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What Cell Size Does the
Computed Slope/Aspect Angle Represent?

Michael E. Hodgson

Abstract

The computation of slope and aspect angles for a cell is a
common procedure in environmental studies and remote
sensing applications in which topography is important.
While the algorithm for computing slope/aspect angles re-
quires either four or eight neighbors in a centered three by
three window of cells, the estimated angles are used as if
they depict the surface orientation of only the single central
cell. Two questions result from this observation. What cell
size does the slope and aspect angle derived from this win-
dow best represent? How different is the actual surface angle
of the central cell from the surface angle computed using the
window of elevation values? Although this difference in com-
putation versus use is somewhat known, it has never been
documented. This article empirically demonstrates that the
slope/aspect angle derived from the neighboring elevation
points best depicts the surface orientation for a larger cell—
either 1.6 times or 2.0 times larger than the size of the cen-
tral cell. It is suggested that, rather than first resampling ele-
vation datasets of a finer resolution to a larger cell size
commensurate with other data in a study and then deriving
slope/aspect angles, a mean slope/aspect angular measure-
ment be derived directly from the higher resolution data for
each larger cell size.

Introduction

Surface slope and aspect are commonly used by-products of
an elevation surface for a wide variety of applications. Some-
times the elevation grid used is a resampling from a finer el-
evation grid to a coarser elevation grid so that the cell sizes
of different data layers are commensurate. This resampling
process may be throwing away information important in the
slope/aspect computation. The computation of slope/aspect
for each surface cell is made from some number of neighbor-
ing elevation values in a three by three window but is used
as if it represents the surface angles for only the central cell.
It is often assumed that the computed surface angles actually
represent a cell size twice as large as the original grid cell.
Although this difference in computation versus use is some-
what known, the representative cell size has never been doc-
umented. Further, the magnitudes of error which exist
between the use of the angle for a one cell area and the ac-
tual angle for that cell are not well understood. In other
words, are the angles all that different?

Using a well-known synthetic surface, this paper empiri-
cally determines the cell size that the bi-directional surface
normal computed from elevation values in a three by three
window actually represents. Three different slope/aspect al-
gorithms are examined with three different grid-cell sizes.

Oak Ridge National Laboratory, Building 4500N, MS 6274,
Oak Ridge, TN 37831-6274.

PE&RS

The results indicate that the estimated surface normal from
the four nearest neighboring cells in a three by three window
best models the surface of a cell 1.6 times as large as the
sampling interval in the elevation grid. For slope/aspect algo-
rithms using the eight nearest neighbors in a three by three
window, the actual cell represented is about 2.0 times the
sample interval. These relationships are consistent regardless
of the sample interval in the original elevation grid.

Methodology

The size of the grid cell portrayed by the elevation surface
sampling interval and the cell size that is best represented by
the estimated angle from a 3 by 3 matrix of elevation values
will be hereafter referred to as the grid-cell size and repre-
sentative cell size, respectively. Determining the representa-
tive cell size will involve a continuous range of candidate
representative cell sizes. The examination between grid-cell
size and representative cell size was conducted using a
mathematically defined synthetic terrain surface. A mathe-
matically defined surface allows perfect definition of the ele-
vation points on the surface and near-perfect' estimation of
the mean surface normal of any size cell on the surface. To
demonstrate the difference in angles estimated by slope/as-
pect algorithms using different numbers of neighbors, three
commonly used algorithms were tested. Because estimation
of surface properties is sensitive to the sampling intensity,
three different grid-cell sizes were also examined.

The Test Surface

This study used the 49-term trigonometric surface by Morri-
son (1971; 1974) as the synthetic terrain surface to compare
each representation cell size and algorithm (Figure 1). The
surface is a complex repeating series of undulations with a
maximum slope of 60.48 degrees. Based on a preliminary ex-
amination of the surface, cell sizes of 50 by 50, 100 by 100,
and 200 by 200 units were selected to represent different
sampling intensities.

The true surface normal for the grid cell was computed
using a pseudo-integrative approach—the vector mean sur-
face normal of a finer sample of the elevation surface within
each cell. This subsample is a 21 by 21 matrix of elevation

"The estimation of the true surface slope/aspect is “‘near-per-
fect” because it is approximated with a pseudo-integrative
logic.
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Figure 1. A perspective view of the synthetic surface
used to compare actual and estimated surface orienta-
tion. The surface is generated by using a 49-term trigono-
metric series after Morrison (1971; 1974). The original
surface from Morrison’s work was rotated 50 degrees to
avoid bias in the ridges running east-west. Tick marks
are at a 200-unit spacing.

values (Figure 2a). Each subcell in the 21 by 21 subsample is
1/21th the size of the candidate representative cell size un-
der investigation. (The 1/21th subsample is based on an em-
pirical test that found a negligible difference in angular
measurements using a smaller subcell size.) As an example,
441 subcells of 2.38 by 2.38 units in size were used to esti-
mate the mean surface normal of a cell 50 by 50 units in
size. When examining the 200- by 200-unit cell size, 441
subcells of 9.52 by 9.52 units in size were used to compute
the vector mean.

To determine the cellsize represented by the bi-direc-
tional surface normal derived from the 3 by 3 grid-cell sub-
matrix, a comparison was undertaken between this angle and
the angles from a continuous range of candidate representa-
tive cell sizes from 0.1 to 3.0 times the size (along one axis)
of the grid cell. Each candidate representative cell was cen-
tered at the same location as the grid cell, and the pseudo-
integrative approach for computing the true surface angles
was performed. A random sample of 50 grid cells on the ele-
vation surface (Figure 1) was used in determining the mean
angular error for each candidate representative cell size. The
representative cell size was taken as that candidate cell size
exhibiting the least mean angular error.

Bi-Directional Surface Normal

To avoid the problems associated with undefined aspect of
“flat”slopes, bi-directional surface angles were used in this
analysis rather than independent angles of slope and aspect.
Bi- directional angles are also better indicators of surface ori-
entation for applications such as the estimation of solar
insolation or the topographic normalization of remotely
sensed images. Slope/aspect is computed from the normal
vector of a plane surface based on the cross products of two
vectors in orthogonal axes on the surface. The slope in two
orthogonal gradients, typically west-to-east (we) and south-to-
north (sn), are used for this estimation: i.e.,

Slope® = Tan ' (VSlope?,+Slopez,) (1)
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The aspect of the surface was computed from an algorithm
using the change in elevation values in the we and sn gradi-
ents (see algorithm in Ritter (1987)).

The bi-directional surface normal of a cell may be repre-
sented as a vector of unit length in x-y-z hemispherical
space: i.e.,

=y

N = [x.y.2] (2)

where x = sin aspect * sin slope

¥ = cos aspect * sin slope

z = cos slope
For those instances when the slope of an observation is 0.0
(and, thus, the aspect angle is “undefined”), the coordinate
locations for the vector endpoint are set to x = 0.0, y = 0.0,
and z = 1.0. This allows “flat” surfaces to be included in the
computation of the vector mean.

Vector Mean Surface Normal

An algebraic average of bi-directional surface normal meas-
urements from a number of surface angle observations is not
possible because aspect angles are measurements on a circu-
lar scale, not a linear scale. However, after work in other
fields on directional statistics (Rayleigh, 1880; Watson, 1966;
Agterberg, 1974; Gaile and Burt, 1980), the vector mean was
used as a “‘mean” surface orientation. The vector mean rep-
resenting the surface normal in this 21 by 21 matrix of sub-
cells was computed by adding the vector endpoints for each
observation: i.e.,

441,

N = IN, (3)

represontative

Error in Surface Normal Angle
The bi-directional angular difference (bi,), or angular error,
between the surface normals for a candidate cell size and the
grid-cell size was derived from
bi‘ = cos 1 [ _'Nrnemsemutlvl- NL'_(:" ] (4)
| * [N,

] Nmpmsmlmﬁvn cell

Slope/Aspect Algorithms

The fundamental differences between most slope/aspect algo-
rithms is in the number of neighboring cell values used and
the weighting of each cell value. The most common algo-
rithms use either four or eight of the neighbors in a three by
three window centered on the cell in question (Figure 2b).
When using all eight neighbors, variations in algorithms use
different weights for the diagonal neighbors. This study used
one algorithm employing four nearest neighbors, a finite-dif-
ference algorithm using eight nearest neighbors, and a regres-
sion plane fitted to the eight nearest neighbors.

A commonly used algorithm that estimates surface an-
gles from only the four nearest neighboring elevation values
in the grid was suggested by Fleming and Hoffer (1979) and
presented in algorithmic form by Ritter (1987): i.e.,

e,—e,
2*cell size’

e,—e,
2*cell size'

Slope,, = Slope,,, = (5)

PE&RS




PEER-REVIEWED ARTICLE

| e

|~ HE

. 3 . ':/ 4 :
s . Candidate or
, Representative
. * l ' Cellsize
a)

shown in (b).

H- ¢ Cellsize
| (1£21th of cellsize
under investigation)
es ez eﬁ
el e eG
e, |e e,
b)

Figure 2. Relationship between the “‘cell” implied by the sampling res-
olution of the grid (i.e., the grid cell) and the size of a candidate repre-
sentative cell in (a). The relative size of the representative cell in this
illustration is approximately 1.6 times the grid cell. Notation for the
neighboring elevation values in a centered three by three window is

where e, = elevation value of the 3 by 3 submatrix (Figure
2b).

A third-order finite difference method using eight neigh-
boring elevation values (by differencing the set of elevations
on opposite sides of the central cell) was suggested by
Sharpnack and Akin (1969): i.e.,

(e,+e,+e,) — (e, +e,te;)
Sl . - 7 ] (i 6 2 5 :
OB 6*cell size (6)
Slope,,, = (este tes) — {ey+e:‘+eﬁ).

6*cell size

The method suggested by Sharpnack and Akin produces the
same results as a multiple linear regression model (or a least-
squares fitted plane to the eight elevation values), yet is com-
putationally more efficient.

Horn (1981) presented a modified version of Sharpnack
and Akin's method using unequal weights for the closer ele-
vation values: i.e.,

_ (e, +2e,+ey)—(e+2e,+e;) |

m 8*cell size ' (7)

Slope“.,, - (6’”4‘2&1+e:.')—{8‘.+2€._‘+8“] .

Slope

8*cell size

Results and Implications

The results of the tests indicate a direct and stable relation-
ship between the grid-cell size and the representative cell
size. The representative cell size was found to be either 1.6
or 2.0 times the grid-cell size, depending on the number of
neighbors used in the slope/aspect algorithm (Figure 3). The
surface normal produced from the algorithm that used only
four neighboring values was most closely associated with a
representative cell about 1.6 times the grid-cell size (Figure
4), The other two algorithms? using eight neighbors were
most closely associated with a representative cell size ap-
proximately 2.0 times the grid-cell size. This relationship be-

“The regression algorithm produced angles that represented a
cell size slightly larger—close to 2.1 times the grid-cell size.
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tween algorithm and representative cell sizes was consistent
regardless of the grid-cell size (or relative surface sampling
intensity). It would be expected that this relationship would
hold true for any study area and sampling intensity.

What may be surprising is (1) the magnitude of error be-
tween the representative cell size and grid-cell size surface
angles and (2) the relative accuracy between algorithms. The
average bi-directional angular error between estimated and
true surface angles at the 1.0 cell size (i.e., the cell size such
measures are used to represent) ranged from 0.74 to 1.51,
2.30 to 4.68, and 7.45 to 9.50 degrees for the 50-, 100-, and
200-unit cell sizes, respectively (Figure 3 and Table 1). The
low mean angular error for the smaller cell sizes was ex-
pected and indicates the similarity of surface angles in close
proximity to each observation. If the surface angles derived
from the 3 by 3 window were actually used for the represen-
tative cell size (1.6 or 2.0 times larger cell sizes) the average
error would only range from 0.48 to 0.65, 1.37 to 1.93, and
1.91 to 4.08 degrees. Thus, it is suggested that the error in
surface normal angles may be reduced by a factor of from
two to four by computing surface angles with finer resolution
data but using these computed angles to represent coarser
resolution data. Obviously, the magnitude of error could be
lesser or greater for other data sets and cell sizes.

The algorithm using four neighboring values was consis-
tently more accurate for estimating surface angles at the grid-
cell size (i.e., the 1.0 candidate cell size). For instance, the
mean angular error at the 50- by 50-units grid-cell size was
only 0.74 degrees for the four neighbor algorithm but was
1.26 and 1.51 degrees for the two eight neighboring algo-
rithms. This finding was true for each of the three grid-cell
sizes examined. Thus, in the typical application where the
surface normal angles are used to represent the grid-cell size,
the algorithm using only four neighbors should be used. This
finding is in contrast to the work by Skidmore (1989). who
determined that the eight-neighbor algorithms were more ac-
curate than the four-neighbor algorithm. The methodology
used by Skidmore for defining truth, however, included an
estimation of “true” slope/aspect angles from a contour map
where all eight neighboring values were used to manually es-
timate surface angles.

One implication of this study would suggest that eleva-
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Figure 3. Relationship between bi-directional angle error for 50-, 100-, and
200-unit grid-cell sizes and candidate representative cells centered at the
same location and increasing in size. The three slope/aspect algorithms ex-
amined are in (a) through (c). A graphical overlay of the mean angular error
for the 200-unit grid-cell sizes for each algorithm is shown in (d).

tion data be collected at a higher spatial sampling intensity

than the other data layers in an application. In other applica-

tions, where the elevation data must be generalized to a
coarser sample size, it may be desirable (and likely more ac-
curate) to determine the slope/aspect angles for the larger
cells from a vector mean of the smaller cell sizes. Slope/as-
pect angles could be derived for the grid-cell size of this
greater sampling intensity, and then the slope/aspect sur-
face(s) could be resampled to the coarser resolution of the
other data layers using some vector mean interpolation
method. For instance, rather than using 30- by 30-m eleva-
tion data to derive slope/aspect angles for a study that also
uses 30- by 30-m Thematic Mapper imagery, one might use
an elevation layer sampled at 5 m by 5 m or 15 m by 15 m.
Slope/aspect angles representing 30- by 30-m cell sizes may
be computed utilizing a vector mean from an elevation grid
of 5- by 5-m cell sizes during the resampling process. How-
ever, other empirical tests are required to determine appro-
priate methods for weighting each observation and for
developing an interpolation function. The selection of the
ideal cell size, however, is problematic because one often re-
lies on available elevation data, such as U.S. Geological Sur-
vey or Defense Mapping Agency derived data. The availabi-
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lity of softcopy photogrammetry and stereo photography may
allow the analyst greater freedom to determine the sampling

—» Grid Cellsize =
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Figure 4. Relationship be-
tween the grid-cell size of
the systematic sample of
the elevation surface and
the grid-cell size repre-
sented by the slope/as-
pect angles derived from
algorithms using either
four or eight neighbors.
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Tasle 1. MEeAN HEMISPHERICAL ANGULAR ERROR AT DIFFERENT CANDIDATE CELL
SIZES FOR ALGORITHM AND GRID-CELL Sizeé COMBINATIONS (ERROR IN DEGREES)
Flemming/
Candidats Hoffer's Horn's Regression
Cellsize' 50 100 200 50 100 200 50 100 200
01 1.07 3.76 12.42 164 551 14.09 1.88 6.22 14.86
0.2 1.06 3.71 12.23 1.62 5.45 13.89 1.87 6.17 14.66
0.3 1.04 3.62 11.91 1.60 5.37 1356 1.85 6.08 14.34
0.4 1.02 3.51 11.49 1.58 5.25 13.11 1.82 5.97 13.90
0.5 0.98 3.36 10.96 1.54 5.10 12,56 1.79 5.82 13.35
0.6 0.94 3.19 10.36 1.50 4.92 11.92 1.74 5.64 12.71
0.7 090 299 969 1.45 4.71 11.20 1.70 5.43 11.99
0.8 0.85 2.78 B8.97 1.39 4.47 10.41 1.64 5.20 11.21
0.9 0.80 2.54 8.22 1.33 4.22 9,57 1.58 4.95 10.37
1.0 0.74 2.30 7.45 1.26 3.94 8.69 1.51 468 9.50
1.1 0.68 206 6.70 1.19 3.65 7.79 144 439 8.60
1.2 0.63 1.84 6.00 1.10 3.34 6.87 1.36 4.08 7.68
1.3 0.58 1.66 5.37 1.02 3.03 5.96 1.27 3.77 6.78
1.4 0.53 1.54 4.85 0.93 2.71 5.07 1.18 3.46 5.89
1.5 0.50 1.51 4.44 0.83 2.41 4.22 1.09 3.15 5.06
1.6 0.48 1.54 418 0.73 211 345 0.99 2.85 4.30
1.7 0.49 1.66 4.08 0.64 1.85 277 090 2.58 3.63
1.8 054 1.84 4.11 0,56 1.63 2.23 0.82 2.33 3.09
1.9 0.62 2.09 4.25 050 145 195 0.75 213 2.72
2.0 0.72 2.40 4.47 045 137 1.91 069 198 2.57
2.1 0.84 2.74 4.77 0.45 144 2.05 0.65 1.93 2.58
2:2 098 3.13 5.09 0,51 161 2.34 066 197 2.71
2.3 1.12 3.53 5.43 059 1.87 2.69 070 210 2.93
2.4 1.27 3.95 5.77 0.71 2.21 3.08 077 230 3.21
2.5 1.43 4.37 6.11 0.85 2.60 3.49 0.86 2.53 3.55
2.6 1.59 4.79 643 1,00 3.00 3.90 0.96 2.80 3.91
2.7 1.76 5.22 6,75 1.17 3.41 4.32 1.09 3.12 4.30
2.8 1.94 564 7.07 1.34 3.82 474 1.24 347 4.71
2.9 212 6.05 7.33 1.52 4.23 5.16 140 3.84 5.12
3.0 2.30 6.46 7.69 1.70 4.64 558 1.57 4.21 5.55

iThe candidate cell size is given as a fraction of the regular tessela-
tion in the elevation model. For instance, a candidate cell size of 1.6
at the 50- by 50-m grid-cell size is 80 by 80 m.

resolution (under the limitation of the quality of and base/
height ratio of the photography).
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