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Abstract
Decisions about the allocation of land typically involve the
evaluation of multiple criteria according to sevetal, often
conflicting, obiectives. With the advent of cts, we now have
the'oppoitunity for a more explicitly reasoned environmental
decision making process. However, cls fios been slow to de-
velop decision support tools, more typically relying on proce-
dures outside the GIS software. In this paper the issues of
multi-criteria/multi- obiective decision making ate discussed'
along with an exploration of o nev, set of decision support
tooli appropriate for the large data-handling needs of taster
GIS. A case study is used to illustrate these tools as devel'
oped for the IDRISI geographic analysis softwore system'

lntroduction
As a technology, GIS has evolved through three broad appli-
cation domains. The f irst,  and that which lends i t  i ts name,
is the use of GIS as an information database-a means of co-
ordinating and accessing geographic data. The second' and
more recent, is the use of cts as an analyt ical tool-a means
of specifying logical and mathematical relat ionships among
map layers ( i .e.,  modeling) to yield new derivative maps.
Building upon these two, we now see a third stage-the use
of cts as a decision support system-a means for deciding
how to act upon the analyses produced.

With these later stages, we see the system evolving to ac-

commodate the addit ion of new information to augment that
in the database. With cls as a database, we get nothing more
from the system than what went in in the first place. Admit-
tedly, we mav access those data in new and novel combina-

t ioni;  but the fact remains that the svstem is l i t t le more than
an automated data bank. As t l ls evoived to take on a nlore
analyt ical focus, we see the development of special tools for

the addit ion of new infbrmation-knowledge of relat ionships
and/or process. Derivative mapping and simulat ion modeling

truly add new data to the database by combining exist ing
data with knowledge of reiat ions alrd process. Final ly, as GIS

evolves to accommodate decision making behavior, we wil l

witness the deveiopment of special ized tools tcl  speci iy how
to act upon the outcomes of our analyt icai models. I t  is to
this issue that the fol lowing paper is addressed, with special

reference to raster GIS.
Makine decisions about the al location of land is one of

the most f i indamental act ivi t ies of resource development
(FAO, 1976). With the development of GIS, we now have the

opportunity for a more expl ici t ly reasoned Process of land-

u.se evaluai ion. However, despite the wide range of analyt ical

tools these svstems provide, thev are t1'pical lv weak in the
provision of decision support procedures (Honea ef o,1.,

1991). Over the past year, the Clark Labs have been involved
in an exploration of decision making procedures for land al-
location problems on behalf of the United Nations Institute
for Trainins and Research. One of the difficulties we encoun-
tered was this lack of appropriate tools. As a result, we
found the need to develop a series of new program modules
for the IDRISI geographic analysis software system (Eastman,
1993). These ire deicribed in the following sections and wil l
be i l lustrated by means of a hypothetical case study. A sec-
ond difficultv we encountered was the broadly divergent use
of decision tbrminology (e.g., see Rosenthal (1s85)) that ex-
ists in the Decision/Management Science and Operations Re-
search fields. Accordingly, we have adopted the following set
of ooerational definitions which we feel are in keeping with
the ihrust of the Decision Science literature and which are
expressive of the cIS decision making context.

Definitionsl

Decision
A decision is a choice between alternatives. The alternatives

mav reDresent different courses of action, different hypothe-

ses-about the character of a feature, different sets of features,

and so on.

Criterion
A cri terion is some basis for a decision that can be measured

and evaluated. I t  is the evidence upon which a decision is

based. Criteria can be of two kinds: factors and constraints.

Factors

A factor is a criterion that enhances or detracts from the suita-
bi l i tv of a specif ic alternative for the activi tv under considera-
t ion. I t  is tht 'refore measured on a continuous scale. For
example. a lbrestrv companY mav determine-that the steeper the
slope, the more costlv i f  is to transport wood. As a result,  better
areas fbr logging -o.,ld b" those on shallow slopes-the. shal-
lower the bi'itei. pactors are aiso known as decision voriobles in
the rnathematical programming literature IFiering, 1986) and
sfnrcluroi voriobie.s in the linear goal programming literature
( l g n i z i o , 1 9 8 5 ) .

'This sect ion is  taken substant ia l lv  f rom Eastman el  a1.  (1993a) and

Eastman et  o1.  (1g93b).  Indeed, th is paper is  a modi f icat ion and am-
plification of the ltrrmer of these to give a broader treatment of

Mul t i -Cr i ter ia Evaluat ion as wel l  as Mul t i -Object ive decis ion

making.

The Clark Labs for Cartographic Technology and Geographic
Ana lys is ,  C la rk  Un ivers i tv ,  Worces ter ,  MA 01610.
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Constraints

A constraint serves to limit the alternatives under considera-
t ion.  A good example of  a constra int  would be the exclusion
from development of areas designated as wildlife reserves. An-
other might  be the st ipulat ion that  no development can proceed
on s lopes exceeding a 30 percent  gradient .  In many cases con-
stra ints wi l l  be expressed in the form of  a Boolean ( logical)
map: areas excluded f rom considerat ion being coded wi th a 0
and those open for  considerat ion being coded wl th a 1.  How-
ever,  in some instances the constra int  wi l l  be exDressed as
some characteristic that the final solution must nossess. For ex-
ample,  we might  require that  the tota l  area of  lands selected for
development be not  less than 5000 hectares.  Constra ints such as
this are often called gools (lgnizio,19B5) or forget.s (Rosenthal,
1985).  Regardless,  both forms of  constra int  have the same ul t i -
mate meaning-to limit the alternatives under consideration.

Decision Rule
The procedure by which criteria are combined to arrive at a
part icular evaluation, and by which evaluations are com-
pared and acted upon, is known as a decision rule. A deci-
sion rule might be as simple as a threshold appl ied to a
single criterion (such as, all regions with slopes less than 35
percent wi l l  be zoned as suitable for development) or i t  may
be as complex as one involving the comparison of several
mult i-cr i ter ia evaluations.

Decision rules typical ly contain procedures for combin-
ing cri teria into a single composite index and a statement of
how alternatives are to be compared using this index. For ex-
ample, we might define a composite suitability map for agri-
culture based on a weighted l inear combination of informa-
t ion on soi ls, slope, and distance from market. The rule
might further stale that the best 5000 hectares are to be se-
lected. This could be achieved by choosing that set of raster
cel ls, total ing 5000 hectares, in which the sum of suitabi l i t ies
is maximized. I t  could equally be achieved by rank ordering
the cells and taking enough of the highest ranked cells to
produce a total of 5000 hectares. The former might be cal led
a choice function (known as an obiective function or per-
forntance index in the mathematical programming litera-
ture-see Diamond and Wright (1989)) while the latter might
be cal led a choice heurist ic.

Choice Function

Choice functions provide a mathematical means for comparing
alternatives. Because thev involve some form of optimization
(s t rch  as  max imiz ing  or  min imiz ing  some measr , rah le  charac ter -
ist ic),  they theoretical lv require that each alternative be evalu-
ated in turn. However, in some instances, techniques do exist to
l imit the evaluation only to l ikely alternatives. For example, the
Simplex Method in linear programming (Fei.ring, 1986) is specif'-
ical ly designed to avoid unnecessary evaluations.

Choice Heuristic

Choice heuristics specify a procedure to be followed rather than
a function to be evaluated. In some cases, they wil l  produce a
result identical to a choice function (such as the ranking exam-
ple above), while in other cases they may simply provide a
close approximation. Choice heurist ics are commonly used be-
cause they are often simpler to understand and easier to imple-
ment.

In general,  two kinds of decision rules prevai l- those in
which the decision rule involves the evaluation of alternative
hypotheses about individual features, and those in which it
involves a decision about alternative features to include in a
set. For example, a decision about whether areas are prone to
Iandsl ides or not is indicative of the f irst tvoe while one that

g0

selects the best regions for agriculture exemplifies the sec-
ond. In essence, the f irst kind of decision is one of classif ica-
ilon while the second is one of selection.

0bjective
Decision rules are structured in the context of a soecific ob-
ject ive. The nature of that objective, and how it  iJ viewed by
the decision makers ( i .e.,  their motives), wi l l  serve as a
strong guiding force in the development of a specif ic deci-
sion rule. An objective is thus a percpective that serves to
guide the stmcturing of decision rules., For example, we
may have the stated obiective to determine areas suitable for
t imber harvesting. However, our perspective may be one that
tries to minimize the impact of harvesting on recreational
uses in the area. The choice of cr i ter ia to be used and the
weights to assign them would thus be quite different from
that of a group whose primary concern was profit maximiza-
t ion. Objectives are thus very much concerned with issues of
motive and social perspective.

Multi4ilteria Evaluations
The actual process of applying the decision rule is called
evaluation. To meet a specific objective, it is frequently the
case that several cr i ter ia wil l  need to be evaluated. Such pro-
cedures are called Multi-Criteria Evaluations. Another term
that is sometimes encountered for this is modeling. However,
this term is avoided here because the manner in which the
criteria are combined is very much influenced by the objec-
t ive of the decision, and thus expl ici t ly inf luenced by per-
sonal perspectives.

Two of the most common procedures for mult i-cr i ter ia
evaluation are weighted l inear combination and concor-
dance-discordance analysis (Voogd, 1983; Carver, 1991), In
the former, each factor is multiplied by a weight and then
summed to arrive at a final suitability index. In the latter,
each pair of alternatives is analyzed for the degree to which
one out ranks the other on the specified criteria. Unfortu-
nately, concordance-discordance analysis is computational ly
impractical when a large number of alternatives is present
(such as with raster data where every pixel is an alternative).
However, weighted linear combination is very straightfor-
ward in a raster GIS. Indeed, it is the derivation of the
weights, within the context of the decision obiective, that
provides the major challenge. Accordingly, this will be ex-
amined in further detai l .

Multi-0bjective Evaluations
While many decisions we make are prompted by a single ob-
ject ive, i t  also happens that we need to make decisions that
satisfy several objectives. These objectives may be comple-
mentary or confl ict ing (Carver, 1991, p. 322) in nature.

Co m pl e m e nt o ry Ob j ect ive s

With complementary or non-confl ict ing objectives, land areas
may satisfy more than one obiective. Desirable areas will thus
be those which serve these objectives together in some specified
rnanner. For example, we might wish to allocate a certain
amount of land for combined recreation and wildlife Dreserva-
tion uses. Optimal areas would thus be those that satiify both
of these objectives to the maximum degree possibie.

'lt is important to note here that we are using a somewhat broader
definition of the term objective than would b"e found in the goal pro-
gramming literature (Ignizio, 1985). In goal programming, the term
objective is synonymous with the term obiective function in mathe-
matical programming and choice funcdon used here.

PE&RS
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Co nflicting Obj e ctive s

With conf l ic t ing obiect ives,  object ives compete for  the avai lable
Iand because i t  can be used for  one or  the other,  but  not  both.
For example,  we may need to resolve the problem of  a l locat ing
land for timber harvesting and wildlife preservation. Clearlir the
two cannot coexist .  Exact ly  how thev compete,  and on what ba-
sis one will win out over the other, will depend r.rpon the na-
ture of  the decis ion ru le that  is  developed.

In cases of  complementary object ives,  mul t i -object ive deci-

sions can often be solved through a hierarchical extension of
the mult i-cr i ter ia evaluation process. For example, we might
assign a weight to each of the objectives and use these along
with the suitability maps developed for each to combine
them into a single suitabi l i ty map indicating the degree to
which areas meet al l  of the objectives considered (Voogd,
1983). However, with confl ict ing objectives the procedure is
more involved.

With confl ict ing objectives i t  is sometimes possible to
rank order the obiectives and reach a prioritized solution
(Rosenthal, 1985). In these cases, the needs of higher ranked
objectives are satisfied before those of lower ranked objec-
t ives are dealt with. However, this is often not possible, and
the most common solut ion to confl ict ing objectives is the de-
velopment of a compromise solut ion. Undoubtedly, the most
commonly employed techniques for resolving confl ict ing ob-
ject ives are those involving optimization of a choice function
such as l inear programming (Fiering, 1986) or goal program-
ming ( lgnizio, 1s8s). In both, the concern is to develop an al-
location of the land that rnaximizes or minimizes an
objective function subject to a series of constraints.

Uncertainty and Risk
Clcarly, information is vi tal to the process of decision mak-
ing. However, we rarelv have perfect information. This leads
to uncertainty, for which two sources can be identi f ied: doto-
bose and decision rule uncertainfy. Database uncertainty is
that which resides in our assessments of the cri teria which
are enumerated in the decision rule, Measurement error is
the primary (but not exclusive) source of such database un-
certainty. Decision rule uncertainty is that which arises from
the manner in which cri teria are combined and evaluated to
reach a decision. Both sources contr ibute to the r isk that the
clecision reached wil l  be incorrect.

When uncertainty is present, the decision rule wil l  need
to inc;orporate modif icat ions to the choice ftrnct ion or heuris-
t ic to actommodate the propagation of uncertainty through
the rule and replace the f iord decision procedures of certain
data with the so/ ones of uncertaintv. A variety of theoreti-
cai constructs have been developed to accommodate this un-
r;ertainty, including Bayesian trbbabil l ty Theory, Fuzzy Set
Theory, and Dempster-Shafer Theory (Lee el al. ,  tgBT;
Stoms, 1987). In this paper, the issues of uncertainty and r isk
are not addressed because they l ,r 'ould detract from the main
issue of decision rule structurins for mult i-cr i ter ia/mult i-ob-

lect ive problems.

Multi-Criteila Decision Making in GIS
As indicated above, the most prevalent procedure for mult i-
cr i ter ia evaluation is the weighted l inear combination (Voogd,

1983, p. 120). With a rveighted l inear cornbination, factors
are combined by applying a weight to each fol lowed bv a
s t rmmat ion  o f  the  resu l ts  to  v ie ld  a  su i tab i l i t v  map:  i .e . ,

where S is suitability, w, is the weight of factor l, and x, is
the criterion score of factor i.

This procedure is not unfamiliar in cls and has a form
very similar to the nature of a regression equation. In cases
whbre Boolean constraints also apply, the procedure can be
modified by multiplying the suitability calculated from the
factors by the product of the constraints: i .e' ,

S : Z(w,x,)*Ilci Q)

where c, is the criterion score of constraint I and II is the
oroduct.^ 

All cIS software systems provide the basic tools for eval-
uating such a model. In addit ion, in IDRISI, a special module
namea MCE has been developed to facilitate this process. The
primarv issues, however, relate to the standardization of cr i-
ieria siores and the development of the weights.

Standardizing Criterion Scotes
Because of the different scales upon which criteria are meas-
ured, it is necessary that factors be standardized before com-
bination in Equations 'L or 2, and that they be transformed, if

necessary, suCh that all factors maps are positively correlated
with suitabi l i ty." Voogd (1983, pp. 77-84) reviews a variety
of procedures for standardization, typically using the mini-
mum and maximum values as scal ing points'  The simplest is

a l inear scal ing such as

x , :  ( R ,  - R , , , t , . ) / ( R , , " , - f i , . ' , , ) * m  ( 3 )

where R is the raw score and m is an an arbitrary multiplier.
Through standardization, cr i ter ion scores wil l  be ex-

pressed according to a consistent numeric range (e.g., 0-99'
b-zss. etc. l .  In the case of tnRIsI, the STRETCH module is used
to l inearly scale al l  values to a 0 to 255, s-bit  integer range.
Thus, eaih factor will have an equivalent measurement basis
before any weights are appl ied.

Criterion Weights
Although a variety of techniques exist for the development
of weights, one of the most promising would appear to be

that of pairwise comparisons developed by Saaty (1'977) in
the context of a decision making process known as the Ana-
lyt ical Hierarchy Process (nup). The f irst introduction of this
technique to a GIS appiication was that of Rao et 01. (1991),

although the procedure was deveioped outside the GIS soft-
ware using a variety of analyt ical resources.

In the procedure for Mult i-Criteria Evaluation using a
weighted l inear combination outl ined above, i t  is necessary
that the weights sum to 1. In Saaty's technique (Saaty, 1977),
weights of this nature can be derived by taking the principal
eigenvector of a square reciprocal matr ix of pairwise c-ompar-
isons between the cri teria. The comparisons concern the rel-
at ive importance of the trvo cri teria involved in determining
suitabi l i iy for the stated obiective. Ratings are provided on a
nine-point continuous scale (Figure 1). For example, i f  one
felt  that proximity to roads was very strongly more important
than slofe gradient in determining suitabi l i ty for industr ial
si t ing, one would enter a 7 on this scale. I f  the inverse were
the case (slope gradient was very strongly more important
than proximitv to roads), one wott ld enter l l7.

In developing the weights, an individual or group com-

'Thus, for example, if locations near a road were more advantageous
lbr industr ial si i ing than those far awav, a distance map would need
to bc transfbrmecl into crne expressing proximitv.

PE&RS
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extremely very strongly modeGtel equally modeEtel strongly very €xtremely

less important more impo(ant

Figure 1. The continuous rating scale used for the pair-
wise comparison of factors in the multicriteria evalua-
t ion.

zulting suitability map will have a range of values that matches
that of the standardized factor maps that were used. After all
of the factors have been incorporated, the resulting suitabil-
ity map is then multiplied by each of the constraints to ,,zero
out" unsuitable areas. In IDRISI, a special procedure named
MCE has been created to undertake all of these steps with
maximum effrciency.

Once a suitability map has been prepared, it is common
to undertake a final step of deciding wnitn ceils belong to
the set that meets a particular Iand allocation area target. For
e-xaaple, having developed a map of suitability for industrial
development, we may then wish to determine which areas
constitute the besf 5000 hectares that may be allocated.
Oddly, this is an area where most raster iystems have diffi-
culty in achieving an exact solution. One iolution would be
to use a choice function where that set of cells is chosen
which maximizes the sum of suitabilities. However. the
number of combinations that would need to be evaluated is
prohibitive in a raster cIS. As a result, we chose to use a
simple choice heuristic-to rank order the cells and choose
as many of the highest ranks as will be required to meet the
area target. In IDRISI, a new module named RaNx was devel-
oped to allow a rapid ranking of cells within an image, In
addition, it allows the use of a second image to resolve the
ranks of ties. The ranked map can then be ieclassified to ex-
tract the highest ranks to meet the area goal.

Multi-0bjective Decision Making in GIS
Multi-objective decisions are so common in environmental
management that it is surprising that specific tools to address
them have not been developed within 

-CIs. 
the few examples

one finds in the literature tend to concentrate on the use bf
linear programming tools outside the cIS, or are restricted to
cases of complementary objectives.

Complementary 0bjectives
As indicated earlier, the case of complementary objectives
can be dealt with quite simply by means of a hierarchical ex-
tension of the multi-criteria evaluation process (e.g., Carver,
1991). Here, a set of suitability maps, each derived in the
context of a specific oblective, serve as the factors for a new
evaluation in which the objectives are themselves weighted
and combined by linear summation. Because the logic"which
underlies this is multiple use, it also makes sense to multi-
ply the result by all constraints associated with the compo-
nent objectives.

Conflicting 0bjectives
With conflicting objectives, land can be allocated to one ob-
jective but not more than one (although hrybrid models might

objectives). As wascombine

piues every possible pairing and enters the ratings into a
pairwise comparison matrix (Figure 2). Because the matrix is
-symmetrical, only the lower triangular half actually needs to
be filled in. The remaining cells are then simply the recipro-
cals of the lower triangular half (for example, because the
rating of slope gradient relative to road proximity is t/2, the
rating of road proximity relative to slope gradient will be Z).
Note that, where empirical evidence exists about the relative
efficacy of a pair of factors, this evidence can also be used.

The procedure then requires that the principal eigenvec-
tor of the pairwise comparison matrix be computed to pro-
duce a best fit set of weights (Figure 3). If no procedure is
available to do this, a good approximation to this result can
be achieved by calculating the weights with each column
and then averaging over all columns. For example, if we take
the first column of figures, they sum to L.78. Dividing each
of the entries in the first column by 1.78 yields weights of
0.56, 0.07, 0.1s, 0.11, and 0.02 (compare to the values in Fig-
ure 3). Repeating this for each column and averaging the
weights over the columns usually gives a good approxima-
tion to the values calculated by the principal eigenvector. In
the case of IDPJSI, however, a special module named WEIGHT
has been developed to calculate the principal eigenvector di-
rectly. Note that these weights will sum to one, as is re-
quired by this weighted linear combination procedure.

Because the complete pairwise comparison matrix con-
tains multiple paths by which the relative importance of cri-
teria can be assessed, it is also possible to determine the
degree of consistency that has been used in developing the
ratings. Saaty (1977) indicates the procedure by which an in-
dex of consistency, known as a consistency ratio, can be pro-
duced (Figure 3). The consistency ratio (cn) indicates the
probability that the matrix ratings were randomly generated.
Saaty indicates that matrices with Cn ratings greater than
O,1O should be re-evaluated. We have confirmed this by ob-
serving that re-evaluation only produces significant changes
in the weights when the CR exceeds 0.1. As a result, the pro-
cedure accepts the weights when the CR is less than this
threshold. Otherwise, the WEIGHT procedure analyzes the ma-
trix to determine where logical inconsistencies arise. It does
s_o by comparing direct pairwise comparison ratings with
those implied by the eigenvector weights. Discrepincies indi-
cate cases where the direct ratings are inconsistent with
those derived from all indirect as well as direct ratings, and
thus cases where re-evaluation would be productive in de-
veloping a consensus weight set.

Evaluation
Once the criteria maps (factors and constraints) have been
developed, it is a fairly simple matter to multiply each factor
map (i.e., each raster cell within each map) by its weight and
then sum the results. Because the weightJ sum to 1, tlie re-
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combine complementary and conflicting objectives). As was
indicated earlier, one possible solutionlies'with a prioritiza-
tion of objectives (Rosenthal, 1985). After the obieclives have
been rank ordered, the needs of higher ranked otjectives are
satisfied (through rank ordering of cells and reclassification
to meet areal goals) before those of lower ranked ones. This
is done by_successively satisfying the needs of higher objec-
tives and then removing (as a new constraint) areas taken
from consideration by all remaining objectives. A prioritized
solution is easily achieved with the use of the RaNk and nr-
CLASS modules in IDRISI. However, the instances where a pri-
oritized solution makes sense are rare. More often, a
compromise solution is required.

_ Compromise solutions to the multi-obiective problem
have most commonly been approached thiough the use of
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mathematical programming tools outside the GtS (e.g', Dia-
mond and Wright, L9BB; Ianssen and Rietveld, 1990; Camp-
bell ef aI., 1,s92). Mathematical programming solutions (such
as linear or integer programming) can work quite well in in-
stances where only a small number of alternatives are being
addressed. However, in the case of raster cIS, the massive
data sets involved will typically exceed present-day comput-
ing power. In addition, the concepts and methodology of lin-
ear and integer programming are not particularly approach-
able to a broad range of decision makers. As a result, we
have sought a solution to the problem of multi-obiective land
allocation under conditions of conflicting objectives such
that large raster datasets may be handled using procedures
that have an immediate intuitive appeal.

The orocedure we have developed is an extension of the
decision heuristic used for the alloiation of land with single
objective problems. This is best illustrated by the diagrams
in Figure 4. Each of the suitability maps may be thought of
as anaxis in a multidimensional space. Here we consider
only two objectives for purposes of simple explanation. How-
ever, any number of objectives can be used.

Every raster cell in the image can be located within this
decision space according to its suitability level on each of
the objectives. To find the best x hectares of land for Objec-
tive 1., we simply need to move a decision line down from
the top (i.e., far right) of the Objective 1 suitability axis until
enough of the best raster cells are captured to meet our area
target. We can do the same with the Obiective 2 suitability
axis to capture the most suitable land for it. As can be seen
in Figure 4, this partitions the decision space into four
regions-areas best for Objective 1 and not suitable for Ob-
iective 2, areas best for Obiective 2 and not suitable for
Objective 1, areas,not suitable for either, and areas judged
best for both-i.e., areas ofconflict.

To resolve these areas of conflict, a simple partitioning
of the affected cells is used. As can be seen in Figure 4, the
decision space can also be partitioned into two further
regions.Those closer to the ideal point for Objective 1 and
those closer to that for Objective 2. The ideal point tepre-
sents the best possible case-a cell that is maximally suited
for one oblective and minimally suited for anything else' To
resolve the conflict zone, the line that divides these two
regions is overlaid onto it and cells are then allocated to
their closest ideal point. Because the conflict regions will be
divided between the obiectives, both obiectives will initially
be short on achieving their area goals. As a result, the pro-
cess will be repeated with the decision lines being lowered
for both objectives to gain more territory. The process of re-
solving conflicts and lowering the decision lines is iteratively
repeated until the exact area targets are achieved.
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It should be noted that a 4S-degree line between a pair
of obiectives assumes that they are given equal weight in the
resolution of conflicts. However, unequal weighting can be
given. Unequal weighting has the effect of-changing the angle
6t ttti. dividing line-. In fact, the tangent of that angle is
equal to the ratio of the weights assigned to those objectives.

It should also be noted that, just as it was necessary to
standardize criteria for multi-criteria evaluation, it is also re-
quired for multi-obiective evaluation. The process involves a
matching of the histograms for the two suitability maps. In
cases where the distributions are normal' conversion to stan-
dard scores would seem appropriate. However, in many
cases the distributions are not normal. In these cases, the
matching of histograms is most easily achieved by a non-par-
ametric iechnique known as histogram equalization. This is a
standard option in many image processing systems. How-
ever, it is also the case that the ranked suitability maps pro-
duced by the RANK module are also histogram equalized (i'e.,
a histogiam of a rank map is uniform).-This is fortuitous be-
cause the logic outlined in Figure 4 is best achieved by re-
classification of ranked suitability maps.

As result of the above considerations, a new module
named MoLA (Multi-Objective Land Allocation) was devel-
oped to undertake the compromise solution to the multi-ob-
jective problem. MOLA first asks for the names of the
obiectives and their relative weights. It then asks for the
names of the ranked suitability maps for each and the areas
that should be allocated. It then iteratively reclassifies the
ranked suitability maps to perform a first stage allocation,
checks for conflicts, and then allocates conflicts based on
minimum-distance-to-ideal-point rule using the weighted
ranks.

The Kathmandu Valley Case StudY
To illustrate these multi-criteria/multi-obiective procedures,
we consider the hypothetical problem of developing a zoning
map to regulate expansion of the carpet industry within agri-
culiural areas of the Kathmandu Valley of Nepal. The prob-
lem is to zone 1500 hectares of current agricultural land
outside the ring road of Kathmandu for further expansion of
the carpet indultry. In addition, 6000 hectares will be zoned
for speiial protection of agriculture. The problem clearly
fallslnto the realm of multi-obiective/multi-criteria decision
problems. In this case, we have two obiectives: to protect
iands that are best for agriculture, while at the same time
finding other lands that are best suited for the carpet indus-
try. Betause land can be allocated to only one of these uses

Proximity to Water

Proximity to Power

Proximity to Roads

Proximity to Market

Slope Gradient

Consistency Ratio 0.08

Figure 3. The weights derived by calculat-
ing the principal eigenvector of the pair-
wise comparison matrix. The Consistency
Ratio indicates the probability that the rat-
ings were developed bY chance.

Proximity to Watet Proximity to Power Proximity to
Roads

Proximity to
Market

Slope Gradient

Proximity to Water

Proximity to Power 1t8 1

Proximity to Roads 1t3 7 1

Proximity to Market 1 t5 1n

Slope Gradient 1t8 1t3 1 n 1n

Figure 2. An example of a pairwise comparison matrix forassessing the
comparative importance of factors.
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Figure 4. The decision space formed by treating suitabilities for each
objective as a separate dimension. (Left) The decision l ines isolatinS
the best regions to meet areal goals for the objectives, in the case of
two objectives, intersect to form four regions: two regions of choices de-
sired by one objective and not the other (and thus not in conflict), a re-
gion of choices not desired by either, and a conflict region of choices
desired by both. (Right) This conflict region is iteratively partitioned be-
tween objectives by means of a mi ni mum-d i stance-to-ideat-poi nt logic
that partit ions the decision space with a l ine whose angle is determined
by the relative weight assigned to the objectives.
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Figure 5. A flow diagram of the multi-critera/
multi-objective decision making process for
cases of conflicting objectives as developed
in the rDRtSt software system.

at any one time, the obiectives must be viewed as conflict-
ing-i,e., they may potentially compete for the same lands.
Furthermore, the evaluation of each of these objectives can
be seen to require multiple criteria.

In the illustration that follows, a solution to the multi-
objective/multi-criteria problem is presented as developed
with a group of Nepalese government officials as part of an
advanced seminar in cIS4. While the scenario waJdeveloped
purely for the purpose of demonstrating the techniques uied,
and while the result does not represent an actual policv de-
cision, it is one that incorporatei substantial field work and
the- perspectives of knowledgeable decision makers. The pro-
cedure follows a logic in which each of the two obiectivei
are first dealt with as separate multi-criteria evaluation prob-
lems. The result is two separate suitability maps (one fol
each objective) which are then compared to arrive at a single
solution that balances the needs of the two competing objec-
tives. The steps (as summarized in Figure 5) are as follows :

Solving the Single Objective Multl.Criteria Evaluations
Establishing the Cfiteria: Factors and Constraints
T!e decision making group identified five factors as being
relevant to the -siting of the carpet industry: proximity to wa-
ter (for use in dying and the washing of carpets), proximity
to roads (to minimize road construction costs), proximity io
power, proximity to market, and slope gradient. For agricul-
ture they identified three of the same factors: proximitv to
water (for irrigation), proximity to market, and slope giadi-
ent; and a fourth factor: soil capability. In both cases they
identified the same constraints: either objective would be
constrained to areas outside the ring road surrounding Kath-
mandu, existing agricultural lands, and slope gradienti less
than 100 percent.

Standardizing the Factors
Each of the constraints was developed as a Boolean map
while the factors were standardized to a consistent range of 0
to 255. In addition, all factor maps were developed such that
high values would indicate more suitable areas.^Thus, for ex-
ample, the proximity to market factor was developed as a
cost distance surface (accounting for variable road class fric-
tions) and then inverted after scaling to form the proximity
map._Standardization was achieved by undertaking a linear
rescaling of values using the minimum and maximlum values
as the scaling end points. The only exception to this was the
slope gradient map where the scaling points were set at 0
and L00- percent (because slopes greater than 100 percent
were ruled out by one of the constraints). Figure 6 illustrates
these factor and constraint maps.

Establishing the Factor Weights
The next stige was to estabiish a set of weights for each of
the factors. In the nature of a focus group, the GIS analyst
worked with the decision makers as a group to fill out a
pairwise comparison matrix. Each decision maker was asked
in turn to estimate a rating and then to indicate why he or
she felt that way. The group would then be asked if they
agreed. Further discussion would ensue, often with r.tgg"s-
tions for different ratings. Ultimately, if another person-made
a strong case for a different rating that seemed to have broad
support. the-original person who provided the rating would
be asked if they were willing to change (the final deiision
would in fact rest with the original rater). Consensus was not
difficult to achieve using this procedure. It has been found
through repeated experimentation with this technique that
the only cases where strong disagreements arise would be
those in which new variables weie eventually identified as
needing^to be incorporated. This is perhaps the greatest
value of the pairwise comparison te;hnique-it Is very effec-

aThe seminar was hosted by UNITAR at the International Center for
Integrated Mountain Development (ICIMOD) in Nepal, 28 September-
2 October 1992.
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Figure 6. (Reading left to right and from top to bottom)
The proximity to water, road proximity, proximity to power,
slope gradient, proximity to market, and soil capabil ity
factors, and the Boolean constraints. With the factor
maps, darker areas are those more suited to the objec-
tive in question. The Boolean constraint map il lustrates
regions that cannot be considered in white (areas within
the urban ring road, forested areas, and areas on slopes
with gradients greater than 100 percent).

also have a range from 0 to 255. Figure 7 shows the result of
separate multi-criteria evaluations to derive suitability maps
foi the carpet and agricultural industries.

Solving the Multi.()biective Land Allocation Problem
Once- the multi-criteria suitability maps have been created for
each obiective, the multi-objective decision problem can be
approached.

Standardizing the Single-Obj ective Suitability Maps
The first stefwas to uie the RANK module to rank order the
cells in each of the two suitability maps. This prepares the
data for use with the MoLA procedure and has the additional
effect of standardizing the suitability maps using a non-para-
metric histogram equilization technique. Ranks were devel-
oped in desJending order (i'e., the best rank was 1). For both
oLjectives, tied ranls were resolved by examining the.other
rnit"bility map and ranking in reverse-order,to the suitability
on that oihtt hup. This preserves the basic logic-of the un--
correlated ideal points for conflicting obiectives that is used
in the resolution of conflicts.

S olving th e Multi-Ob i ectiv e Ptobl e m
The se*cond step was to submit the ranked suitability-maps
to the MoLA procedure. Mola asks for the names of the ob-
jectives, the ielative weight to assign to each. and the area to
6e allocated to each. The module then undertakes the itera-
tive procedure of allocating the best ranked cells to each ob-
jective according to the areil goals, Iooking for conflicts, and
iesolving conflicts based on the weighted minimum-distance-
to-ideal-"point logic. Figure I shows the final result, achieved
after six iterations.

Discussion and Gonclusions
The result illustrated in Figure B is very satisfactory' Areas
selected for each objective are geographically coherent and
meaningful in termi of the criteriaspecified. The procedure
is also ilitubl" for use on large images (the analyses illus-
trated here took only seconds to perform). Perhaps most im--
oortantlv. in testing with decision makers in both Nepal and
Lith.r".ri" who hav-e had no formal training in multi-obiective
procedures, the logic was easily understood and acted as an
excellent vehicle fbr discussion of the criteria and objectives
involved and their relative strengths.

Although we have not yet undertaken a systematic test-
ing of this decision heuristic, it is logical to expect that the
reJults should be very close to that which would be achieved
through linear programming.(assuming that.a problem. as
Iarge Xs this couldle solved). The rank/reclass logic-that un-
deilies this process is one that is consistent with finding ar-
eas in which the sum of suitabilities is maximized. Only in
the resolution of conflicts, where a local rather than global
solution is used, would one expect that differences might oc-
cur. However, it should be noted that it was not our inten-
tion to duplicate the outcome of linear programming but, - -
rather, to provide a logically coherent -procedure that would
be comprehensible to ihe maiority of decision makers'

An'other important feature of this heuristic is that, by
specifically searching out areas of no conflict between the
o'blectivesi and by reiolving conflicts only in areas where the
land is suitable for all obie-tives, the cost of a mis-allocation
will be minimized. In essence, we are pursuing a least-risk
solution by proceeding in this manner. Clearly, further re-
search is needea for a-full evaluation of this procedure'

tive in uncovering overlooked factors and reaching a consen-
sus_ on weights through direct participation by decision
maKers.

Once the pairwise comparison matrices were filled out,
the WEIGHT module was used to identify inconsistencies and
to develop the best fit weights.

undertaking the Multi-Criteria Evaluatio n
Once the weights were established, the module MCE (for
Multi-Criteria Evaluation) was used to combine the factors
and constraints in the form of a weighted linear combination.
The procedure is optimized for speed ald has the effect of
multiplying each factor by its weight, adding the results, and
then iutceisively multiplying the result by each of the con-
straints. Because the weights sum to 1.0, and the factors are
standardized from 0 to 255, the resulting suitability maps
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Figure 7. (Left) Suitability for the carpet industry. (Right)
Suitabil ity for Agriculture. Darker areas are those more
suited to the objective in question.
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Figure 8. The final land allocation (shown as two Boolean
images for purposes of i l lustration in black and white).
(Left) The best 15OO hectares allocated to the carpet in-
dustry. (Right) The best 6000 hectares allocated to agri-
culture.
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