spatial map of estimated
D. values, where the new image equals the size of the origi-
nal image minus half the kernel siie due to boundary effects.
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'  Local Triangular Prism Surface Area Method '
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The case study aimed at finding the answer of two research

questions:

o Is the Brownian fractal a useful means of describing the
"roughness" or "texture" in remotely sensed imagery of Med-

iterr inean land-cover tYPes? and
o How do the two method-s [variogram and local method) per-

form at distinguishing between different known types o{
Mediterranean Iand-cover tYPes?

Study Area
ihe suitability of the estimated fractal dimension as a tool

for separating different types of Mediterranean vegetation

-u. uir"rr"d"in a study area in the southern Arddche prov-

ince (France). A physiographic survey was carried out, re-

t"tti"g in six main iand--cover classes or mapping units (De

)ong et ol. ,  rggo):

(r) Badlands are strongly incised areas.-Bare, high r-efle-ctance
surfaces vary with densely vegetated areas- at gully floors
and in betw'een gully systems. Shadows play an important
role in badlands with regard to apparent reflectance proper-

ties'
(Z) Rangelands are dominated by annuals and herbaceous per-'-' 

".tnials 
with deep root systems. Shrubs are not or are only

scarcely present in the ringelands' Rangelands often form a

rather homogeneous cover over extended areas'
(3) Open garrigu'e is an area of low scattered bushes, smaller in' ' 

nutnbJt thin in the previous class The bushes are rarely
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more than 2 metres high with bare patches of rock or stony

soil between the grasses and herbs'
(+) Closed garrigue iJan open forest type of vegetation with

scattere"d buihes alterniting with bare patches' rock out-

crops, and grasses. Garrigue show distinct spatial patterns

of shrubs.
f sf fr,luqltit forms the local climax vegetation and is a type 9f' 

"u"inr""n 
mixed forest dominated by oak species' Maquis

has i  dense. everg,reen vegetative cover'
(o) itre ii*ttr class is"dominul"a ty }uman influences and com-
' 

prisu, agricultural areas and built-up areas The spatial pat-

te..t of i'his class shows spectral variation at regular

distances, i.e., Parcel size'

Two types of digital multispectral im-ages were available

for this u."u, t ru image acquired on 18 July 1991 with a

pi*"1 sir" of 30 by r0 iretrei and an airborne image acquired

[; th" Geophvsical Environmental Research (cun) Imaging^

Sil;irom;;;'o., zg l,r.t" leae with a nominal pixel size of

;6;;  i0 metres (Hii l ,  1ee0; De fong, 1ee2)'  I igure 5 shows

tn"iv image of ihe study area wilh the s. ix land-cover types

iJu"tln"a. ihe Landsat rv image was radiometrically c.or-

.""i"J"tr"g-ihe method p.oposld by Markham and Baker

iis86t usin"g gain and offiet values to convert digital num-

i".t ittto re"flJctance. The original GER image contains 63

spectral bands. The radiometric and geometric preprocesslng

o? the airborne image was carried out by the German Aero-

tou"" n"r-.ut"h Est;blishment (Lehmani et al', 1989) and the

iJi.rt R"r"ut"h Centre [Bc) of the European Community in It-
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Figure 4. The effect of the "local D algorithm" is shown on three aftificial images. tmages on the left show the inputimages, while output images are shown on the right. Q values tend to increase with thie complexity of the image.

c

f

aly (Hill, 1990). Geometric preprocessing comprised correc-
tions for aircraft roll, detector ipeed, and s.anhing angles.
Digital numbers were converted to reflectance faciors irsine
radiometric ground measurements made during the overpa"ss
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and an atmospheric correction model developed at lnc (Hill,
1990). A selection was made of cnR bands corresponding to
TIr4 bands 1 to 5 and 7. The different pixel size oi th" trr"o
images makes it possible to test the new D, method on Dat_
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Figure 5. Landsat Thematic Mapper image (Band 4,5,tin
black and white) of the study area showing the six land-
cover classes: (1) badlands, (2) rangelands, (3) open ga-
rrigue, (4) closed garrigue, (5) maquis, and (6)
agricultural areas.

and, for each variogram, breaks of slope were located visu-
ally (Mark and Aronson, 1984). Straight lines were fitted up
to ihe breakpoint using the csS statistic-al software package
(Statsoft, rsbr), and Df, was computed from the regression
iine. This method was applied to all units except for the ag-
ricultural areas. The m"ftrba is of little use for agricultural
resions. because the spatial variation is determined by the
hriman induced boundaries of the parcels. The method also
fails in maquis, because maquis is hardly penetrable and the
vegetation is too high for hand-held radiation devices' There-
foi, variograms foimaquis were estimat4 -"fi"g data tran-
sects takeri from the air6orne GER image. Table 1 presents D.,
values and break distance for each land-cover unit and, per
transect, the D values and their break distance. Table 2
shows the average Du value, and the average variogram-
model parameteis and their cv values per lald-cover class'

From the variogram model parameters,-it can be seen
that short variogram "range distances" are found for open
and closed ganigne and badlands; the largest "range dis-
tances" areleteimined for rangelands and maquis. These re-
sults match intuitive expectations that the spatial dimensions
of the variability of rangelands and maquis are larger than
the variability of Uaatunas and garrigue (i'e., badlands and
garrigue have finer patterns). The Du values indicate rmg-e-
landJ and maquis ai most irregular. The Du values are all far
over 1.5, indicating that the vegetation index determined
from the radiance ireasured along the transects is highly ir-
regular. Large values of Dn are-alCo reported by Burrough.
(rber ; rsssi). Discrimination between land-cover categories
using only D' from hand-held radiometer data is poor' Aver-
age b values'for the different land-cover types are close to

TneLE 1. Pen LlruCoven Untr, I NoRtrlaltzeo DtrrenelcE VEGETATIoN INDEX

Wns DErenutrurD ALoNG SEVERAL TRANSEcTs Ustuc I HnluHeuo RnotottlgreR'

Fon encu Tnntsecr rHE FRAcTAL DlMENsloN (D) Wns Covpureo UsING THE

VnntocRav METHoD. DuVlLues nlo BRenx DlsrANcES ARE PRESENTED'

Land
unit

Dv
variogram

Break
distance (m)n 2

terns of natural vegetation cover at two levels of scale' The
different dates of data acquisition do not seem to have
caused any major differences in the images because the dy-
namics of the (semi-)natural ecosystems are rather low. In
contrast, temporal changes of the agricultural areas can be
considerable.

Fractal Dimensions of Ttansects by the Vailogram Method (2")
The "variogram method" was used to assess D from transects
in the diffeient mapping units which were surveyed in the
field. The Du valueibbtained are useful to check whether
spatial variation estimated from field data matches that esti-
mated from images. A hand-held radiometer with a field-of-
view of 1 m' wai used to measure reflectance in the visible
and near infrared along various transects in the mapping
units. Each transect comprised a minimum of 175 sample
points. A normalized difference vegetation index was com-
outed from the visible and infrared measurements, and, for
ill transects, a semivariance function was calculated follow-
ing the method described by Isaaks and_Srivastava (1989).
Tlie variograms were all plotted on double-logarithm paPer,

Badlands
hansectl
transect2
transect3
transect4
transect5
Rangelands
transectl
transect2
transect3
transect4
Open Garrigue
transectl
transect2
transect3
Closed Garrigue
transectl
transect2
transect3
transect4
transect5
Maquis
transectl
transect2
transect3
transect4
transectS

1 .65
1 .69
7 . 7 8
T .78
1 .90

1 .81
1 .85
t . 79
7 .77

7 . 7 8
7 .70
7 . 7 7

1 .81
7 .82
1 . 7 3
1 .82
7 . 7 0

1 .84
1 .96
1 .93
1 .95
1 .89

0.98
0.99
o.73
0.89
0.86

0.92
0.91
0.94
0.94

0.92
0.99
0.94

0.90
o.73
0.96
0.88
0.96

0.91
0.85
0.83
o.82
0.81

74.8
77 .8
17.7
1.2.O
39 .8

39.8
48.9
48.9
t2 .o

10.0
48.9
72.O

7.O
6.1
o . r
7 .O
5.8

25.7
39.8
28.7
28.7
32.O



PEER.REVIEWED ARI IC IE

Land Cover Unit Open Closed
Number of Badlands Rangelands Gariigue Garrigue Maquis
Transects (n : 5) (n = aJ (n :-3) (n :-s) (n : s)

Tnsre 2. Prn Lln+Covrn Ururr, n VecernloN INDEX Wes DrreRvrrueD ALoNG
SeveRnr TRetsecrs Ustr.tc I Hlt>HElo ReorovrreR. Fon ElcH TRANsEcr, THE

SevrvnRrnnce Futcrron Wrc Cnrcuureo, A MoDEL Was Frrreo, AND rHE
FRncrnl DruelrstoN (D) WAS Corr,tputEo Usrnc rHe VnRrocnnv MErHoD.

Avenlce Drnno VnnrocRav Mooet peRnvrrrRs Anr pResEtrro wtrH THEIR
CoEFFtctENr or Vrnrntce (CV).

or by the fact that the reflectance properties of the studied
surfaces are not scale invariant.

Apart from the estimation ol Dv, a conventional statisti-
cal procedure was canied out to assess the relative homoge-
neity of the six ma-pping units. Five test plots of 10 by 10
pixels were located within the core of eaih land-covei class
in the rv image and in the airborne image. CVs based on a
total of 500 pixel values per spectral banl per land-cover
class were computed and are ihown in Table 3. The results
of the TM image analysis reinforce intuitive expectations be-
cause the la-rgest-Cv values are found for badlands and agri-
cultural areas, while the smallest CV values are computef, for
rangelands and maquis. It is notable that, in the firsf two vis-
ible bands of the ru image, badlands have the largest Cv val-
ues of the six land-cover types whereas agriculturil areas
show the largest cV values in the next forir rrra bands. This
can be explained by the abrupt changes of infrared reflec-
tance between densely covered lots and bare lots. This effect
is less pro-nounced in badlands because vegetation in bad-
lands is often "water stressed," resulting iri smaller contrast
between infrared and visible reflection.

The CV values computed from the cER image show a less
distinct p-attern. The cv values are generally mich larger
than for the TM image, and the land--cover ivpu, 

"urrrrot "ur-ily be separated. Vaiiability of reflectan.r *i'thin the experi-
mental test plots is apparently much greater. There u." t*o
possrDle explanatrons:

. there is a greater variability in the terrain at distances less
than 30 met.res; this variability is detected by the crn pixel
(1-0 by 10 m) and is smoothed within the piiel (30 by 

-sO 
m;

of the TM scanner; and
. there is more noise present in the cnn image than in the TM

image.

A visual interpretation of the GER image showed that the im-
age is of somewhat poor quality and that the contribution of

Avg. D (variogr.): '1,.26

CV ( / " ) :  ( 5 . 5 )

Avg. range (m): 9.1
CV (%) :  (s7 .1)

Avg. nugget (cO): s.Lz
CV (%): (64.e)

Avg. Sili-nugget (C): 1-T.T
CV (%): (66.3)

1 . 8 1  1 . 7 5
(1 .s )  (2 .5 )

36 .0  5 .6
(63.e) (41.\)

2 .82  4 .31
(55.6)  (s1 .5)

9 .56  6 .19
(e4.0) (64.4)

1 . .74  1 .91
(3.2) (2.4)

3 .6  27 .1 ,
(25 .6)  (11 .1)

3 . 2 0  6 . 1 1
(24.o) (26.3)

5.56 9.74
(14.2) (45.4)

each other, and the CV values are relatively high. Maquis is
somewhat different from the other land-cover types and has
the largest Dr, but it is unclear whether this is i-function of
the support size of the data source (cnn image) or of the spa-
tial pattern of the maquis. A graph relating Du with break-
distance of the log transformed variogramJ separares range-
Iands, ofien an-d closed garrigue, and maquis (Figure 6). 

-

Badlands are the most variable and are difficult io grorlp.
Furthermore, the question should be answered whelheithe
transects per land-cover unit represent real fractals. The li-
nearity of the 1og-transformed variograms provides informa-
tion on the self-similarity. Although somelog-log variograms
are linear over a certain range, most log-log iaridgramslhow
clear breaks of slope. This non-fractal 6eha"vior mlght be
caused by the limited number of points in the traniect (175)

c o u

.9

t s o

@ T o o

o  *

* *

A
 . r1

ao .a
r .6  1 .65  1 .7  1 .75  1 .8  1 .85  1 .9  1 .95  2

DV (variogram method)

A Badlands O Range lands I Open Garrigue <) Closed Garrigue :lr Maquis
Figure 6. Graph showinglhe relation between Drand breakdistance from the log-
transformed variograms for each of the five land-cover types.
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TneLe 3. CorrHcteNr oF VAR|ANoE (CV lN PERCENT) oF rHE DlclrAL NUMBERS

or FrvE ExpeRrnenuL Prots (ru : 500 Ptxels) een Lrru>Coven Cuss ron nu

SprcrRnr Beruos or rxe Txevlrtc Mppen (TM) AND FoR THE GER-AIRBoRNE
lvrce (GER).

Land Cover Unit TM1 TM3 TMs TM7

variability and of D values using the GER image might be in-
fluenced by noise.

Fractal Dimension 0f lmages by the Local Method (4)
Before the local algorithm for D computations was- applied to
the digital images, the multi-band images were reduced to
single-"band imiges. Spectral ratioing was preferred for data
reduction for two reasons:

. ratioing of one neat infrared band and one visible band en-

hances patterns of vegetation cover. and
o ratioing reduces the effect of shadows in the badlands'

The optimal bands for ratioing were determ-ined using the .
correlation matrix (Pearson correlation) of the experimental
test plots described earlier. The two bands u'ith the lowest
co.t6lutio.t (Table 5) were selected for ratioing. Band 1 and
Band 4 have the lowest correlation for both images' A nor-
malized spectral ratio (4 - 1)l(4 + 1) was calculated for both
images anh, after scaling, used as inputfor the D. algorithm'
The-D, algorithm, applied to the TM and GsR ratio images,
yielded two new images with Dr values. In contrast to the
variogram method, th; D, algorithm yields rather small D
valuei. Figure 7 shows the result of the D, method applied to
the ratio of the ru image. Values range from 2.Oo to 2.55.
The next step in this study was to determine the accuracy
with which the two images reflect the six land-cover classes'
Objective assessment of iccuracy of the new map is very dif-
ficult because

r the spatial transition of the units, e.g., rangelands to open
garrigue, is hrzzyt

o ihe dlistinguished land-cover classes are not exactly defined
in terms of cover percentage or species; and

. a map based only-on aerial photointerpretation and fieldwork
of the land-corr"i types wasivailable, and the accuracy of
this map is unknown.

The usefulness of the D, images was estimated by digitizing

polygons (minimum of aOo pixels) wjthin the center of each

i".ri].o'o"r class. For each pblygon, the average D, value and

the standard deviation were computed and are presented in

Table 6.
Normalized curves of the average D. values for all six

polygons are plotted in Figures B and 9 for the GER and TM

i*ig"", respeciively. The degree of separability between^the

land'-co,rei types using D, is indicated by the amount of over-

lap betweerrthe curves. A t-test for independent samples was

Taele 5. Conneuttott MArRlx FoR rxe SElEcreo TM rr'ro GER Brt'tos. Dnrl
WEne GlrHEReo FRot\4 THE Ftve Exeent"a^tnr Prots tl EncH Llru>CovER

TM4

Badlands 1.O.7
Rangelands 4.4
Open Garrigue 6.2
Closed Garrigue 6.9
Maquis 2.6
Agricultural 9.7

Land Cover Unit GER1

74.4 77.5
6 .1  7 .5
8 .6  r2 .5
9 .4  15 .1
3 .9  6 .9

74.2 22.r

GER2 GER3

17.2 77.5
6 .1  10 .3
8 .9  1 .2 .6

11 .0  18 .8
6 . 6  1 1 . 6

13 .0  22 .5

GER5 GER6

1 0 . 1
5 . 0
6 .5
J . U

3 . 9
1 3 . 3

GER4

Badlands
Rangelands
Open Garrigue
Closed Garrigue
Maquis
Agricultural

23 .8  18 .8
28.7 20.2
26.2 t5.4
32.4 22.7
40.7 20.9
2 7 . O  2 2 . 7

9.0 21.O 13.9
8 . 7  2 7 . 3  7 2 . 7
7 . 7  1 8 . 1  r 2 . 7
7.4 35.7 24.O
5.0 33.1 20.1

r2.o 45.4 28.3

noise to the "within image variability" might be important,
The image was used because the different pixel sizes of the
cnn and rv image make it possible to study patterns of vege-
tation cover at two levels of scale. Therefore, image quality
was assessed by determining the signal-to-noise ratios.

Signal-toNoise Estimates
The quality of the ru image and of the cnR image was_as-
sessea by determining the signal-to-noise ratios (sun) directly
from the images. The nominal sNR for Ttrl measured in the
laboratory is between 2oo and 500 (USGS, 1982). Nominal
values for the cER image are around 400 (Collins and Chang,
1990). The common procedure to assess SNR from images is
by selecting bright, hlgh reflectance, homogeneous surfaces
in the imagi (Bo-Cai Gao, 1993). The quotient of average ob-
served radiance and the standard deviation yields the sNR'
Bare bright soils or (empty) parking places are often suitable
surlaces.

The SNR generally decreases in shortwave infrared due
to lower radiance levels. Furthermore, the sNR determined
directly from the images tends to be lower than laboratory
measurements. The computed SNRs for the TM and GnR im-
ages are presented in Table 4. The values for tu are mini-
mum values because the number of pixels of the selected
bright surface was too small for a very accurate estimate' The
sNn of the GER image appears to be small but the quality of
the TM image is much better, and visual interpretation of the
image confirms the somewhat poor quality of the GER image.
ThJoriginal GER image looks very speckled in almost all
spectrafbands due to numerous technical defects during da13
acquisition (Hill, 1990). Consequently, the computations of

Tnale 4. SrcNel-roNotse RATlos FoR TM lr.ro GER. Vftues ron TM nRe
MrNtMA, BEcAUSE to SutrlgLe LaRce, Blne, llto Bntclr Sunreces Wene

AvATLABLE ttt tne lvnce ron nru OpttvnL SIcNAL-TGNoIsE Esrttvtnte.

7 7 . 3
t7 .3
I J . I

27.O
26.O
26.4

TM1 .I}|{z TM3 TM4 TMs 'tM7

TM1 1 .00
TM2 0.99
TM3 0.95
TM4 0.76
TMs 0.9s
TM7 0.S3

GERl

1 .00
0.98
o.82
0.94
0.95

GER2

7 .OO
0 .91
o .97
0.99

GER3

1 .00
0 .85
0.s0

1 .00
0 .99  1 .00

GERs GER6

PE&RS

GER4

TM1, 450-520 nm
TM2, 520-600 nm
TM3, 630-690 nm
TM4, 760-900 nm
TMs, 1550-1750 nm
TM7, 2080-2350 nm

GER1, 495-509 nm
GER2, 557-570 nm
GER3, 656-669 nm
GER4,779-792 rm
GERs, 1620-1740 nm
GER6, 2192-2208 nm

8.5 GER1 1.00
70.2 GER2 0.98
17.4 GER3 0.90
74.8 GER4 0.60
7.2 GERs 0.62

1.!.4 GER6 0.69

> 71 . .8
> 60.9
> 56.7
> 84.7
> 43.2
> 34 .3

1 .00
0.96
o.77
o.72
o.7s
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Figure 7. Result from the 4 method to compute fractal
dimension applied to the ratio of the TM image. The area
covered is similar to Figure 5. e values range from dark
to light from 2.OO to 2.55.

c

3

a

t€ctal dimsns.pn

- Agricultural arm ----- Opcn garrigue
- - -Brdbnda -Clrerlganigre
- - - - .Range lands  - - -Maqu is

Figure 8. Curues of the estimated fractal dimensions
(Q method) of the polygons centralized in the matr
ping units in the cER image. The X-axis presents the
fractal dimension, while the Y-axis shows the percent-
age of pixels per land+over class. An individual oeak
for a unit indicates that it is feasible to discriminate
the unit in the image based on 4.

i  \ z
i t'.
i  , ' .
i t

o

'
I
o
. x
o
a

fEctal dimgnsion

- Agricuhural areas --.--. Open garrigue
- - - Bedbnds -Clomdganigue
- - - - -R lnge l lnds  - - -Mrqu is

Figure 9. Curves of the estimated fractal dimensions
(Dz method) of the polygons centralized in the matr
ping units in the ru image. The X-axis presents the
fractal dimension, while the Y-axis shows the per-
centage of pixels per land-cover class. An individual
peak for a unit indicates that it is feasible to dis-
criminate the unit in the image based on D..

might be elpegtg{ because estimating D" within one agricul-
tural lot ry:tt Vp-ti low values, whilelstimating D, for"fringes
of lots will yield high values. The curves for Uidtinas and
open garrigue coincide, indicating that they cannot be sepa-
rated,using D". The curves resulting from the cEn image (Fig-
ure 8) coincide to a large extent. N6 single unit can bJ
recognized easily.

. tisu,ll interpretation of the "level-sliced" rM image of D"
and the "level-sliced" cER image of D, confirms that tf,e ru 

"

image shows the general pattern of miquis, garrigue, range-
lands, and badlands much better. This is in iontiast witli ex-

carried o-gt for all six polygons and for either image. Al-
though all units are significantly different at the 0l0S level,
the results should be interpreted with care because the num-
ber of cases is very large. Figures 8 and g show that D" val-
ues in the TM image separate the six land-cover types much
better than does the cER image. Five peaks are diitinguished
in Figure g of the TM curves. Rangelands give a nice distinct
peak, but maquis and closed garrigue are l-ess pronounced.
Agricultural areas result in very broad-shaped curves; this

TaeLr 6. AvERAGE Q eruo Tnern SrnNoano DEVIAIoN (SD) or rxe polycoNs
CerurRrrzeo tN EAcH MApptNG UNtr.

GER Image Badlands Ranselands Gaorf,iesle 
"ff;,l, 

t"n"u ttt"'!'
Average D" 2.75 2.25
s.D. 0.o3 0.o3
n pixels 7748 7gz

2.24 2.28
o.o2 0.03
26S8 1108

2.22 2.27
o.o2 0.o4
829 1615

rM Image Badlands Rangelands 
":rft"rlr" ":|?'fS" 

r"o"* t*rtl'
Average D, 2.23
s.D. 0.05
n pixels 1595

2 . to
o.o2
t763

2 . 2 2
0.04
t764

2 . 7 8
0.03
2992

2.14  2 .27
0.03 0.06
2218 TO527
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TneLe 7. RnnxonoeR or Esrrvnreo Fnncrnr DrvEr.,rstot'ts. Nore: RANK 1 ls
THE SMooTHEST - Svnrrest D, nruo 5 ts rHE RoucHEST.

Land cover type DL (GER) DL (TM)

Badlands
Rangelands
Open Garrigue
Closed Garrigue
Maquis

4
2
1.
3
o

pectations because the smaller pixel size of the ceR image
matches the variogram "range distance of spatial depend-
ence" (Table 2) much better than does the TM pixel size.
However, as described previously, cER image results may be
distorted by noise present in the image.

Discussion and Conclusions
The research presented in this paper attempted to answer
two questions: (r) is the Brownian fractal a useful means of
describing the "roughness" or texture of remotely sensed im-
agery of different kinds of Mediterranean vegetation, and (z)
which of the two methods of estimating fractal dimensions of
these vegetation patterns is most appropriate? Before answer-
ing the first question, it was necessary to estimate fractal di-
mensions by both methods.

The results show that, though both methods of estimat-
ing D are feasible, they require much data and care. The var-
iogram method requires large numbers of data points in
order to get information over suffrcient lags/spatial scales,
and, if only a few linear transects are used, they may return
widely differing values of Du. Other problems concern ani-
sotropy of the pattern on the image and the fact that it is dif-
ficult to assign the parameters of a variogram that have been
estimated over a large sample uniquely to a given pixel loca-
tion for image enhancement. The local method avoids the
latter constraint of the variogram method but uses few data
(a kernel of 9 by I pixels) and suffers from image blurring
and boundary effects, and D, is estimated from only four
lags.

The two methods yield results that suggest that both Du
and D, may be useful in the classification of the land-cover
types in the study area, though there are many instances
where the two methods strongly differ. The variogram
method yields large values of Du (all > 1.7) for all land-cover
types, whereas the local estimator produces smaller values
(all < 2.3). D values where the decimal component is large
(> 0.5) imply a weak pattern of noisy, random variation,
whereas D values where the decimal component is small (<
0.3) imply smooth variation with little local noise. The abil-
ity of D. to separate land-cover types clearly depends on the
imagery used. The estimates of D depend on spatial resolu-
tion (which varied from 1 by 1 m along the transects to 30
by 30 m for the TM imagery), and it is not clear whether the
differences in estimated D values can be wholly ascribed to
the differences in methodology or whether they can be ex-
plained by the variations in the imagery of the vegetation
patterns not being self-similar and therefore not truly fractal.
The only situation where data from the same source and res-
olution were used by both methods is the GER data for the
maquis: Du was estimated at 1.91 and D, at 2.22. This result
suggests that the methods do indeed differ considerably, a
conclusion that is further borne out not only by the negative
Pearson correlation between D, and D, (i.e., -0.65) but also
by examining the rank order of estimated D values for all
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vegetation types as estimated by both methods from all data
sources (Table 7). These results suggest strongly thai the im-
ages used are not true fractals. Significant differences in the
eitimates of D obtained from one-dimensional and two-di-
mensional methods applied to the same area have also been
found by Klinkenberg ind Goodchild (1992) and Clarke and
Schweizer (1991). Clarke and Schweizer (1991), without giv-
ing an answer, have asked whether a fractal dimension esti-
mated by a variogram method necessarily bears any relation
to that estimated by the walking dividers method, and
clearly this dependence of estimated D on method is an im-
Dortant area that needs to be investiqated, as does their other
question as to whether the fractal diinension of a p-rofile-

Gransect) across a fractal surface necessarily has a fractal di-
mension of that of the surface minus one.

The difference in estimated fractal dimension between
Du and Dr(rrtl) in this study may also be due to smoothing of
local variation within the 30- by 30-m pixels - in other
words, the variation is scale dependent' This information, to-
gether with the appearance of strong breaks of slope in the
variograms of the transect data, reinforce our conclusions

that the remotely sensed images of the land-cover units are
not true ftactals, though they undoubtably differ in rough-
ness, This finding is consistent with the conclusions of Bur-
rough (rgag; 1993a), Kl inkenberg and Goodc;hi ld (1992),

Mark and Aronson (1ss4), Xia (1993), and others that land

surfaces are only rarely self-similar, and then only within
limited scales. The disappointing results for the airborne GER
image are most probably due to the low signal-to-noise ratio
and poor image quality which caused the severe overlap be-
tween the land-cover classes (Figure B).

Although D. for TM imagery does seem to reflect the dif-
ferent vegetation types in the study area, it is clear that D, by
itself is insufficient for the automatic classification of ru im-
ages into land-cover categories. The relations between Dr and
break distance (the range of the variogram) in Figure 6 sug-
gest that information about the texture of patterns may be
used to separate important vegetation classes, though more
research is needed to determine how this information can be
unambiguously acquired and used.
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