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Forest Mapping at Lassen Volcanic
National Park, California, Using Landsat
TM Data and a Geographical Information

System

Joseph D. White, Glenn C. Kroh, and John E. Pinder Il

Abstract

Knowledge of forest species composition is an integral part
of designing and implementing resource manangement poli-
cies in a national park. Managers must rely on cost-effective
methods of vegetation mapping, namely, use.of remotely
sensed data coupled with digital geographic data, to help
them meet their management goals. In this study, we demon-
strate that genus-level maps can be generated from unsuper-
vised classifications of Landsat T™™ data at an accuracy level
of 73 percent. Species-level maps can be created to an accu-
racy level of 58 percent by post-stratification of the spectral
classification with topographic data in a geographic informa-
tion svstem (GIs). This modification method is a rule-based
svstem whereby spectral forest classes are sorted based on el-
evation and soil-moisture gradients established for each spe-
cies through ecological research. Our observations illustrate
that spectral classification is optimized by using all six re-
flective T™ bands and that classification accuracy is affected
by canopy cover and understory vegetation. Modifving spec-
tral classifications by environmental data in a GIS is a useful
way of defining species composition of forests in an area
where access to forests is limited but need for map informa-
tion is great.

Introduction

Reduction of forest and woodland habitats in North America
has stimulated development of resource management tools to
assist future forest conservation. Preservation of these forests
is vital because of their role in global carbon cycling and
species diversity (Bormann, 1985). Anthropogenic distur-
bance such as air pollution, acid rain, and global climate
change could affect the functioning, distribution, and sur-
vival of plant and animal species in their present ranges. Na-
tional parks, national forest wilderness areas, and private
reserves such as those held by the Nature Conservancy pro-
vide refuges for these species and their habitats. Automated
phytocartography from remotely sensed data coupled with
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geographic databases can play an important role in docu-
menting present plant species distribution in these protected
areas.

Computer-aided classification of remote sensing informa-
tion has become a standard tool for mapping vegetation
across large areas (Iverson et al., 1989). Data from Landsat
and airborne radiometers have been used to identify the spe-
cies composition of various deciduous and coniferous forest
ecosystems (Likens et al., 1982; Khorram and Katibah, 1984:
Benson and DeGloria, 1985; Hughes et al., 1986; Skidmore,
1989). Mayer and Fox (1981) discriminated lodgepole pine,
ponderosa pine, and fir at a rate of 91 percent using Multis-
pectral Scanner (MSS) data at the McCloud Ranger District
near Mt. Shasta, California. Walsh (1980} mapped forests
composed of lodgepole pine, ponderosa pine, white fir,
shasta red fir. and mountain hemlock at Crater Lake National
Yark using classification of MSS data with an overall accuracy
level of 88.8 percent. Moore and Bauer (1990) reported accu-
racies of 63 to 67 percent mapping various Minnesota conifer
species such as red pine, jack pine, black spruce, white pine,
and tamarack using the Landsat Thematic Mapper (T™). Shen
et al., (1985) mapped the same species using T™ simulator at
68 percent. The higher mapping performance of the studies
using MSS over TM sensors is notable considering the refined
spectral and spatial resolution of the T™™ sensors; however,
this may be function of both the environ-
mental conditions and spectral characteristics of those partic-
ular forest species.

Typically, previous mapping projects have utilized su-
pervised classification techniques. Supervised classification
can be costly in terms of time and money spent selecting and
sampling training sites to represent the range of morphologi-
cal and topographical variation of a particular mapping cate-
gory (Walsh, 1980; Mayer and Fox, 1981). Unsupervised
classification of spectral data may be preferable when map-
ping large areas with a rugged terrain (Fleming et al., 1975).
Terrain effects, expressed as topographic data, may be used
to modify remote sensing classifications to map forested ar-
eas in which species are not easily distinguished spectrally
(Skidmore, 1989; Richards et al., 1982; Cibula and Nyquist,
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Figure 1. Spectral response of four dominant tree spe-
cies of Lassen Volcanic National Park across the reflec-
tive TM bands.

1987). Bolstad and Lillesand (1992) mapped forest species
between 73 and 89 percent by coupling T™™ data with soil
and topographic data.

The purpose of this study is to demonstrate that (1) ge-
nus-level mapping of mixed conifer forests can be accom-
plished using simple, unsupervised clustering of Landsat ™
data and (2) forest species can be identified by modifying
spectral classification with topographic information through
a geographic information system (G1S). The importance of
this study is to show that valid forest composition maps can
be produced using readily available spectral and image proc-
essing/GIS software. Use of this technology by resource man-
agers in other protected areas will increase our knowledge
about forests at present and can ultimately be used to moni-
tor the change in forest composition over time (Vande Castle,
1991). Also, compilation and integration of vegetation maps
into a geographic database from many public and private re-
serves would expand our understanding of forest species dis-
tributions from local to regional scales.

Methods

The Earth Resource Data Analysis System (ERDAS) software
was used to perform an unsupervised classification of Land-
sat T™ data covering the forests of Lassen Volcanic National
Park. Two techniques were tested for their usefulness in
identifying conifer tree species. In addition, a GIS model
based on topographic data was developed to differentiate
species that could not be differentiated using only spectral
data. The format of the mapping process consisted of (1)
classification of the spectral data, (2) interpretation, (3) modi-
fication of the spectral classification using habitat variables
in the GIS environment, and (4) accuracy assessment,

Site Description

Lassen Volcanic National Park covers approximately 500 km?
of the southernmost peaks of the Cascade Mountain range.
Elevation in the park varies from 1616 m at Warner Valley to

300

3187 m on Lassen Peak. Most of the park below 2400 m is
forested, with the distribution of forest species being affected
by altitude (Gillette et al., 1961). Abies magnifica (red fir)
and Pinus contorta var. murravana (lodgepole pine) domi-
nate upper elevations (2100 to 2400 m), whereas A. concolor
(white fir) and P. jeffrevi (Jeffrey pine) are most abundant at
lower elevations (<2100 m). Limited stands of Tsuga merten-
siana (mountain hemlock) occur along the treeline >2400 m,

Other vegetation communities occurring in the park in-
clude (1) montane chaparral dominated by Arctostaphylos
patula, Castanopsis sempervirens, and Ceanothus velutinus;
and (2) seasonally wet habitats located in valley meadows
and along streams and lake margins. Alnus tenuifolia and
Carex spp. are common constituents of these saturated areas
(Bailey, 1963).

Data Processing

T™ data were acquired for 12 June 1987 at approximately 9:
30 AM with cloud-free conditions. This date was selected to
optimize the photosynthetic potential of the tree vegetation
(as well as possible spectral characteristics) while minimiz-
ing snow cover at higher elevations. A subset of 935 by 658
pixels containing Lassen Park was extracted from the original
Landsat data for classification. This subset was linearly geo-
rectified using forty ground control points selected from
USGS 1:24,000-scale quadrangle maps to a root-mean-square
error (RMSE) of one pixel in the horizontal plane.

Errors related to reflectance path and random sensor
malfunction result in radiometric noise in the data (Jensen,
1986; Conese et al., 1988). To reduce the confounding effects
of this noise, a 3- by 3-pixel low pass filter was applied to
the data,

Satellite Data Classification and Interpretation

The T™ data were classified using a clustering algorithm of-
fered in the ERDAS software. Bands 1, 2, 3, 4, 5, and 7 were
classified into 20 clusters using the CLUSTR program. CLUSTR
is a sequential classifier in which cluster means are calcu-
lated from the data just as it occurs in the data file, begin-
ning with data in row one, column one and continuing to a
user defined limit. Classes, therefore, may be affected by the
spectral information contained within the first few rows of
data.

Interpretation of the 20 classes was based on expert
knowledge of the forested areas supplemented with aerial
photography interpretation. Classes were placed into Pinus,
Abies, non-forest, and non-vegetation categories. Non-forest
classes consisted of shrub and meadow domintated areas and
non-vegetation classes were bare ground, lava, water, and
snow. In cases where classes could not be resolved by this
method, a normalized difference vegetation index (NDVI) was
calculated based on the mean cluster values for bands 3 and
4 for each class. Classes with low NDVI values were assigned
as non-vegetation, medium values as forest, and high values
as non-forest vegetation. The range of NDVIs was established
from NDVIs of known classes.

Average DN values for ten homogeneous species stands
were collected for the six reflective bands to test the spectral
definition of each species. These data were plotted (Figure 1)
and Student’s t test values were calculated to determine sig-
nificant ditferences in spectral values between species and
genera. Spectral classes were only interpretable at the genus
level based on this analysis.
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TaBLE 1. SEPARATION OF SPECTRAL BASED TRee CLASSES BY ELEVATION.

Spectral Class

Elevation (m) Pinus Abies

A. concolor
A. concolor
fir (non-specific)
A. magnifica

< 1830
1830 to 1920
1980 to 2180
2220 to 2350

P. jeffrevi
pine (non-specific)
pine (non-specific)
pine (non-specific)

> 2350 P. contorta A. magnifica
= 2560 T. mertensiana* T. mertensiana*®
= 2620 P. albicaulis* P. albicaulis*

*Identified but no accuracy assessed.

TABLE 2. SEPARATION OF TREE SPECTRAL/ELEVATION CLASSES BY POTENTIAL
ToroGRaPHIC MoISTURE GRADIENTS (GENERALIZED FROM TEN TOPOGRAPHIC
MoisTURE CLASSES TO THREE).

Tree/Elev. (m)

Classes mesic xeric

P. contorta
P. contorta
P. contorta
A. concolor

pine/1830 to 1920
pine/1980 to 2180
pine/2220 to 2350
fir/1980 to 2180

P. jeffrevi

P. contorta
P. contorta
A. magnifica

P. jeffrevi
P jeffrevi
P. jeffrevi
A. magnifica

Classification Modification Using a GIS Model

A cis model based on elevation, slope, aspect, and proximity
to a water source was used to subdivide the Pinus and Abies
classes from the spectral classifications to the species level.
Elevation and soil moisture value ranges which defined the
habitats of tree species were obtained from the literature (Gil-
lette et al., 1961; Vankat, 1982; Holland. 1986; Rundel et al.,
1988).

Elevation for the GIS model was derived from 1:24,000-
scale elevation data (DEM) obtained from the U.S. Geological
Survey. These contained errors of horizontal striping and
emply areas caused by scanning procedures used in their
generation (USGS, 1987). To reduce the effects of theses er-
rors, a 3 by 3 row-wise filter,

0-10
0-10
0-10

was applied to the DEM to reduce striping. Missing data
points were then identified in the data and replaced with the
averages of the surrounding elevation values (Stitt, 1990). El-
evations were grouped into 30 classes smoothed with a 5- by
5-pixel median value filter to remove errors persisting after
filtering the DEM data.

Potential soil moisture was evaluated using a topo-
graphic moisture gradient (TMG) model suggested by Vankat
(1982). Though other models exist for evaluating soil mois-
ture (Beven and Wood, 1983; O'Loughlin, 1986), the T™MG
model was chosen because of the (a) specificity of the model
to the Lassen forest species and (b) simplicity in construc-
tion-based topographic analysis. In this model, potential soil
moisture is expressed as a range of values from 1 (wettest) to
10 (driest) and is a function of slope, aspect, and position on
slopes. Stream valleys are considered weltest and ridgetops
driest. The intermediate range is created as a combination of
aspect and slope. Slopes and aspects were computed using
the topographic module in ERDAS. Ridgetop and valley posi-
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tions were derived by applying a filter to the DEM data which
returned the average height of the peripheral pixels to the
center,

0.125 0.125 0.125
0.125 0 0.125
0.125 0.125 0.125

termed D). Values of D, were subtracted from the original
pEM data (D) and scaled to a mid-range of 100 to obtain a
topographic position value D, (D, = D, — D, + 100). For D,

< 100, the position is a lower slope or valley depending on
the difference from 100, D, = 100, positions are midslopes,
and for D, > 100, positions are upper slopes and topographic
ridges. The file was recoded so that the resultant GIs file had
three classes: valley, midslope, and ridge. Stream channels
were established by correlating low sloping areas with digiti-
zed perennial and intermittent streams from the 7.5-minute
topographic maps. Streams flowing through valleys with
shallow slopes would tend to greatly affect soil moisture be-
yond the confines of the stream channel (Gregory et al.,
1991).

A species composition map was created from a post-
stratification of the spectral classified images using the eleva-
tion data and the T™MG map. In a decision tree process, Pinus
and Abies categories of the spectral based classifications
were partially separated into species based on elevation
ranges. As species could not be distinguished solely by ele-
vation due to broad overlap of ranges at mid-elevational lev-
els (Gilette et al., 1961; Holland, 1986) (Table 1), the T™MG
variable was used to differentiate species at elevations where
separation was incomplete (Table 2.

Accuracy Assessment

Map accuracy was assessed for genus-level, spectral classifi-
cation and the species-level, Gis-stratified map. Accuracy was
checked against 30 field samples ranging in size from 240 by
240 m to 150 to 150 m for a total of 1580 pixels sampled.
Samples were subdivided into 30- by 30-m plots for plot-to-
pixel comparison. The variation in sample size was a func-
tion of sampling technique used. Generally, size had no
relation to variation in map accuracy at this scale. Species
and estimated coverage for three vegetation layers in the for-
est canopy and other site variables including slope, aspect,
and general site moisture conditions were assesed for each
pixel within sampled areas. Forest types were determined by
coverage in the upper canopy in each 30- by 30-m plot for
each genus and/or species. Most forests sampled were domi-
nated by one forest type by at least 50 percent cover and
were designated as single species type forests.

Sample locations were chosen based on geographically
identifiable trail, stream, or road crossings, and aerial photo-
graphs. Remote sampled areas which could not be identified
on 7.5-minute topographic maps were located using the
Global Positioning System (Gps). Though a random sampling
regime is preferred to reduce the incidence of spatial auto-
correlation associated with T™™ data, the steep, volcanic ter-
rain of Lassen coupled with dense forests and underbrush
necessitated location of sampling areas in accessible areas.

Number maps were produced from the genus- and spe-
cies-level maps for correlation with the field data. Pixel by
pixel counts were made to assess map to field aggreement
and disagreement and were collected in a contingency table
format for each map (Tables 3 and 4). Percent correct, com-
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TABLE 3. ACCURACY ASSESSMENT OF THE SPECTRAL CLASSIFICATION.

TM Spectral Classification
Field Classes

Landsat Classes Pinus Abies NF NV
Pinus 632 104 12 2
Abies 196 361 8 4
Non-forest (NF) 52 18 95 5
Non-vegetation (NV) 15 7 3 66
Percent Correct (%) 71 74 81 86
Commission Error (%) 29 26 19 14

Map Statistics

n = 1580

Percent Correct = 73%

Commission Error = 27%

Confidence Interval (95% Confidence Level) = 0.71 to 0.75
K = 0.5850

oy = 0.0017

mission error, standard deviation, confidence interval (95
percent confidence level)(Thomas and Allcock, 1984), and
the Kappa statistic (k) and variance (o) (Congalton et al.,
1983) were calculated for each table.

Results and Discussion

An analysis of the average spectral response of some of the
most heavily forested and species-homogeneous sample areas
demonstrates that marginal differences exist between forest
species (Figure 1). For bands 1, 2, and 3, the brightness val-
ues among species were nearly identical. The maximum dif-
ferences among species occurred for bands 5 and 7 where
the pine species had greater brightness values than the fir
species. There was little interspecific difference between re-
flectance patterns between P. jeffreyi and P. contorta, but
greater differences between the fir species, especially for
bands 5 and 7, though not statistically significant. The higher
reflection in band 5 of pines over firs may be indicative of
the lower projected leaf area (LAI) of pines (Kaufmann et al.,
1982). The Lassen forest species could not be classified to
the species-level based on spectral clustering alone due to
the small spectral variation among species. However, genus-
level classification was possible based on the slight spectral
characteristic differences at this higher taxonomic level.

Spectral information alone was suitable for discriminat-
ing between forest genera. The spectral classification pre-
dicted Pinus and Abies forest classes by 71 percent and 74
percent, respectively (Table 3). The classification accuracy
for the map on the whole was 73 percent, including non-for-
ested and non-vegetated areas. The Kappa value for this map
was lower at 0.59. The commission errors, or errors of inclu-
sion, differed between Pinus and Abies classes from 29 per-
cent to 26 percent. Of these errors, 7 percent of the Pinus
class were contributed from non-forest and non-vegetated
classes versus 5 percent in the Abies class. This slight differ-
ence may be explained by prominence of understory vegeta-
tion in the pine forests. Analysis of understory vegetation
shows that understory cover is significantly greater (P<0.05)
in Pinus forests than Abies forests.

The ability to discriminate forest species is positively
correlated with canopy closure (Franklin, 1986) and nega-
tively correlated with understory vegetation prominence
(Spanner et al., 1990) and reflection from soil (Ezra et al.,
1984). Sub-pixel heterogeneity, or variation in the land cover

302

at a scale less than sensor detection, may also be important.
Mean sample canopy and variance in understory cover are
plotted along an axis of decreasing classification accuracy
(percent) for forest genera from 20 selected samples based on
confidence in the cover values (Figure 2). This plot illus-
trates two major trends in the classified data: (1) forest classi-
fication accuracy decreases with canopy cover and (2)
variance in understory increases with decreasing canopy
cover and decreasing forest classification accuracy. One ma-
jor exception to this is the NOBLES-01 site which had high
canopy cover, low understory variance, and low classifica-
tion accuracy. This site was dominated by a dense, moder-
ately aged, P. contorta forest intermingled with small
riparian shrubs. The health and general vigor of the stand
was poor, probably a result of the high density of trees. Low
canopy foliage coupled with dense, exposed stemwood pre-
sumably resulted in a confusing spectral signature. The vari-
ance in the understory may increase on a sample basis due
to gaps in the canopy which provide growing space for forest
floor vegetation. On the whole, understory cover may vary
greatly as the size and spatial distribution of the gaps vary
across a sample area. From a mapping standpoint, these gap
communities are smaller than the sensor resolution and may
be ommitted in a field survey; however, their presence on a
sub-pixel basis may greatly confound the spectral response of
a forest type.

The species mapping accuracies were less than those for
forest genera. Mapping accuracies were 55 percent for P. jef-
freyi, 44 percent for P. contorta, 84 percent for A. concolor,
and 50 percent for A. magnifica (Table 4). The overall map
accuracy was 58 percent, commission error of 42 percent,
and Kappa value of 0.48. Clearly, some species were better
defined by the stratification process than others, especially
A. concolor. The elevational gradient for the fir forests is
fairly restricted as opposed to the broad elevational inter-
grading of the pine forests. In addition, the moisture toler-
ances of the fir species are better defined in the literature.
The lower accuracy of the A. magnifica class may be a func-
tion of the sparser canopy and greater understory promi-
nence in A. magnifica forests. The misclassification of the A.
magnifica forests may, therefore, be due to classfication error
in the spectral clustering. The low accuracy for the pines is
mostly a function of the broad environmental limits of these
forests. T. mertensiana could not be delineated in the spec-

TaBLE 4. AccURACY ASSESSMENT OF THE GIS-STRATIFIED Map.

Field Classes

GIS Classes Py Pc Ac Am NF NV
P. jeffrevi (Pj) 167 170 13 41 1 2
P. contorta (Pc) 35 260 11 39 11 0
A. concolor (Ac) 43 94 208 20 1
A. magnifica (Am) 26 33 11 122 4 0
Non-forest (NF) 23 29 4 14 95 5
Non-vegetation (NV) 9 6 0 7 3 66
Percent Accuracy (% 55 44 84 50 81 86
Commission Error (%) 45 56 16 50 19 14

Map Statistics

n = 1580

Percent Correct = 58%

Commission Error = 42%

Confidence Interval (95% Confidence Level) = 0.56 to 0.60
K = 0.4769

oy = 0.0009
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tral classifications due to low tree densities and high snow
cover. However, T. mertensiana was identified preliminarily
in the G1S model by designating any non-forest vegetation
above 2560 m as T. mertensiana. Non-forest vegetation com-
prises shrub, pasture, and areas of scattered trees. However,
at altitudes > 2560 m shrubs and pastures do not occur and
only scattered trees are present. These groves of trees are pri-
marily T. mertensiana or rarely P. albicaulis. Accuracy val-
ues were not calculated except in the agreement with
personal experience or field notes.

Although more advanced spectral classifications employ-
ing maximume-likelihood classifiers with signature analysis
are available, they are unlikely to improve the species classi-
fication unless they are able to differentiate species on spec-
tral properties alone. The simple genus classifications
employed here were >70 percent accurate, whereas the spe-
cies classifications were as low as 44 percenl. Because GIS
modifications were used to refine the relatively higher accu-
rate genera classes to less accurate species classes, the inac-
curacies occur in the GIS process. More involved spectral
analyses that only result in marginal increases in genera clas-
sifications cannot markedly improve the species accuracies.

This study demonstrates that conifer species in wildland
habitats can be accurately identified to the genus level solely
using Landsat data, but that identification of species using
only spectral data may be difficult. Species maps can be pro-
duced using ancillary data in a G1S model to modify spec-
trally based information.

The success of the GIS modification technique is related
to definition of species habitat, quality of ancillary data, and
software capabilities, Results of the G1s modified maps indi-
cate that forest species identification is possible using a com-
bination of spectral and ancillary data. Use of terrain data to
augment the mapping process allows modification of land-
cover classes in cases where spectral data are insufficient
(Richards et al., 1982; Likens et al., 1982). Accuracy may be
enhanced by (1) accurately defining the environmental habi-
tat of each species, (2) improving the quality of ancillary
data input into the GIS, and (3) changing the method in
which data layers are inlegrated in the GIS software.

Ultimately, the accuracy is limited by the degree of envi-
ronmental heterogeneity in an area and the ability to de-
scribe the habitats of the species. The accuracy for Gis
modified maps is based on the available habitat data re-
ported in the literature on these species. Most of the data re-
ported on topographically-induced zonation of these species
are from the Sierra Nevada (Vankat, 1982; Holland, 1986:
Rundel et al., 1988). As some disparities exist between the
forest zonation in the Cascades and the Sierra Nevada (Par-
ker, 1991), it is difficult to extrapolate the optimum habitats
for the Lassen Volcanic National Park forest species from the
Sierra Nevada zonation models. Descriptions of vegetation
distribution at Lassen (Gillette et al., 1962; Heath, 1967;
Cooke, 1962; Griffin, 1967; Taylor, 1990: Parker, 1991) are
generally too limited in scope and emphasize the floristic
rather than the quantitative viewpoint required by this study.

At present, digital elevation models are the primary
source for topographic data at the 1:24,000 scale. Information
extracted from the DEMs such as slope, aspect, elevation, and
potential soil moisture are affected by errors associated with
these data (Walsh et al., 1987) which can cause spurious re-
sults in the GI1S modification process and reduced mapping
accuracy of forest species. These errors include horizontal
striping and missing data, Local errors such as missing data
or pits may be corrected by interpolation with surrounding
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Figure 2. Analysis of canopy and understory cover vari-
ance across a gradient of decreasing sample accuracy
for spectral classification.

data. Striping affects entire datasets, making error ameliora-
tion especially difficult. In this study, we used mutliple fil-
ters to vertically interpolate across striped areas and to
smooth the resultant image. This may have reduced the over-
all accuracy of the topographic information;: however, prod-
ucts from our topographic analysis were affected significantly
by the presence of these errors.

Mapping could be improved by altering how ancillary
and spectral information are correlated in the GIS context.
Skidmore (1989) reported that class modification by environ-
mental data is enhanced using Bayesian probabilities in an
expert system. This method assumes that species are distrib-
uted across a continuum of environmental gradients rather
than distinct, exhaustive habitats. Translation of this ap-
proach into popular GIS softwares will ultimately increase
mapping ability.

Finally, usage of the image processing techniques and
GIS integration described in this study beyond the Lassen
Park ecosystem should be done with discretion. The methods
and results presented here represent our best effort to use the
spectral and environmental data to describe the Lassen land-
scape. A review of the literature on forest mapping using re-
mote sensor sources demonstrates some site-specificity as to
which spectral wavelengths are most informative or which
classification procedure is most effective. The variablity from
one site to another is great given the spectral response to het-
erogeneity at the sub- and super-pixel level. Equivalent map-
ping performance in other forest systems using the
procedures outlined in this study would be a function of
similarity in forest species composition, structure, age, vigor,
and other stand variables, as well as the response of the for-
est species to topographic zonation as defined here.

Conclusions

Forest species could not be separated using only spectral
data, whereas genus level mapping is possible at a level of
73 percent accuracy using an unsupervised classification of
Landsat T™ data. Forest structure, especially canopy coverage
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and understory vegetation, seems to affect classification per-
formance. This study also demonstrated that spectral based,
genus level maps can be modified with terrain data in a GIs
to produce forest species maps at an accuracy level of 58
percent. Maps may be improved by refining the information
through a majority analysis to accentuate specific map char-
acteristics over others, based on usage and need. GIS map ac-
curacies are a function of confinement of forest species to
modeled habitats and reliable definition of these habitats,
data quality, and GIS software capability.
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