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Automatic Estimation of Initial Approximations
of Parameters for Bundle Adiustment

Susumu Hattori and Ye Myint

Abstract
The bundle adiustment has been widely used in calibration
and orientation camera. However. because the observation
equations are non-linear, approximations of parameters are
necessary at the beginning of the adjustment. This paper de-
scribes a method to calculate the approximations of exterior
orientation parameters of photographs and coordinates of
object points associated with any model and/or any object
space coordinate system. This method is based on rclative
orientation of a stero pair by the linear coplanarity condition
and the unique decomposition of rotation matrices to angu-
lar elements. Established independent models are then con-
nected to a global model. If necessary, the global model
coordinate system is transformed to any object coordinate
system automatically through singular value decomposition
of rotation matrices. This method realizes semi-automatic
bundle adjustment and camera calibration without control
points. The discussion is validated by two detailed experi-
ments.

lntroduction
The bundle adjustment has been widely used in camera cali-
bration and aerotriangulation. However, because the observa-
tion equations are non-linear, approximations of all para-
meters are required at the beginning of computation.

In close-range photogrammetry, the approximations of
exterior orientation parameters are usually recorded at expo-
sure stations, and object-point coordinates are measured by
other means. These procedures are time-consuming and
sometimes inconvenient, because a convergent or parallel
imaging configuration rather than vertical one is often used.
For a digital plotter (digital-image-based plotter) which is
now being developed in many organizations (Lohmann,
1989; Ohtani, 1989; Miller, t99Z), easy manipulation is es-
sential for operators who are not familiar with photo-
grammetry. Hence, an automatic or semi-automatic adjust-
ment procedure is now strongly called for.

fb this end, Iinear soluti6ns based on the direct linear
transformation (ur) method (Abdel-Aziz, 1971; Naftel, 1991)
are often in use, which relate comparator coordinates to
ground control points (ccr) directly. On the other hand, a
closed form of space resection was derived by Zeng (1992).
Both solutions are mainly intended for orientation of single
photograph and require a minimum of six and three three-di-
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mensional (3n) control points, respectively. On the other
hand, Tsai (1986) discussed an automatic orientation of a
stereo pair with two steps. His method requires 2D control
points. These methods are not practical for the orientation of
multiple overlapping photographs. For a large object-space,
manv control ooints have to be set out to cover it with multi-
ple photographs.

We have recently developed a method to calculate auto-
matically the approximations of exterior orientation parame-
ters and coordinates of object points associated with any
model coordinate system from pass-points of photographs. If
necessary, the model coordinate system is automatically
transformed to any operator-assigned object space coordinate
system. The method is based on relative orientation of each
stero pair using the linear coplanarity condition and subse-
quent connection of models (Hattori, 1992).

The authors' method solves the following problems:

o Automated orientation. This is very useful for digital plotters,
because users do not have to learn deeply the orientation the-
ory and can easily define an obiect coordinate system on the
screen, while observing the model stereoscopically.

o Industrial measurement with only scale or level controls.
o Camera calibration without control points.

It has been shown that cameras can be calibrated with
only the coplanarity condition (Fraser, 1982).

0utline of Evaluation of InitialValues of Parameterc
Figure L shows an example of an imaging configuration in
camera calibration which will be referred to in the experi-
ments again. Three-dimensionally allocated targets are im-
aged convergently at various positions with various camera
rotations. Approximations of parameters are estimated with
the following processes:

o Overlapping photographs are each separated into an inde-
pendent ( local) model. Rotation matrices of independent
models are evaluated and decomposed to angular ele-
ments.

o The independent models are linked to form a global model.
r If necessiry, the global model coordinate system is trans-

formed to an object space coordinate system using some con-
trol (types of control can be different according to obiects and
purposesJ.

o Model or obiect space coordinates of target points are calcu-
Iated. Finally, the rotation matrix of each photograph in the
model or object space coordinate system is decomposed to
angular elements.
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Figure 1. lmaging configuration for camera
calibration.
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Relative Odentation by the Linear Coplanailty Condition

Coplanailty Condition
First, we start with a pair of overlapping photographs. The
interior orientation is assumed complete. Model coordinates

where (x, y, -c)', (x, y, -c)' are photographic coordinates,
(Xo, Yp, Ze)'r, (Xp, Yo, Zrr)' are model coordinates, c is cam-
era focal length, and B is the base length (unity with un-
known sign).

The following coplanarity condition

Y p , Z p r - Z p , Y p r : o  ( 2 )

of the model coordinates can also be written as

prxrxr* prxryr+ prxr(- c)+ q\y$2+ qzyly2+ er!r(- c) (3)
* 4(- c)x,* r,(- c)y"+ r,(- cX-c) : O

where

p1 : mnn3r-m"t0rt, P" 
-- mz1n3z-m31nzz, Pz: m21n33-m31nx,

q1  :  mz2n3r -mszf iz t ,  Qz :  m22n32-m32nzz '  Qs 
=  mr"n" " -m""n" r ,  (4 )

t1 : mnn3l-m33n27' f2 : mBn3z-mnnzZ' ft : m23n33-m$nn'

It can be easily seen that a vector

a : (prprprqrqrqrrrrrrr)r

has a relation

ara = 2.

Expressing Equation 3 in the form of an observation equation

Xa : v, (5)

where X is a design matrix and v is a residual vector, one
can solve a by minimizing vrv. After introducing a Langran-
gian multiplier u for constraint minimization, the objective
function becomes

U : arxrxa - u(ara - 2). (6)

By differentiating Equation 6 with o, one gets

(XrX-uI)a : o (7)

where a is an eigen-vector and u is a variance of residuals,
i.e.,llt/1'z/2, Even if the imaging configuration is good, one or
more of u's that are near zero may be obtained. The authors
still can not answer how many candidates of u should be ob-
tained in terms of the specific imaging quality. On the other
hand, the threshold for u can be estimated from the thresh-
old for y-parallaxes as follows:

From Equations 1, y-parallax (Dy) of a model point in
the image space can be written as

Dy:(Yp,'Zp, - Yp;Zp,)'c/ (Zp,'Zp,)
which can be approximated by

Dy: (Yp,'Zp, - Yp,'Zp,)lc
Threshold by Dy can be defined as
Th- > t/((t|n).>D1n)=\/((1/n c'z).Z(Yp;Zp, - Yp;Zp,)'),

where Thru is the threshold for y-parallaxes, n is number of
image points of the model. Recalling that u is the variance of
residuals llry'l'z/2, one can write

Th, > (1/2).(Th"")'.(n).(c')

tr
Z4

2-1 ?-2

tA"" /\ i Ypmru
2-3 2-4

Figurc 2. Four solutions retrieved from the coplanarity
condition.
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where Th, is the threshold for u. Out of multiple candidates
of u obtained after screening with the threshold, the correct
one is determined by the following procedure.

Detemination of the Rotation Matrices and Anges
The rotation matrices (m,,) and (n,,) are evaluated from the
vector a. Even though Figure 2-L is assumed to be correct,
Figures 2-2,2-3, and 2-4 as well as Figure 2-'1. are included
in solutions. Figures 2-1 and 2-2 are equivalent, whereas Fig-
ures 2-3 and 2-4 are false, because they are turned over into
a negative position. The rotation matrices must be deffned as

where Equation 12-3 is identical to Equation 10.

Evaluatlon of q
Writing the first six expressions of Equations 4 in the form of
m21n31= p1+ m31nz7, mz1n32= p2+ ma1n22, m"rnrr: pr1. mrrnru

m22n31: qa+ m32r121, rr122n32: q2+ m3znzz, mrrnr"--qr* nrrnr",

after multiplying the first with the fourth, the second with
the fifth, and the third with the sixth of each side of the
above expressions and summing them, one can calculate the
right side of it. And the left side becomes
m rrm rr(n "r' 

* n r 12 * n rr2) : m ̂  m rr: - sin xr c o s K1 : - $. / 2)sin2 x,
This procedure produces four candidates for k,.
Then n.r, n32, and n33 are evaluated for each candidate of

k, using the following different equations for better preci-
sion:
(a) for -3l4 r 1 x, 1-nl4 or r/4 < x, 1 3/4 n

nr,  :  (pr*m"rnrr) / ( -s in Kr) ,  f r "" :  (p"+m",n.r) / ( -s in xr) ,  (13-1)

nr, = (p.*m'n"")/sinx,

(b)  for  -n l+ S x,  (  r l4  or  314 r  < x ,<5/4 n

nr, = (qr*mrrnrr)lcosxr), nr" : (qr!mrrnrr)/cosxr, (73-2)
nr, = (qr* m"rn"r)l cosx,

Evafuatlon d gr, @,
From Equation 8-2

?] (8-1)

ll

(1.2-2)
(72-3)

(14)

( 1 5 )

mr, :  -(qrnrr l  qrnr"* q.nr")

mr, : - (rrnrr+ rrnrr* qrrrr)

f .org, o -sing, l  f  "or^,  
s inr,

m , i : l  o  1  o  l . l - s i n r ,  c o s K l
Ls ing ,  o  cosg ,J  L  0  0

f"org, cosKr cosgr sinx, -sing,l
: 

I 
-sinr, cosKr 0 |ts ing,  cosKr s ing,  s inx,  cosg, '

ft o o lf"or,r, o -sine,lfcosr, sinx,
( n , , )  : 10  cosoz  s i no ,  l l  0  ' l  0  l l - s i nx ,  cosx ,

'0 -s ino,  coso, '  -s ing,  0 cosg, '  '  0  0

cosg2 cosK2
-cosol2 sinr, * sinro, sing, cosr,

sinco, sinr, + coso2 singl, cosx,

cosg, sinr,
coso2 cosK2 * sino, sing, sinx, (8-2)

-sinor" cosK2 +.coso, sing. sinr,
. l-t ltg' 

Islno2 cosgz I
coso2 cosg2

It should be noted that the rotation order in the defini-
tion is unique. For other orders, it can be shown that there
are some angles at which the rotation matrix becomes singu-
lar and fails to be decomposed to angular elements.

Evaluatlon of $,
Because frr, = o, from Equations 4

mnn21 -- -r1' m33n : -I2' If lsfi2s : -rr (g)

And then
m""2(n"r2 I nrr" * fr"" ')  :  \ '  I  tr '  * rr '

Because the photographs are assumed diapositives, m., ) 0,
From the orthogonality of nu,

m,,: t/@T?trT$ (10)

From Equation 10 two candidates of @, are obtained. The
correct one is not evaluated at this stage. Thqn, from Equa-
tions 9

nr r :  -4 lmr '  f l zz :  - r r lm"" ,  n " " :  - r r /m. ,  (11)

Multiplying the first, second, and third of Equations 4 with
n21, 1122, and nr' respectively, and summing them up, one ob-
tains

mrr :  - ( p4 r r *  p r f i r r *  p "n r " ) .

Likewise, one gets

PE&RS

sln ozcos g : flzt' cos (t)2 cos gz : ffts.

Because n." )0, which means cos g" * O,

cos 92 = \/@J A

There exist four candidates for gr. And for each candidate of
g, angle to, is evaluated by

sin o, : n2"lcos gz, cos a, : t:rr/cos g,

Evaluatlon of r.
Rewriting Equation B-2 in the form of

(-cos or)sin r, * (sin or, sin gr)cos Kz = frzt
( cos or)cosx, + (sin <o, sin gr)sin Kz = flzz
( sin <or)sin x, * (cos <o, sin gr)cos Kz = ffst

( -s in <or)cosx,  + (cos to,  s in gr)s in Kz :  n32,

(16)

(17)

one solves the first two equations to get sin r, and cos K2.
They are always solvable, even if sin g, is zero. And this r,
is tested by substituting it into the third and fourth equa-
tions. Those sets of candidates of g and or, which fail to sat-
isfy both equations are abandoned.

Stdct Relative 0dentatlon and Detemlnation of the Sign of the Base Length
Because the precision of approximations evaluated above is
usually not sufficient, one should execute relative orientation
again using these approximations. An independent model is
thus obtained, which is either Figure 2-'L or 2-2.

Next the sign of the base length is determined in such a
way that, if Zp coordinates of objects in the independent
model coordinate system are negative, it is set plus, and if
Zp coordinates are positive, i.e., reverse from actual configu-
ration, it is set minus.

(72-1 . )
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Evaluation of 0rientation Parameters in the 0bject Space
Coordinate System

Model Connection in the Global Model Goordinate System
Independent (local) models thus formed are linked to make a
global model by usual successive orientations. To this end,
one independent model is selected as a datum model (a ref-
erence of the global model). Scales of successive models are
adjusted by scaling the respective base lengths. As a result,
exposure positions and the rotation matrices associated with
the global coordinate system X, Y, Z, are determined.

Transfomation from the Global Model Coordinate System to the Object Space
Coordinate System
When an object space coordinate system I Y A is given,
global model coordinates XMYMZM are further transformed to
the object coordinates. If no object space coordinate system
is given in 3D plotting, the operator has to set it arbitrarily.
With a digital plotter, one could easily define it on the
screen with the help of an interactive cao display.

Further consideration is given to the case in which the
object space coordinate system is implicitly defined in the
form of three or more 3D control points. In most industrial
applications, this will be the comhon case. In aerial photo-
grammetry, however, planimetric controls and height con-
trols are usually separated. In such cases, the usual affine
transformation would deliver a sufficient solution.

The closed-form problem of absolute orientation has al-
ready been solved by some researchers (Schut, 1960; Arun,
1987; Horn, 19BB). Schut expressed the rotation matrix by
quarternions and derived rotational elements using three 3D
control points. The methods of Arun and Horn are equiva-
Ient. Using three or more 3D control points, both researchers
derived the optimal rotation matrix by least squares utilizing
the orthonormal property of the matrix. Arun employed the
singular-value decomposition, while Horn used the eigen-
value-eigenvector decomposition with quarternions. The
method by Arun is adopted in our approach as follows. The
similarity transformation,

( 1 8 )

is commonly used for 3D space transformation, where S is a
scale, A: (Au) is an orthogonal matrix and B:(8,) is a trans-
lation vector. B and S are evaluated from the coordinates of
gravity centers and the scale ratio of two coordinate systems.
Thus, Equation 18 is reduced to the form

Xi  :  A  X. , ,  ( fo r  i :  1 , ,2 , . . .n ) (1s)

where suffix i means control point number. X, and X* are
coordinate vectors associated with the object space coordi-
nate system and the global model coordinate system, respec-
tively. It is assumed that their origins are already shifted to
respective gravity centers and X, are being scaled by S. The
matrix A is determined so as to minimize

,_ i , ,r -  2,A Xr, - XJr (A Xr, - XJ

After expanding and reananging, it follows that

91j2

F : i (xTX, + xT,,x,, - 2xht Ar x) (21)

is minimized when

i '  . . _  $Trace(L (XrAl r;,;j : trace trr' 4 (X'XL))
i - l  i : l

is maximized. With appropriate orthogonal matrices U, V
which singular-value-decompose N: E (XXr,t) in such a
way that

n

N=t1x,xL)  :Vf lur ,  (zz)

where O is a diagonal matrix with positive elements. The
optimal solutionof the matrix A is given as

A : V U T . (23)

The orthogonal matrices U and V can be determined in the
following way. Let E be a diagonal matrix with elements of
eigenvalues of matrix NrN, and U be a matrix with corre-
sponding eigenvectors as column-vectors. Thus,

N T N : U E U T .

Then the matrix V is defined as

V : N U E - 1 / 2 ,

where E-1/2 is a diagonal matrix, the elements of which are
inverse square root of respective elements of E. Because the
eigenvalues of NrN must be positive, this is always executa-
ble. If any eigenvalue is zero, it means that the object space
is degenerated, i.e., there is a bad distribution of control
points. Then O in Equation 22 and A in Equation 23 become
respectively

f l : v r N U : E t / 2 a n d
A : N U E  r / 2 U r

Evaluation of Angula Elements
After all rotation matrices (M,) associated with the object
space coordinate system (or global model coordinate system)
are determined, they are decomposed further to obtain angu-
lar elements. Let the matrices related to angular elements K
@, and O be simply denoted by [Kl, [@], and [O]. In close-
range photogrammetry, objects are imaged from various di-
rections. If the rotation order of angles is fixed, the matrix
(M,r) can be singular for some angles and unable to be de-
composed to unique angular elements. In order to assure
unique decomposition, one has to change the order of rota-
tions depending on the values of elements of the rotation
matrix. A typical definition is

(a) If M,, + +L, (M,J = t0ltOltKl

(b) If M,. o + 1 and }431 + + 1, (Mr) : tKlt@ltpl

(c)  I f  M' . :  +1and M,,  :  t  1 ,  (Mr)  :  tK l tp l t@l

where the threshold for (+ + 1) may be 0.8.
Because the treatments for all cases are similar. the dis-

cussion will be given only to case (a). Because sin Q :-M,,,
one gets two candidates of @ for -r < Q< n, Because cos @
+o ,

lr : s li,',,i,:i:,:l l{A . [li]

(20)
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Figure 3. Left photograph used in the relative orientation.

TneLe 1 AppRoxrMATroNs AND THE Mosr PRoelere VALUES (Mpv) oF RELATTVE
ORrerurnror Pnnnverens

angles (deg'dec) approx. MPV

Figure 4. Target f ield for the camera calibration.

sin 12 : Mrrlcos @, cos 0 : M.r.lcosQ,

cos K: Mrrlcos @, sin K -- MrrlcosQ.
(24)

For each candidate of tD, Q and K are determined uniquely.
They are then tested as to whether they satisfy the following
equations:

ment is eight) which are distributed unbiasedly. Figure 3 is a
left side photograph of the stero pair. This configuration is
not ideal for automatic adiustment but very usual in indus-
trial photogrammetry. Lens distortions were conected using
the parameters offered bv the camera manufacturer.

but of nine eigen-values obtained from Equation 7, three
of them were 0.0598, 0.146, and 1.02, while the others are
greater than 100,000. As a result of applying the procedure
mentioned above to three small eigenvalues, a set of rotation
angles with respect to the model coordinate system were ob-
tained only for the third minimum. And the others did no
produce false solutions. Residuals RMs y-parallaxes of 7 pm
were obtained in the ensuing precise orientation. Table 1
shows the approximations and the most probable values
(t',lpv) of the angles.

Camera Calibration without Control Points
The target field shown in Figure 4, was imaged by a metric
camera, Geodetic Service CRC1, with c - 24O.o mm (varia-

ble) and a film size of 23 cm by 23 cm. The camera is de-
signed to determine precise coordiantes of object points by
simultaneous adjustment with all other parameters, i.e., inte-
rior orientation parameters of the camera and exterior orien-
tation parameters of the photographs (Fraser, 1982).

The target field was + m (height)by 5 m (width) by 2 m
(depth) in size. 63 Sixty-three points were allocated three di-
mensionally over the area. Most of the points were imaged in
most of the photographs.

As shown in Figure 1, ten photographs were taken with
a kappa rotation of g0 degrees to each other. The distance
from exposure stations to the field center is about 6 m. The
linkage order of photographs adopted in the experiment is
shown in Figure 5. Photographs 3 and B make a datum
model (a reference of the global model coordinate system),
and others are linked to this model. Pairs of the photographs
(3 ,5) ,  (3 ,4 ) ,  (3 ,2 ) ,  (3 ,1 ) ,  (8 ,6 ) ,  (8 ,7 ) ,  (B ,e) ,  and (e , t0 )  fo rmed in -
dependent models. Models from (8,6) through (8,10) are
Iinked to the datum model successively. According to addi-
tional experiments, however, any other combination of pho-
tographs also results in stable models as long as their
convergent angles were not close to 90 degrees. The base
length of the datum moel was set to unity (1 m).

9t
K1

a2

9z
K2

34S.00
345.00
-  z , + J

0.00
-  1 .49

358.96
360.33

0.04
- 1 . ' t 2

0 . 1 3

-cos f,J sin K + sin J2 sin @ cosK =

cos f) cos K * sin ,fl sin @ sinK :

sin O sin K * cos J2 sin @ cosK =
-sin J2 cos K -| cos O sin @ sinrK =

l z J  )

Sets of candidates which do not satisfy all these equations
within a certain tolerance (0.3 in our experiments) are dis-
carded.

Experiments
The proposed procedure was applied in two experiments for
a validity check, i.e., a simple relative orientation of a pair of
stereo photographs and a camera calibration without control
points.

Relative 0rientation of a Pair of Stereo Photographs
A target field of 5 m by 5 m by 0.5 m (depth) was imaged by
a 35-mm metric camera. Pentax Pams 645. c -- 44.979mrn.
Two photographs were taken vertically in stereo with a base
length of 1.5m, overlapping each other by 50 percent. Com-
mon pass-points are 12 in number (the minimum require-
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--8--6

i--7
i--e
i--10

i--s'l-1 Figure 5. Photo. connection, photopair 3-8

i__i as datum model.

The model of interior orientation used is very general
one, i.e., corrections Dx and Dy to measured plate coordi-
nates x and y are given as

py : ((,r2 -r K"ra)(x-xo) +P,(r2 + 2(x- x)2) + 2P"(x- x)(y- yo) (26)

Dy : (K,f + K S^)(y 
- y 

") 
+ 2 P,(x - x )(y - y) + P 

"(f 
+ 2(y - y J,)

where xo, yo are principal point coordinates, K, K" and P' P,
are coefficients of radial and tangential lens distortions, re-
spectively, and

p : (x_x)2_r(y_y),.

AII the approximations of interior orientation parameters ex-
cept for a camera focal length were set to zeros. That of the
camera focal length was read out by a micrometer-based in-
dicator of the camera.

From Equation 7, one to two valid eigenvalues were ob-
tained for all independent models. With threshold value
(Th") of '1,.7 x'l,o?, these values ranged from 30 to 1.5 x 107.
However, relative orientation parameters of all models were
uniquely determined from the minimum eigenvalues. False
solutions did not appear.

The calibration was executed in the global model coordi-
nate system. In the case of no control points, either the free-
network or the minimal constraint method can be employed
to cope with seven rank deficiency. The authors adopted the
latter. Seven degrees of freedom was fixed by giving infinite
precision to Z* of point a and to X*, Y*, Z, of points b and
c in Figure 1.. Consequently, Tables 2 and 3 were obtained,
which include the approximations and the adjusted values of
the interior orientation oarameters of the camera and the ex-
terior orientation param-eters for photo 1 and 10 as well as
the RMS difference between approximations and adjusted val-
ues of target point coordinates. The exterior orientation para-
meters and the RMS value are given in global model
coordinates. The model scale is about a half of the actual
space.

Tables 1., 2, and 3 prove that the algorithm produces ap-
proximations of parameters suitable enough for further bun-
dle adjustment.

Conclusion
This paper has discussed the algorithm for automatic cal-
culation of approximations of parameters for bundle ad-
justment. Relative orientation parameters of each pair of
photographs are estimated from the l inear coplanarity con-
dition. AII models are l inked to form a global model. Then
their rotation matrices are uniquely decomposed to angu-
lar elements. If the object space coordinate system is
given, the transformation parameters are also automati-
cally estimated.

The procedure realizes photogrammetry with/without
control points for semi-automatic orientation and camera cal-
ibration while keeping the user assistance to a minimum. It
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PnRnuerens OsrnrNeo rru rne Cnvenn CnrrsnnrroN wrrHour CourRol Pornrs

(PART 1).

Interior Orientation Parameters

camera dist. (mm)
principal xo (mm)
point yo (mm)
radial lens distort.

k, (rnm ')
k, (mm-')

tang. Iens distort.
P' (mm-')

P, (mm ')

approx.
249.5

0 .0
0 .0

mPv.
249.575 + 0.016
-0 .076  +  0 .019
-0 .341  +  0 .019

- 0 . 3 7 3 e 7 + 0 . 0 6 0 e 7
-0 .136e -1 ' z+  0 .298e - l ' z

0.609e-6 + 0.11.0e-o
-0 .291e -6  +  0 .110e -o

0.0
0 .0

0 .0
0 . 0

TneLe 3. AppRoxrvnrror.ts AND THE Mosr PRoanele VALUEs (N4pv) oF
PnRnverERs OsrnrNeo rn rxe Cnvem CnueRnrroN wrrHour CorurRol Porurs

(Pnnr 2).

Exterior Orientation Parameters

photo 1
O (deg.dec)
@ (deg.dec)
K (deg.dec)
X" (M)
% (M)
Z o ( M )

approx.
-  15 .258

-o.71.7
-84.176

o.977
-o.o25
-0.236

mpv.
-74.952

-o.782
- 88.3 79

0.959
-  0 .255
-0 .255

photo 10
O (deg.dec)
@ (deg.dec)
K (deg'dec)
& (M)
% (M)
Z" (M)

approx.
-47.687
-1.6.O27
-97 .S09

1 .969
0.495

-  1 . 1 3 9

mpv.
-47 .327
-  15 .588
-97.966

1.960
0.489

-7.727

nvs differences of the approximations and the most probable values
of target point coordinates in the global model coordinate sys-
tem:0.797 (mm)

is very useful for digital-image-based plotters (digital plot-
ters), which feature easy manipulation for everybody who is
not familiar with photogrammetry.
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