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Abstract
A system for automatically rccognizing signalized points in
digitized aerial photographs is described. Signalized points
take on a highly variable appeorance in terms of radiometry,
shape, scale, and orientation. Additionally, they appear as
very small features, making reliable feature extraction infea-
sible. Using a hierarchical neural network architecture ac-
companied by suitable image pre-processing-recognition
invariant to the orientation of the pattern and robust with re-
spect to shape, scale, and radiometric variations-was
achieved. The hierarchical neural network architecture con-
sists of (1) a Self-Organizing Feature Map network employed
for the learning of reference signalized point patterns and
the handling of their variable orientation, scale, and shape;
and (z) a Feed-Forward Network employed for the classifica-
tion of similarity tests between the reference patterns and a
given test patch. Experimental results demonstrate that the
system achieved o neor 100 percent recognition rate for clas-
ses of patterns for which it was trained, with a very low
false-alarm rate. A gradual fall-off in performance was
recorded for "unlearned" signalized point patterns, resulting
in an overall recognition rate of 74 percent.

lntroduction
The application of artificial intelligence (RI) technology in
the analysis of photogrammetric image sequences was set to
be one of the primary goals of a recent project at the Institute
of Geodesy and Photogrammetry, Swiss Federal Institute of
Technology, Zurich. The measurements of signalized points,
a fundamental task in aerotriangulation, was focused upon
because it contains the elements of general image analysis
and understanding problems. In this paper, a system consist-
ing of image pre-processing, and a hierarchical neural net-
work architecture for recognizing the patterns cast by
signalized points (sr) in digitized aerial images is presented.
Recognition here entails both detecting the presence of an SP
pattern and estimating its position and orientation within an
image.

Signalized points (ses) are coordinated landmarks "sig-
nalized" in such a manner as to appear with a shape and
size that permits their manual measurement in aerial photo-
graphs. The measurement of these points in aerotriangulation
consists of three basic operations: (1) recognition, entailing
the detection of the presence of sPs and estimates for their
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coarse locations in the photographs; (2) identification, in
which each of the recognized sps is labeled; and (3) precise
Iocalization, in which precise image coordinates for the land-
mark in the photographs are determined. The photogramme-
trist commonly draws on a number of knowledge sources in
order to simultaneously identify and recognize the occur-
rence of sPs in the photographs, including topographical
maps, sketches from the survey of the sps, and the stereo cue
in transferring the Iocation of the points from overlapping
photographs. Given the desirability of removing the reliance
on human operators in all stages of the mapping process, the
automation of each of these operations demands attention'
To this end, the precise localization of sps has been practi-
cally solved with various least-squares matching (I-stvt) algo-
rithms, providing image coordinate accuracies on the order
of 0.02 pixels for well-defined points (Griin and Baltsavias,
19BB). Ii is well-recognized, however, that LSv requires good
approximations of the location and orientation of the targets.
tf the sp measurement process is to be automated, these ap-
proximate values should be provided by the recognition op-
eration.

The recognition of specific patterns in images, such as
sps, falls under the general field of study of automatic target
recognition (ern). While template and feature-based methods
have been successfully used in many pattern recognition ap-
plications (Duda and Hart, 1973), they generally fail to pro-
vide adequate solutions in cases where the pattern to
recognize exhibits large variability, has poor resolution, and
varies in scale-characteristics commonly the case in ATR
and, in particular, in SP recognition (spn). In contrast' even
primitive biological organisms are perfectly suited to_perform
iuch cognitive iasks (e.g., bees). Inspired by such biological
systems, Artificial Neural Networks (eNu) models have been
siudied for many years in the hope of developing artificial
systems that provide comparable performance. The develop-
ment of new ANN topologies and algorithms, as an attempt to
model the processes of ion and learning in biologicalmodel the processes of perceptron and learnrng rn Drologlc
systems and the belief that massive parallelism is essentialsystems and the bellet tnat massrve parallellsm rl
for achieving high performance of algorithms em
cosnitive tasks, mav form the basis on which sutcognitive tas

rformance of algorithms employed for
form the basis on which such tasks cacognitive tasks, may torm the basrs on whrcn sucn tasKs can

be tackled successfully. The importance of artificial neural

networks (aruus) for ATR applications, most of which have
been of a military nature to date, was confirmed in the study
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Figure 1. Dimensions and
layout of an ideal target as
used in the test data.0.50 m I
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conducted by the United States Defence Advanced Research
Projects Agency (see DARPA, 1988).

Artificial neural networks form the basis of the SpR strat-
egy outlined in this paper. The potential of aNNs presented
only with the patterns the signalized points cast in digitized
aerial images is explored. In the following sections, thi char-
acteristics of the spR task are described, approaches to target
recognition are reviewed, the componenti of the develope'cl
system and the training of the neural networks are desciibed,
experimental results are reported, and, finally, conclusions
and recommendations for future work are discussed.

The aerial photographs used in these investigations were
I ftg- a 4by 4 sub-section of an aerial triangulation
block flown in 1986 over the Heizenbers arei of eastern

Sony XC-77CE inter-line transfer device used to digitize the
test photographs is 13.6 by 11.1 pm, leading to a slght orien-
tation-dependent distortion of sn shape.

o A variable number of components. As a consequence of the
other characteristics mentioned here, the numblr of distinct
features comprising the st pattern can vary as the patterns of
the sP- components (point and strips) become merged.

o Variable radiometric properties. The intensity and contrast of
sr images is influenced by numerous factors, including the il-
lumination conditions at the time the photographs weie
taken, the context (or background) in which the sp is found,
the gain of the photograph scanner, as well as disturbances of
the sp both on the ground and in the photographs, e.g., by
dust.

. Variable context. ses are ideally located in a position free
from obstruction, particularly from the air. This is not always
achieved, as the examples in Figure 2 testify.

As a_ consequence of the above characteristics, sps ap-
pear in digitized photographs as highly variable patterns,

T*i"g formulation of a general stritegy for SpR extremely
difficult. In order to achieve recognition robustness, the slrat-
egy needs to be invariant, or at least insensitive, to these pat-
tern variations. To this end, three levels of invariance are
desired:

. Orientation invariance: the orientation of the sp in an image
should not influence it's recognition. This is particularly im-
portant for asymmetric Srs.

. Radiometric invariance: the recognition strategy should be in-
sensitive to the Sp's context and its absolute intensity.

o S hape -deformation invariance: the recognition strategy
should be insensitive to variations in sf shape (scale, struc-
ture, number of components) and context.

As mentioned in the introduction, context plays an im-
portant role in the process by which humans recognize srs.
In the strategy reported in this paper, recognition is solely
based onthe pattern of the sp projected into the photogriphs
(low-level, as compared to thehigh-level knowledge of"the

taken from a 4 by 4 sub-section of an aerial triangulation
test-block flown in 1986 over the Heizenberg area of eastern
Switzerland. The average image scale for these 16 photo-
graphs is 1: 15,000, althoush. because the terrain h-eishtthe terrain heightgraphs is 1: 15,000, although,
ranges from 650 to 2150 m, the effective image scaleianges
L ^ ! - - , ^ ^ -  r  ,  - ^  - ^ ^  Y  i  ,between 1: 19,300 and 1: 10,700. In this block, a single right-
angled signalized point tvpe was used, as described below. Aangled signalized point type was used, as described below. a
number of patches, each containing one signalized point,
were digitized at a size of 592 by 574 pixels from the photo-
graphs in this sub-block (for more details, see Wilkins-
(1990)). A total of B1 images provided the data for training
and testing the aNN-based reCognition system.

Gharactefistics of the Signalized Point Recognition Task
Signalized points are man-made, planar structures consisting
of a square center-mark placed directly over a coordinated
feature. In the case of the Heizenberg block, they are accom-
panied by two rectangular strips placed equidistant from the
center mark and perpendicular to one another (see Figure 1).
The latter provide the Sps with some degree of uniqueness
and thereby assist in their recognition in the aerial photo-
graph.s..For a recognitio_n approach based solely on this pat-
tern, it is important to describe the characteristics of the
appeiuance of Sr patterns in digitized images, as these char-
acteristics define the properties required of an automatic rec-
ognition strategy. As exemplified in Figure 2 Sps appear with

. Rondom orientation within the oerial photogrophs.
o Variable size. The size of the Sp pattern is influenced by the

physical dimensions of the sp itself, the image scale, and the
photograph digitization resolution. Table 1 summarizes esti-
mates for the variability of sp pattern size in the test data.
With an average maximum dimension of 1S pixels, Sp pat-
terns appear with very low resolution, practically excluding
the application of feature-based recognition techniques, as 

-

outlined below.
o Variable structure. As a consequence of irregular Sp construc-

tion-caused by, e.g.,lhe topology of the area surrounding the
sP, the structure ofthe Sp pattern can vary, i.e., the stripi of
the sps are ideally placed at 90', although this is rarely-the
case as can be seen in Figure 2. A further contributing factor
is the non-uniformity of digitization: the pixel size of the

918

Figure 2. Typical patterns for a right-angled signalized
point extracted from digitized aerial photographs. The var-
iability in the appearance of signalized points poses a
significant problem for automating their recognition.

PE&RS
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TneLe 1. VARrABrLrry or Srculrzeo Pornr PnrrrRr Srze.

Largest SP pattern dimension (pixels) SP pattern area (pixels)

mtntmum maximum minimum mean maximum

- 3 5 -60  -85

context). Consequently, the context of an sp is considered
here to be a random disturbance, In other words, the Sp must
be discriminated with respect to an infinite number of back-
grounds.

Approaches to ATR
ATR is a general problem, relevant to many applications in
image analysis and understanding. Numerous approaches
and algorithms can be found in the literature. These can be
classified into three broad classes: area-based, feature-based,
and model-based approaches. In model-based vision, the tar-
get to be recognized is stored as a general model. The com-
ponents, features, etc., describing this model must be found
on/in the test pattern for a match to occur. While a
model-based target representation may be efficient, the com-
plexity of this approach arises in the means by which a cor-
rect model for a given local situation can be derived from
the general model. If the situation is difficult to interpret, the
computational search space may be large (Thoet et al.,].952).
In feature-based matching, attempts are made to extract sta-
ble characteristic features from segmented patterns in images
and match them against the equivalent features derived from
representative target patterns. The features commonly re-
ported in the literature (based on, e.g., Method of Moments,
Fourier Descriptors, stochastic models of contours, etc.) vary
in the degree of their invariance and/or insensitivity to orien-
tation, scale, and shape distortions in the target patterns (Kd-
puska, 1992). Their suitability in this particular application
is called into question when considering the relatively small
size of the sr patterns (see Table 1) and the variability of
their bounding contours and number of components (see Fig-
ure 2). Robust recognition using such features generally de-
mands that the patterns be easily segmentable and/or consist
of long, distinct edges. That these conditions cannot be
reached easily in SPR is clearly illustrated in the example in
Figure 3. Here, it was not possible to determine a set of
global parameters for the Canny edge detector providing sat-

isfactory segmentation for a range of sPs: usable results could
only be obtained by optimizing the algorithm parameters for
each individual sl image.

In traditional area-based (e.g., template) matching, an en-
tire test patch (a small window of an image) is compared to a
patch representative of the target pattern. If the match be-
tween the test and representative patches is "good enough,"
the system claims recognition of the target at the test patches
Iocation. Under "open-world" conditions, template matching
possesses a number of limitations, i.e., changes in pattern
scale, orientation, and appearance (due to shadowing, occlu-
sions. and the context) can cause mismatches. This limited
robustness requires that a large set of representative patches
be employed, thereby increasing the computational load
(Thoet et aI., 1.992). Nevertheless, given the limitations of
feature- and model-based recognition, an area-based ap-
proach appears to be the only most feasible approach for
addressing the sPR task and was adopted for this work.

Suitability of Ailificial Neural [{etwo*s for Tatget Recognition
Due to their intrinsic properties, ANNs appear to provide a
framework for complex recognition tasks. An ANN is a sys-
tem composed of many computationally simple processing
elements (units) operating in parallel, whose function is de-
termined by the network architecture, the strength of the
connections between the units, and the actual processing
performed at these units (DARPA, 19ss). These units are
generally non-linear; the output is a function of the weighted
sum of its inputs. The architecture of an ANN is specified by
the topology of the interconnection links between the units.
In order for an ANN to be able to perform a task, these inter-
connection weights must be suitably adjusted, typically using
a learning algorithm. Its learning capacity provides an ANN
with the capability of adapting to new situations, e.g., in
ATR, to additional targets and environments, and depending
on the type of network, may follow a supervised, unsupervi-
sed, or self-supervised procedure. For a general introduction
to neural network techniques and tools, see Rumelhart et al.
(1987), Lippmann (1.s87), Kohonen (19BBb), and naRPA
(1988). ANN techniques have recently found numerous practi-
cal application in ATR. An excellent overview of this subject
can be found in Roth (1990). A number of attempts have
been also made to use ANNs for ATR in photogrammetric ap-
plications. Toth and Schenk (1990) used a parallel associa-
tive memory architecture for the recognition of synthetic
cross-shaped targets overlaid in aerial images. Chiu and
Hines (1990) applied a feed-forward network with back prop-
agation (FFN-BP) to recognize synthetic reference points over-
Iaid on processed photogrammetric plates. To the authors'
knowledge, however, there are no reports on the recognition
of signalized points for photogrammetric applications in an
"open-world" environment.

Earlier Work
As with other recognition approaches, it is important to in-
vestigate the means by which an ANN can be made invariant
(or at least insensitive) to the variability of the target pat-
terns. There are a number of possible approaches: (1) by
training the aNN with a set of patterns that cover the range of
pattern appearance variations, or (2) by embedding invari-
ance into the ANN architecture itself through use of an invar-
iant feature space. In earlier work by K6puska and Mason
(tggra; 1s91b), the potential of the first approach was
investigated. A single feed-forward network was trained by
back propagation with a set of patteins which encompassed
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EEffiK
EEHE
Figure 3. Example of the difficulty of
using conventional pattern analysis
techniques for SPR. The edge images
for the four signalized points shown
here were derived from the Canny
edge detector using a common set of
processing parameters.
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a wide range of appearance variations in orientation, scale,
and context. This set was comprised of both manually se-
lected sp and non-SP patterns. In conjunction with an itera-
tive training and testing paradigm, this initially small
training set was gradually expanded to include those pat-
terns the network falsely classified, thus overcoming the dif-
ficulty of selecting an optimal training set. While a
recognition rate of 85 percentl over 32 images containing
well-defined sp patterns was achieved with this paradigm,
this simple architecture appeared to be limited in its capac-
ity to be simultaneously invariant to Iarge pattern variations.
The experiences made in these investigations lead to the
conclusion that at least part of the invariance must be em-
bedded into the aNN architecture itself. In addition, a pre-
processing scheme was deemed necessary to suppress the Sp
background and contrast variations.

ANN-Approach to Signalized Point Recognition
The experience gained by early investigations led to the for-
mulation of the SPR system in which the three desired levels
of recognition invariance are tackled individually. First, ro-
bustness with respect to radiometric variations is achieved
by pre-processing the images to suppress each SP's context
and to enhance its absolute grey level; second, orientation
invariance is achieved through selection of a suitable ANN ar-
chitecture; and third, shape-deformation robustness is
achieved through suitable training of the networks. The aNN
architecture consists of two hierarchically organized net-
works-a self-organizing feature map (soru) network and a
feed-forward network (rnN). These networks were trained by
first presenting a set of example Sr patterns to the SOFM for
the learning of sP reference patterns, and then training the
FFN based on the output of the trained SOFM for the example
patterns. As output from this system, coarse estimates for the
Iocation (around 1 to 2 pixels) and orientation of the SP pat-
tern in each tested image are determined. The components of
the SPR system, as shown in Figure 4, are detailed below.

lmage PreProcessing for SP Enhancement and Context Suppression
The fact that SPs are white, regular structures permits exploi-
tation of three sources of knowledge in image pre-processing.
First, the SP can be expected to contrast with its immediate
contex| second, the grey-level (intensity) value of sp image

lThis recognition was based on the condition that there was only
one se per image.

920

patterns should lie within the upper-bounds (brighter) of the
image's intensity histogram; and third, sps are small, com-
pact patterns. Based on these expectations, a preprocessing
scheme was developed through empirical testing, that con-
sists of

Step 1. Wallis Filtering. The purpose of this filter is to force the
mean grey value, and especially the contrast of an im-
age, to fit some given, in this case globally set, values
(Baltsavias ef o/., 1990). It is applied here to suppress
sP context.

Step 2, Median Filtering (3 by 3 window) to eliminate high fre-
quency noise possibly enhanced by Wallis Filtering.

Step 3. Histogram Transformation (illustrated in Figure 5) to
further enhance the contrast between the Sr patterns
and their contexts.

Step 4, Low-Pass Filtering (o : 1.0) for smoothing of the sp
shape to overcome possible artifacts created by the his-
togram transformation.

This pre-processing scheme was found to be generally appli-
cable to the test images-in only two cases out of 81 tested
images, did the scheme fail to enhance the Sps due to very
weak feature-background contrast. The effect of each of these
steps is illustrated in the example in Figure 6.

Hierarchical ANN Architecture
Invariance with respect to orientation, and robustness with
respect to shape and scale variations, is handled in this sys-
tem by means of a hierarchical aNru architecture. This archi-
tecture consists of a self-organizing feature map (soru)
network and a feed-forward network (FFN) (see Figure 4).
The variations in SP scale, orientation, and shape are han-
dled by the SoFM, while FFN performs classification and ori-
entation estimation based on the responses output from the
SOFM.

Self-0rganizing Feature Map
Self-organizing networks, such as SOFMS, partition a set of
training examples into groups or clusters using unlabeled
training data, i.e., unsupervised training. This type of cluster-
ing, or vector quantization, is an efhcient means for com-
pressing information that is to be processed at higher levels
with little loss of information (DARPA, 19BB). The number of
clusters formed can be either pre-specified or automatically
determined from the training data. Moreover, the units form-
ing the SOFM network can be structured in one, two, or
higher dimensions and in a number of different topologies

Figure 5. Histogram transformation em-
ployed for enhancing signalized point con-
trast.

A
| /oureut-v

Figure 4. The signalized point recognition system compo-
nents and data flow: an image pre-processing step fol-
lowed by a hierarchically structured ANN consisting of an
SOFM and a two-layered FFN network. The output for each
recognized signalized point includes estimates for its lo-
cation and orientation.
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Figure 6. Pre-processing of images for signalized point
recognition: (a) i l lustrates the original image; (b) after
Wallis f inering; (c) after median fi l tering and a histogram
transformation; and (d) after low-pass filtering.

(Kohonen, 19BBa; Kdpuska, 1990). The motivations for em-
ploying an SOFM in an SPR recognition system are twofold:
(1) a network topology can be selected that permits a natural
handling of the sp orientation variations; and (2), through ap-
propriate clustering, the variability in sP shape and scale can
be covered. The clusters in this application consist of a set of
reference SP Datterns.

In the Spn svstem. the SOFtvt units are structured in a
"cylindrical" arihitecture (see Figure z). Each of the rings is
associated with a different SP pattern cluster and is com-
prised of 32 units. Each unit in a ring corresponds to a dif-
ferent primary orientation of the ring's reference pattern, i.e.,
from 0o through 348.75'in 11.25' intervals. By testing an
equally dimensioned input pattern for similarity against the
reference pattern at each of the units in a given ring, orienta-
tion invariance is achieved. The choice of 32 orientations
was reached through experimentation. (Note that, for sym-
metric sP patterns, e.g., crosses, eight orientations would be
sufficientl.

Computing the Similarity between Reference and Test Patterns
The final classification of an input pattern as either an SP or
non-target is made by the FFN on the basis of the similarity
of this pattern to the rotated reference patterns located at
each unit. of the SOFM. For a given orientation o, the Euclid-
ean distance { between the intensity of pixels in the test
patch {x,y) and the / reference patterns 4 @,y) located at
units of the SoFM for this orientation, is computed as fol-
lows:

where X and Y define the size of the input test patch (here,
X = Y : 35), and o = {0, ..., 31}. Accepting the reference
pattern &, (*,y) with the distance {, where

. 1
4 : : m i n ( i l ,  i : 1 ' , . . . ,  1  ( 2 )

with n being a scale factor (n : 255XY), as that patch most
similar to l(x,y), the similarity response for l(x,y) for orienta-
tion o is computed as follows:

,. = 
{;"' 

' '(i,- "1,:3 (3)
The parameter r (here, r -- 2.O) ensures that, for small
average differences between (x,y) and 4 Li, the maximum
similarity score is obtained. For differences greater than a
this score decays exponentially. The similarity responses are
computed for each of the 32 reference patch orientation, i.e.,
S : {S", ..., S.,}, and have values on the range [0, 1], where
S, : o indicates a low similarity response and S" - 1 indi-
cates a high similarity. This set S of similarity responses is
fed into the FFN for final classification. In other words, the
input to the FFN is the highest similarity response recorded
for each orientation of the SOFM.

Feed-Forward Network
Feed-forward networks (also known as multi-layer percep-
trons) are typically used for classification tasks and are
trained under supervision using labeled training data to par-
tition input patterns into a pre-specified number of classes.
FFNs consist of a number of layers of units, typically the in-
put, hidden, and output layers. A three-layer FFN can form
iny decision region and can approximate any desired non-
linear input/output mapping (DARPA, 1988). Two-layer net-
works (i.e., without hidden layer(s)) are capable of solving

4 : (-4 -i- un,rr- e (',y)))
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Figure 7. The SoFM consists of
six rings (one for each reference
pattern), each comprised of 32
units (one for each orientation of
the reference pattern).
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Figure 8. Set of pre-processed signalized points patterns
employed for training the neural networks.

Iinearly separable problems. The units of each Iayer are typi-
cally connected only to the units of the succeeding layer.
The weights, i.e., strengths of the unit connections, are most
often adjusted using a form of the back-propagation (ne)
training algorithm (Rumelhart et al., 1,987). Bp is a supervised
training algorithm requiring specification of the network be-
havior (desired output) for each given input. Training pro-
ceeds iteratively until the actual output is equivalent to the
desired to within a given tolerance.

In the SPR system, a simple two-layer FFN was consid-
ered sufficient to perform the necessary classification of the
similarity responses outputs from the SOFM. This network
consists of an input and an output layer, each containing 32
units. Based on these measures, the FFN classifies the input
pattern as either an SP or a non-target. In doing so, if the in-
put pattern is an SP, the similarity measures should peak
around the unit corresponding to the SP pattern's orientation
and should be minimal for all other units. On the other
hand, if the input pattern is not an Sp, the responses at all
output units should be low.

Training the Neural Netwo*s
Neural networks must learn or be taught the tasks that they
should perform. This is achieved through a training phase in
which the unit connection strengths (or weights) within the
network are adjusted. In the SPR system, training is divided
into two steps. The SOFM is trained first, and then the re-
sponses of the trained SOFM are used for training the FFN
network. The algorithm employed for training the SOFU is
essentially a vector quantization procedure, i.e., Learning
Vector Quantization (tvQJ (Kohonen, 19BBa; Kohonen ef a1.,
19BB). The aim of LVQ is to obtain a small number of refer-
ence patterns that adequately describe the continuous distri-
butions of the actual SP Datterns. In this case. the SOFM units
"learn" weights equivalent to oriented sP reference patterns.
To perform this training, a set of high-quality SP patterns
were manually selected. By "high-quality" is meant SP pat-
terns that can be easily recognized by humans without the
assistance of additional knowledge, e.9., context information.
The motivation in selecting such patterns was that the SPR
system should recognize good sr patterns well, with a grad-
ual fall-off in performance as the quality of the pattern dete-
riorated.

There exists a trade-off between choosing a smaller num-
ber of reference patterns for the sake of computational effi-
ciency, and choosing a larger number for the sake of more a
accurate representation. From empirical testing, six reference
patterns were deemed sufficient for this application, although
it is possible to automate the process of setting an optimal
number of reference patterns, as discussed in the conclusions
section of this paper. In Figure B, the set of SP patterns used

for training is illustrated. Each of these SP patterns has been
extracted from the test images and pre-rotated to an orienta-
tion of 0' (based on the direction of the left-most point strip).
The training of the SoFM, canied out for this single orienta-
tion, produced the six reference patterns shown for the 0o
orientation in Figure 9. These reference patterns were then
incrementally rotated by 11.25'into the additional 31. orien-
tations of the units in the network, The compression effect is
evident: the reference patterns are generalizations of classes
of training patterns.

In addition to the patterns employed for training the
SOFM shown in Figure-8, three uniformly toned patterns-
white, black, and average grey, respectively-were included
into the set for training the FFN. These were necessary in or-
der to establish a proper classification for non-SP patterns.
The training set was then further expanded by reproducing
each of the SP patterns-initially with an orientation of 0'-
at the remaining 31 discrete orientation steps supported by
the system. Thus, the full training set contained typical sr
patterns at all orientations, as well as a few non-target pat-
terns. The FFN was then trained using, as mentioned above,
the back-propagation algorithm with the desired outputs for
each of the system inputs (i.e., the training patterns) defined
as follows:

. for sP patterns, the output should be - 1 at the unit with ori-
entation, shape, and scale matching that of the input pattern,
and : 0 or less at all other output units; and

o for non-target patterns, the output should be : 0 or less at all
output units.

The manner in which the SPR system performs recogni-
tion can be seen as a form of surface evaluation. The set of
similarity measures computed at the units in all layers of the
SOFM can be interpreted as forming a surface with axes:
SOFM ring, orientation, and similarity response. An example
of such a surface for an SP pattern is shown in Figure 10. Be-
cause the input to the FFN consists (only) of the set of simi-
larity measures belonging to the layer in which the highest
similarity measure was obtained, classification is based on
the profile containing the similarity surface peaks. In end ef-
fect, it is the shape of this profile on which the pattern rec-
ognition decision is based. The profile corresponding to the
surface shown in Figure 10 is depicted in Figure 1.1.

Expeilmental Results
As mentioned in the Introduction, the data used for testing
the SPR system consisted of 81 images (dimension 592 by
574 pixels), each containing a single SP pattern. Each image
was processed by the system in the following manner:

(1) Pre-processing was carried out.
(2) All possible 35- by 3S-pixel patches were then sequentially

extracted from the image. (For the test data used, this
amounts to some 3 x 105 patches per image!).

(3J For computational reasons, a simple heuristic test was car-
ried out to eliminate patches not containins sufEcient

EEEEEE
Figure 9. Signalized point reference
patterns generated by the SOFM net-
worK.
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Figure 10. The complete set of similarity responses recorded by each unit in the SOFM for
a signalized point pattern.

"bright" pixels from further consideration. It is improbable
that such patches contain an Sp.

(a) Patches pissing the test in (3) were presented to the soFM.
Similarity measures between the test patch and the refer-
ence pattern at each unit of the SOFM were computed.

(5) Results from the soFM were then presented to the FFN-Bp for
classification. Output from the FFN-BP consists of a set of
scores for each orientation. These require interpretation. If
all scores are "low," the input pattern is considered to be a
non-target; alternatively, if a single "high" score is recorded,
an SP is considered to have been recognized. The coarse lo-
cation of the sp in the input image is then given by the cen-
ter pixel coordinates of the successful patch, and an
estimation for it's orientation is given by the orientation of
the associated unit.

The results of applying this procedure to the test images
are summarized by the two recognition response histograms
in Figure 12 and Figure 13. In Figure 1.2, the distribution of

the recognition scores for 81 targets is given, while in Figure
13, the distribution of all response scores triggered by non-
target patterns is shown. The images accompanying these
histograms exemplify the type of patterns triggering different
response levels. Ideally, the sPR system should output scores
of o for non-target patterns, and positive high scores (- 1)
for sPs. In reality, however, sPs which differ significantly in
appearance from the reference patterns will trigger lower rec-
ognition scores, while non-target patterns appearing similar
to SPs can trigger high scores. If a decision between Sps and
non-targets is made on the basis of a threshold set on the
recognition response of the system, it must be anticipated
that some sPs may be missed and false-alarms recorded by
the system. Table 2 summarizes, based on the experimental
results, the recognition and false alarm rates for three differ-
ent thresholds.

At ffrst glance, the recognition rate even for the lower
threshold (0.601 may appear disappointing at 74 percent. Re-
calling, however, that the soFM was trained for high quality
patterns, a closer inspection of the results reveals that a near
100 percent recognition rate was recorded by the system for
such patterns, with performance deteriorating gradually as
the magnitude of the shape distortions and scale differences
of the pattern with respect to the reference patterns in-
creased. Poor results were also achieved when a pattern's
context failed to be adequately suppressed, Indeed, some 1B
sP patterns (over 22 percent of the test set) suffered from
these problems. The examples in Figure 14 illustrate patterns
exhibiting these problems. It should be clear that these pat-
terns are not well represented by the reference patterns in
Figure 9, a direct result of the fact that the system was not
trained with suitable examples (see Figure 8). As future
work, it is planned to further test the system trained to ex-
plicitly handle a broader category of sl patterns. With re-
spect to the false-alarm rate, it can be seen in Figure 13 that
the type of non-target patterns the system responded to
closely resemble the sP patterns and may easily be falsely
recognized by a human operator in the absence of contextual
information.
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Figure 11. Input to the FFN network derived from the set
of similarity responses i l lustrated in Figure 10.
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Figure 12. Histogram of FFN responses for the signalized
point patterns in the test data, and corresponding typical
original and pre-processed signalized point patterns that
triggered it.
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Figure 13. Histogram of FFN responses for distinct non-
signalized point patterns in the test data, and corre-
sponding typical original and pre-processed patterns that
triggered it.
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Figure 14. Examples of poorly defined signalized
point patterns the system failed to recognize. A
comparison with the training patterns in Figure 8
indicates that the system was not explicitly
trained to recognize such patterns.

still achieved, although accompanied by a gradual inflation
of the false-alarm rate. It should be noted that, once a num-
ber of well-defined sps have been recognized and identified,
knowledge in the form of the relative orientations of the
models in the block and of the ground locations of sPs can
be exploited to (1) narrow the search space for "missed" tar-
gets by estimating their image coordinates, and (2) detect rec-
ognition blunders and false alarms by checking that the rays
defined by candidate SP patterns intersect in object space.

A number of potential improvements to the current sys-
tem are also foreseen which can lead to improved perform-
ance:

o The range of sl patterns the system is able to recognize can
be increased by the inclusion of example patterns into the
training of the sorv network.

o For the cuuent system, the number of sP reference patterns
was chosen, by experience, to be six. An improved sP pattern
representation may be obtained if, during soFM training, the
number of reference oatterns is automaticallv determined bv
the training algorithm. This can be achievedby incrementing
the number of soru reference patterns until a certain mini-
mal similarity score is achieved for each training pattern.

. The current similarity measures employed for both training
the SOFM network and later for testing images is based on the
simple Euclidean distance between the intensities of refer-
ence and testing patterns. Alternative measures, e.g., normal-
ized cross correlation coefficient. mav be more suitable.

o Currently, only a sample of the similarity scores computed by
the soFM are presented to the classification network (rru).
While this data compression leads to a more efficient imple-
mentation, the associated information loss may contribute to
a degradation in performance. It is to be expected that, if the
complete set of similaritv resDonses obtained from the sorrra
(i.e.,-the responses at eaih unit of each ring of the network)
were to be used, system performance could be improved
along with a reduction in the false-alarm rate.

In developing this system, greater emphasis was placed
on optimizing the recognition rate than on efficiency, in par-
ticular, processing times for images. Currently, the complete
testing of an image of seZ by 574 pixels requires about L0 to
15 minutes on a Sparc-2 workstation, depending on image

Discussion and Gonclusions
The primary goals of this work were, generally, to investigate
the application of AI technology to solving photogrammetric
tasks, and more specifically, to develop a system for signal-
ized point recognition based solely on the patterns these ob-
jects cast in digitized aerial imagery. With respect to the
second goal, a neural network-based snR system was devel-
oped and trained to recognize well-defined sP patterns. Test-
ing demonstrated that this system performs its task robustly
for such patterns, i.e., with 0 well-defined se patterns being
wrongly classified as non-targets and a very low false-alarm
rate. For poorly defined targets-for which the system was
not specifically trained-reasonable recognition rates were

924 PE&RS
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content. It is anticipated that, with optimized software, dedi-
cated hardware, and an improved strategy for pre-sorting im-
age patches such that only those patches with promising
feature content are tested, these times can be drastically re-
duced. Note further that only a single, asymmetric Sp layout
was considered in this work. Although alternate layouts are
used in practice, e.9., crosses, the generality of the developed
recognition strategy is not compromised. The ANNs simply
need to be re-trained for the new pattern. In the case of
crosses, the difficulty of the task can be simplified by taking
into consideration the symmetry of the feature insofar as a
reduced number of Se patterns orientations need to be ca-
tered for.

Finally, despite the promising results achieved by this
work, and the potential offered by future system improve-
ments, the authors remain skeptical that 100 percent robust
St recognition without false-alarms can be achieved purely
on the basis of patterns in digitized aerial images. To achieve
this, either an improved signalization procedure that in-
creases the scale and uniqueness of the Se patterns in the
aerial images is required, or a strategy capable of fusing all
the sources of knowledge employed by the human operator
needs to be developed.
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