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Sequential Estimation in Robot Vision*
Armln Gruen and Thomas P. Kersten

Abstract
Highly time-constrained robot uision applications rcquirc a
careful tuning and optimized interaction of a system's hard-
ware components, algorithmic complexity, software engineer-
ing, and task performance, The high accwacy processing of
full-ftame image sequences for image analysis and object
space feature positioning is very time consuming. In both of
these processes, sequential estimation algorithms offer valua-
ble alternatives to simultaneous approaches. This paper in-
troduces an efficient estimation algorithm based on Givens
transformations for use in point positioning and updating
camera orientation data. In a test, an easy-to-use standard
video camera has been applied for image frame generation.
The results of camera calibration and an accuracy test using
a 3o testfield are presented. The computing times of sequen-
tial point positioning and camera ofientation arc given and
in part compared to the values for the simultaneous adjust-
ment. This clearly indicates the superior performance of the
sequential procedurc.

lntroduction
Image sequences play an important rolo in photogramme$,
machine vision, aad robot vision. While in classical photo-
grammetry, especially in aerial applications, data acquisition
and processing is largely separated, this is no longer the case
in modern applications where non-photographic sensor tech-
nology and digital processing techniquos are employed. Fast
methods for data reduction are required, in particular, in
highly time-constrained robotics applications, but are also
very often of advantage in less time-critical machine vision
and digital photogrammetric projects. The classical data re-
duction process consists of two major stages: image meas-
urement and three-dimensional (ao) point positioning.
These process components are in general separated from
each other. In each case, simultaneous algorithms can be re-
formulated into sequential form for better time perform-
ance,

In image processing, well-known sequential formulations
exist for incremental convolution operations (used in Iinear
filtering, resampling, image pyramid generation, etc.); in im-
age analysis, they are applied in the pixel location transfor-
mations in orthophoto production (Baltsavias et aI.,'J.997)
and in form of the Kalman filter in the tracking of line seg-
ments in image space (Deriche and Faugoras, 1990).

A well known example is that of on-line triangulation
using sequential estimation techniques in point positioning
with aerial photographs. Here the computational procedure

*Presented at the ISPRS Congress, Commission V, Washington, D.C.,
2-14 August 1992.

of on-line bundle triangulation is closely tied to tle image
coordinate measurement process involving a human opera-
tor. The main purposo of this fast sequential estimation is
that of blunder detection at an early stage of the measure-
ment process with the utilization of quick r€measurement
possibilities and better blunder control capabilities. Impor-
tant characteristics of this application are, on ttre one hand,
t}le constaatly varying size of the state vector ("solution vec-
tor" in least-squares adjustment terminology) of bundle ad-
justment consisting of tle exterior orientation pararrreters of
photographs, the object point parameters, and, possibly, ad-
ditional parametprs for self-calibration. On tle other hand,
the full covariance matrix of all system parameters is, if at
all, only needed at the termination of the process. A third
distinctive characteristic is the high and typically sparse pat-
terns of the matrices involved in tle estimation procedure
(design matrix of observation equatious and normal equation
matrices of least squares). Given ttrese system characteristics,
a number of sequential estimation algorithms have been
compared to each other in the past. First, the Triangular Fac-
tor Update (rru) algorithm, which updates directly the upper
triangle of tle reduced normal equations, was fou-ud to per-
form much better than the Kalman form of updating, both in
terms of computing times and storage requirement (Gruen,
1982; Wyatt, 1982). Later, the Givens transformations were
found to be superior, in general, to the TFU (Runge, 1987;
Holm, 1989), botl in computational performance and in the
ease of mechanization and software implementation. In the
meantime, t}.e Givens algorithm has been implemented in a
number of systems (Edmundson, 1991; Kersten et al., 7992).
Already in the mid 80s, Gruen (1985a) envisioned semi-auto-
matic or fully automatic digital real-time triangulation sys-
tems for the future. We argue nowadays that machine vision
and, in particular, robot vision could draw substantial advan-
tages from theso sequential approaches.

This fact has been obviously acknowledged by the com-
puter vision community, where, among others, two recent
dovelopments are of particular interest. In Matthies ef o1,
(1989), the Kalman filter is used to estimate a depth map
from image sequences. Typical for this approach is that
depth estimates and uncertaintv values are comDuted at each
pliel of miniffed (256 by 256 p;ls) video framei and that
these estimates are refined incrementally over time. The
good performance of the Kalman filter is due to the fact that
only one parameter (depth value) constitutes the state vector
and is updated. Errors in orientation and calibration of the
video frdrnes and thus correlations between different ele-
ments of the depth map are not considered. Also, only lat-
eral motion of ttre CCD camera is assumed.
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Zhang and Faugeras (1990) use the Kalman update
mechanism to track object motion in a sequence of stereo
frames. They track object features, called ntokens" (line seg-
ments for example), in eD spaco from frame to frame and es-
timate the motion Darameters of these tokens in a unified
way (they also inte-grate a model of motion kinematics).
Their state vector consists, thus, of three angular velocity,
three translational velocity, and three translational accelera-
tion parameters of each object, and, in addition, six line seg-
ment parameters for each gD line representation. As before,
the tokens are treated independentty here, which allows the
state vector for estimation to remain small in size and may
result in straightforward parallelization for any number of to-
Kens.

Although we aro aware that very fast (e.9,, a video rate
of 25 Hz) solutions to tracking problems with affordable
computer hardware still require substantial simplification of
the measurement problem at hand, we nevertheless present
in this paper the general solution for sequential point posi-
tioning, based on the bundle solution. The solution is object-
point based. Other features may be derived from these gD
point measurements, Any simplification in measurement ar-
rangement, as for instance non-moving sensors, may readily
be derived from the general concept. Our solution may in-
clude self-calibration parameters for systematic error model-
ing and statistical tests for blunder detection. The sequential
estimation procedure applies Givens transformations for up-
dating of the upper triangle of the reduced normal equations
(Blais, 1983; Gruen, 1985a). We use Givens transformations
as opposed to a Kalman update because in robotics t}le co-
variance update of the parameter vector is not required at
every stage and then, if at all, only at relatively sparse incre-
ments, Moreover, the varying size of the parameter vector
(addition and deletion of new object points, addition of
frame exterior orientation parameters) leads to very poor
computational performance of the Kalman filter.

The approach presented here treats only the so point po-
sitioning problem in a sequential mode. A combination of se-
quential algorithms in zD image measurement and so object
point positioning within one unique system is feasible and
meaningful if, for instance Multiphoto Geometrically Con-
strained (urcc; image matching, which delivers object point
coordinates simultaneouslv. is executed for full frames in a
pixel-by-pixel (iconic) mode. AIso, a complete bundle solu-
tion with integrated image matching could be based on this
concept. Another generalization is possible if moving objects
are included in the system.

In the second section, a brief description of the Givens
transformations, as applied to sequential bundle triangulation
with static object points, is given. The third section presents
a test example using real irnage data produced with an arbi-
trarily moving video camera over a 3D testfield.

Sequential Estimation in the Bundle Adjustment with Givens
Tlansfomations
In this section we will Dresent in a concise fashion the for-
mulae of Givens transfo^rmations as applied to sequential es-
timation in bundle systems. For a more comprehensive
treatment, compare Blais (1983), Gruen (1985a), Runge
(1987), and Holm (1989). In the following, our functional
model for the bundle adjustment will be set up without the
inclusion of parameters for self-calibration. An extension by
these parameiers is straiqhtforward and does not alter the
considerations and concl"usions presented here,
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Least-Squares Approach for Estlmatlon
The Gauss-Markov model is the estimation model most
widely used in photogrammetric linear or linearized estima-
tion problems. An observation vector I of dimension n X 1 is
functionally related to a u X 1 parameter vector x through

l - e : A x

The design matrix A is an n X u matrixwith n > u and Rank
(A) : u. There is no need to work with rank-deficient design
matrices in on-line triangulation. Rank deficient systems,
caused by missing observations, generally do not allow for a
comprehensive model check. Observations should be accu-
mulated until the system is regular and can be solved using
standard techniques. For rank deficiency caused by incom-
plete datum, see Gruen (rgesa). Sequential least-squares esti-
mation with pseudo-inverses is very costly (compare
Boullion and Odell (1977), p. 50 ffj. The vector e represents
tho true errors. With the expectation E(e) = 0 and the disper-
sion operator D, we get

(1)

E(l) = 6*,
D(l) : Cr : (zo P-t, and
D(e) = C""= Ca.

(2a)
(2b)
(zc)

(3c)

The estimation of x and oo2 is usually attempted as unbiased,
minimum variance estimation performed by means of least
squares, and results in

pammeter vector * : (Ar Pa;-' 4t 
"t, 

(3a)
residualvectorv = Ai - I, and (3b)

vrPv
variance factor (2o

r

The architecture of A is determined by the type of triangula-
tion method used. As explained previously, we chose the
bundle method for the pu{pose of generality and rigidity.

For bundle adjustment, Equation 1 can be written as

- e : 4 x + & t - l ; P  ( 4 a )

where
x is the vector of object point coordinates;
t is the vector of orientation elements;
A, and A, are the associated design matrices; and
e, l, and P are the true error vector, constant vector, and
weight matrix for image point obsewations, respectively,

x and t are considered here as unconstrained (free) paramo-
ters. If observations are available for some or all of the object
point coordinates, a second system of observation equations
is added, that is,

: Ix - l.; P". (4b)

Similarly, observations for the orientation elements
would add

-Br : Ix - l,i P,

The least-squares principle, applied to Equations 4a, 4b, and
4c leads to t]le combined minimum

vrPv + vlP" v" * vrrP, vr+ Min, (4d)

For the purpose of simplicity and without loss of gener-
ality, we will operate in the following derivations only with
the reduced minimum principle

(4c)

vrPv + Min,



that is, we will consider only Equation 4a as observation
eouations.- 

The resulting normal equations are of the form

^' [{ : [s; x:] trl : ti;l t c l

N*:AT PA' l* :AT Pl

No:AT PA,, l,:6; P1

No:AIPA,'

with

N is further assumed to be regular. In an off-line envi-
nent, Equation 6 is usually solved bv applvins Gauss c andronment, Equation 6 is usually by applying Gauss or

formallv be describeCholesky factorization. The former can formally be described
as an LU factorization, decomposing N into a product of
Iower and upper triangular matrices L and U, i.e.,

-[r] : tll
or, with L : UrD (D is a diagonal matrix), in the alternate
formulation

-""[t] : tll
After the reduction of the right hand side, the solution

vector is computed from

-€r.=A,rr) [X,.,J *o,,", [l-,1 -r.,' r,",

^ The updated normal equations of the stage k are of the
IOrm

(72)

(1s)*hl : [i:] ,
(6)

(7 )

(B)

i+ [X,_,],,n [1,,]

N = i,:t,"i + ATr"r4*rlr*r,
' lr=ltflF AT 6) P(r) l(k)

1i1- : lttg+a1 rorpr*rATt*r,

N- : Prg,+4*,P,0,Afi",, and

lllo : llto;+llr*rPr*rAlr*r.

The superscripts (0) indicate that, if new parameters x,
and t6,, are added, the column/row spaces of the origind No,
No, and Nn matrices have to be extended by zero vectors and
the row spaces of the original vectors and by zero elements
accordingly,

The updating of the k - 1 stage normals can be de-
scribed as

(14)

The addition of the term AN to the k - 1 normals will
result in alterations of the matrix factors L and U, i.e.,

f{* N.
LNIN,

(e)'[t] :' '['r]
by back-substitution.

In photogrammetric triangulation, the factorization is
usually done as a stepwise procedure, stopping the reduction
of N right before it enters what was originally the N,, matrix.
This procedure leads to the pre-reduced normals No, i.e.,

(N+^N) tf] : tl i tl]

tutl(10)N"i : 1",

with N" - Nr - It$N;$.[o and

l": l,-NlN;lI".

Nn is finally factorized to an upper triangle N"" and f is
obtained by back-substitution from

Nn"i : l"r. (11)

The mechanization of this offline factorization algorithm
takes advantage of the fact that N* is a block-diagonal matrix
with 3 by 3 submatrices along the diagonal, Therefore, the
reduction of the point coordinates can be done on a "point
by point" basis, leaving the structure of the N* and No ma-
trices unchanged, i.e., producing no new fill-ins in those ma-
trices. This particular feature, based on the structure of N*,
is the key to a successful application of the Triangular Factor
Update technique in on-line triangulation.

Assuming a sequential process and interpreting Equation
4a as the status of the measurement system at stage k-1 of
the process, we get the following system if one or more im-
age coordinate obsewations are added, including new para-
meters x1p and t1r,7:

l-:-l
(u+au) lfl = rr*ar1-'

Sequentlal Treatment wlth Glvens Ttanstomatlons
Sequential estimation with orthogonal transformations using
qR decomposition is described in Lawson and Hanson
(1,974). Both additions/deletions of column and row vectors
of the A matrix are discussed there. Householder transforma-
tions as well as Givens rotations are used.

Blais (1983) recommended the application of Givens ro-
tations for the sequential treatrnent of surveying and photo-
grammetry networks. Our approach uses the estimation
model {Equation 4a). Instead of obtaining the updated upper
triangular matrix (Equation 15) by means of Gauss factoriza-
tion of the normal equations, it applies Givens transforma-
tions directly to the upper triangular matrix U of the
previous stage. At stage k-t the reduced system (Equation 9)
takes the form

r ^ r  F , ' f'Ltl='-'Lil : u
Adding one observation equation, including a set of new

parameters y, to this system results in stage k and gives
(with P,*1 = I)

-e=A,x*Az t - l ;  P



PEER.REVIEWED ARI ICTE

(16)l;:l til ['l

: Itl u, (18a)
lal ri

f'I 'l (1Bb)
li.l tt

GP1,,[A1^,,: [H] ,GP,t", = 
[$;]

(27)

in which
y is the new parameter vector of length p,
afu is the row vector with the coefficients of the new ob-
servation equation, and
16, is the right hand side of the new observation equa-
tion.
Applying a series of orthogonal Givens transformations

G=G"G,-, . . . G, (n is the total number of system pammeters)(17)

to Equation 16 results in

\n -p
)p
)1

, t .  y

I p=
) 1

The updated solution vector can be found by back-sub-
stitution into

= d . (1e)

The sparsity pattems of both U and a[, can be exploited
advantageously in order to speed-up computations.

If a covariance matrix of the parameters has to be up-
dated, essentially the same approach can be followed as for
the updated parameters, Another option is to derive it from
the upper triangle U using Equation 1.4 in Gruen (1985a).

Methods for the deletion of observations and the addi-
tion and deletion of parameters are described in Golub
(rsos) and Lawson 

"-nd 
H"nrotr (Lg74). Some of these meth-

ods fit nicely into the mechanization of the Givens approach.
Deletion of observations can be handled by introducing these
observation equations with negative weights into the stan-
dard format (Equation r0). Complex arithmetic is avoided in
computations.

itor the deletion of parameters, one simply cuts out the
corresponding columns of the upper triangle U and trans-
forms the remaining matrix to upper triangular form with
Givens matrices. The transformation of vector d is also nec-
essary,

The variance factor can be updated either through ex-
plicit computation in Equation 3c after tho "new" residuals
have been determined or through a sequential approach us-
ing the Givens transformations. Lawson and Hanson (1974,
page 6) have shown that

f , ) : ( v r P Y ) t r z : d ; d ,

with d, being derived from the factorization of the observa-
tion Equation 4a as

7A

Hence, \3 : O./r can easily be derived from ttre lower por-
tion d, of the transformed right hand side of the (.k - r)6
stage of the systom. The sequential updating of ,0 can be
achioved by simply adding O to d and updating O with Giv-
ens transformations (Gentleman, 1973): i.e.,

"[;] [r] "[*] [$] (22)

For blunder detection, which is particularly important in
automated measurement systems, Bairda's data snooping has
become standard. The computation of the related test criteria
w,: -v,\o",, (i : 1,. . . , ni requires the computation of both
the residual vector v and the diagonal elements of the Q--
matrix. In Gruen (1985a) it has been shown how t}e full Q*-
matrix can be efEciently computed or updated both with the
Givens and the TFU approach. Irr practical operations, we
clearly prefer the method of "unit observation vector"
(Gruen, 1982), because in the process of on-line triangulation
only a relatively small number of selected residuals have to
be tested at any given stage. An operational procedure for
blunder detection and deletion of gross enoneous observa-
tions in the case of non-diagonal-dominant Q.P-mahices,
and if the suspicion exists that more than one blunder is in
the data at a given time, was suggested in Gruen (1985b). Af-
ter each deletion of an observation, the remaining residuals
and the estimated variance factor are updated in a recursive
fashion and tested again in order to get rid of the influence
of the rejected observation.

Practical Example
The software package OLTRIS (On-Line Triangulation System;
see Kersten et al. (7992) for a description), which was devel-
oped for the U.S. oon (Department of Defense), is used for
the computation of the sequential estimation operations in
the practical example of this section.

Figures 1, 2a, and 2b show our 3D laboratory testffeld
which served as the test object to be imaged by 

-our 
(simu-

lated) robot, equipped with one cCD camera. In fact, instead
of a robot, a human operator "ff.lmed" an image sequence
with a |VC video camera cR-S778 (S-VHS).

This "amateur" video camera (Figure 3) was intention-
ally used instead of an industrial ccD c€unera, because of its
ease of operation (e.g., viewfinder for optimal object coverage
and internal compact video cassette for immediate data stor'
age of very long image sequences). Table 1 shows some of
the technical speciffcations of this camera.

lmege Frame Generatlon
The recording "flight" path of the video camera is illustrated
in Figures 2a and 2b. The sequence of the sp testfield was
recorded in two strips, moving the "robot" parallel to the
testfield at an approximate distance of 3,6 metres from the
wall. IiVhile recording the images, the auto focus was
switched off and the camera was focused at in-ffnitv. With
the focal length of the camera fixed at 8.5 mm, the depth-of-
field can be assumed sufEcient for sharp imaging of the ob-
ject. Fifty-three seconds ofthe sequence have been chosen
for digitization. The imagery was digitized with a VideoPix

"[g]

"l*l
'[il

(20)
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Figure 1. Three{imensional test f ield used for on-line tri-
angulation.

framegrabber on a sPARcstation 1+ (Sun Microsystems). The
generated image frames were pre-processed with a low-pass
filter (3 by 3 average). The effective size of each digitized im-
age was 72O (H) by 575 (V) pixels. Altogether, 90 image
frames were generatod, giving a rate of 1.8 images per second
of the sequence or one digitized image every 0.6 seconds.
Due to blurring effects caused by image motion, two image
frames were left out of the digitized sequence. Figure 4
shows three frames of the complete sequence (enhanced with
a Wallis filter for illustration). The original visual quality of
the frames is not very good. Radiometric and thus geometric
distortions due to motion blur, analog video cassette storage,
and frame grabbing with plt line synchronization are visible
if imaged at larger scales.

Camera Callbratlon
Before measuring image coordinates and processing data in
oLTRis, the video camera was calibrated. In the calibration,
additional parameters including parameters of interior orien-
tation, x-scale factor, shear, and radial and decentering dis-
tortion were determined. Investigations into the calibration

of ccn cameras are described by Beyer (1"992). The respective
software has also been used here'

In addition to the test sequence, images were acquired
for calibrating the fVC. The gn testfield was imaged from
four different camera positions. The pixel coordinates of the
test-field targets were determined by least-squares template
matching (rsrut), while reference coordinates for tle targets
were obtained by theodolite measurements' Measuring some
well-distributed points in the four images yielded sufEciently
precise approximations for the exterior orientation of the
lour images by resection in space, Using these data and the
known object point coordinates, approximate image_coo_rdi-
nates could be computed. These were used as initial values
for automatic Ieast squares template matching of t30 points
in each image. In thia test, LSTM was capable of measuring
seven targets per second including screen display with an
average piecision of 0.33 pm (ri33 pixels) in x and 0.29 pm
(1/35 pixels) in y.

The observations were processed in a bundle adjustment
witl self-calibration. The measurements and adjustment were
performed in DEDIP (Development Environment for_DiSitaI -
Photogrammetry; Beyer, 19s7), which is a part of the Digital
Photogrammetric Station DIPS It (Gruen and Beyer, 1990)' The
resultJ from the bundle adjustment and the comparison with
check points, as an independent verification of the accuracy,
are shown in Table 2. Version 1 summarizes the results of
the calibration with a minimal control datum (three control
points on the wall). In version 2, eight woll- distributed con'
i.ro} points on the wall and test-field frame were used in the
adiuitrnent. The empirical accuracy measures (Vx, Vy, Vz),
wliich are computed after a spatial similarity transformation
onto their check-point coordinates, show that an accr:racy of
better than one millimetre was obtained. A more accurate
calibration of this video camera with a larger number of im-
age frames and a different camera configuration was per-
formed by Beyer et al. (7992).

An accuracy on the order of thoth of the pixel spacing
in image space could be achieved. The camera constant was
determined as c : 8.62 mm, and the pixel spacing as 9.1 pm
(H) by 8.3 pm (V). The curve of radial distortion of theJVC
is illustrated in Figure 5, The 6.a- by 4.8-mm2 sensor of the
fVC is affected by a maximum distortion of. -zt pm at the
sensor corners.

f-. i L
I

.<---

f i
U

(a)

Figure 2. (a) Dimensions of the test f ield and camera path (planview). (b) Dimensions of the testfield and il lustration of the
camera path used for acquiring the test sequence.
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Figure 3. JVC video camera cR-s77E.

0n-Llne Tdangulatlon
In oLTRIS, the image sequence was triangulated to demon-
strate the performance and capability of sequential adjust-
ment for point positioning purposes. As mentioned earlier,
the triangulation was processed without self-calibration. The
image coordinates for the object points in the 88 images were
determined in a similar fashion as described above for the
camera calibration. Known data at the start of the triangula-
tion included the station orientation data of the fust image
(introduced as initial values) and ffve distributed object
points of the test ffeld which deffned the datum. After in-
cluding a new frame into the triangulation process, at least
three points have to be measured to compute the approxi-
mate values of the exterior orientation of the "current" cam-
era position. These orientation values of each consecutive
imale in the sequence were computed by rcsection in space
using the orientation data of the preceding image as initial
values. In each image, between 79 and 146 points were
measured. A total of 166 different object points in the test
field were used. In total, 20,860 observations ( object and
20,362 image point coordinates) were processed, with a max-
imum number of 1026 unknowns to be determined in the
bundle adiustment. The oath of the video camera for the test
sequence is plotted in Figure 6. The lower line represents
the estimated path (i.e., exterior orientation of ttre 88 images)
as determined by OLTRIS (with sequential estimation and si-
multaneous adjustment inbetween). The upper line indicates
the "path" as estimated in a (simultaneous) bundle adjust-
ment with self calibration in DEDIP. The mean of the differ-
ences between the two paths is 4.5 mm in the x-direction,

TABLE 1. RELEVANT TECHNTCAL 
3i:gi;i,*r 

oF rHE JVC VroEo Cauenn

IVC video camera GR.S77E

Super VHS System for record and play mode

High resolution '/.inch CCD Chip (420,000 pixels)

Focal length 8.5-68 mm, 8X zoom lens

Auto focus

Variable electronic shutter 71 50, 71 25o, 1/500, 1/1000 sec

Weight r.z kg
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TABLE 2. REsuLTs oF THE BUNDLE ADJUSTMENT wrrH SETFCALTBRATToN FoR THE VrDEo CnvEne CnLteRArtoN

Precision from adjustrnent Accuracy from check pointsr

Object space [mm] lmage space [pm] Object space [mm] Irnage space [pm]

Ver Im AP Co ch
d

lpml lLyFrFvc.-czUY

1 . 5  1 . 5
0.9 0.7

o.7 0.4
o.7 0.5

0.s8 0.85
0,31  0 .75

0 .91
o.29

o.82
o.27

7.23
o.62

0,5s
0.39

1 4 9 3 7 2 5 8 1  0 . 8 2
2 4 9 8 6 7 5 9 8 0 . 8 4

Ver
Im
AP
Co
ch

, . . . . . , . . . . , . . . N u m b e r  o f  i m a g e s
. . . .  . .  . . . . . . .  .Number of addit ional parameters

. . . . . . . . . . . . . . .Number  o f  con t ro l  po in ts

. . . . . . . . . . . . . . .Number  o f  check  po in ts
r  . . . . . . . . . . . . . . . . . R e d u n d a n c v

4 ., . . . . . , . , . , . , . .Standard deviat ion ofmeasured image coordinates a posteriori
owz ,. ,  , . . . ,  . ,  , .  .Theoretical precision in object space
crn  . . . . . . . , . , , . . . .Theore t ica l  p rec is ion  in  image space
Vwz ,. . , , . . . , , , . .Empir ical accuracy in object space
Fry .. . . . . , . . , . . . . .Empir ical accuracy in image space

lValues obtained after a spatial similarity fuansformation of all check point coordinates onto their reference values.
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Figure 5. Radial lens distortion of the JVC video camera.
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Figure 6. Path of the video camera.
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-11 mm in the y-direction, and L2 mm in the z-direction.
This difference can be attributed to the absence of systematic
error compensation in the sequentially estimated version.

The important comparison to be made here betweon the
two adjustment techniques, simultaneous and sequential, re-
lates to their respective computation times (ceu) for updating
the normal equation system and calculating the solution vec-
tor. In OLTRIS, it is possible to perform sequential update
with Givens transformations and simultaneous adjustment
with Cholesky factorization and back-substitution. Comput-
ing times (cpu) for the updating of the solution vector when
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including the observations of one additional image point are
illustrated in Figure 7. The plotted line shows the increase of
CPU time consumption, depending on the number of frames,
observations, and unknowns, respectively. The computadon
time measured was between 0.01 seconds per additional im-
age point measurement at the start phase of the triangulation
and 1.54 seconds at the stage of the last frame of tlle se-
quence. In comparison with these results, this speed could
not be achieved with a simultaneous adjustment. Here, the
normal equation system is relinearized, if the updating of the
solution vector is requested after adding an image point
measruement into the nounals. For that, forming and solving
the normal equations during the triangulation takes 3 sec-
onds per iteration at the stage of ten introduced image
frames, including 2726 obsewations, and approximately 20
seconds at the stage of 40 frames (9432 observations). This is
approximately by a factor 70 worse than tle sequential mode
and is far away from video real-time.

Concluslons
Our investigations have shown that sequential estimation in
a general point positioning and camera orientation module
fbundle adjustment) using Givens transformations can result
in very short response times for system updating, In our ex-
ample, the insertion of one additional image point required
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Figure 7. cPu-times for the inclusion of one additional im-
age point into the sequence (sequential estimation in oL-
TR|S on a SPARcstation 1+, Sun Microsystems).
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0.01 seconds at the stage of the ffrst CCD frame and 1.54 sec-
onds at 88 frames on a Sun sPARcstation 1+. The simultane-
ous solution required by a factor 70 higher computing times.
Thus, within this computer environment, an image point in-
sertion (and deletion) at video rate (0.02 sec) can be achieved
at a svstem size of ten frames. This excellent computational
perfoimance makes the procedure of sequential uidating of
bundle systems by Givens transformations particularly usefuI
in time-constrained machine vision and robot vision applica-
tions. From a system point of view, however, object space
feature positioning may be only a minor portion of the over-
all computing time budget. Because image analysis and image
understanding operations can easily chew up a large amount
of computing time, it should be worthwhile to investigate pos-
sible sequential formulations of related algorithms.

As a by-product of our investigations we could show
that, even wi& an "amateur" TV video camera with an inte-
grated analog storage device, a fairly good accuracy (1/106 of
a pixel from sD check points) can be achieved. We believe
that even better accuracies are possible if emphasis is put on
a more sophisticated procedure for systematic error compen-
sation. This opens interesting perspectives for the use of Tv
video cameras in a great variety of measurement applications.
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