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Abstract

Decisions about the allocation of land typically involve the
evaluation of multiple criteria according to several, often
conflicting, objectives. With the advent of GIS, we now have
the opportunity for a more explicitly reasoned environmental
decision making process. However, GIS has been slow to de-
velop decision support tools, more typically relving on proce-
dures outside the GIS software. In this paper the issues of
multi-criteria/multi- objective decision making are discussed,
along with an exploration of a new set of decision support
tools appropriate for the large data-handling needs of raster
GIS. A case study is used to illustrate these tools as devel-
oped for the IDRISI geographic analysis software system.

Introduction

As a technology, GIS has evolved through three broad appli-
cation domains. The first, and that which lends it its name,
is the use of GIS as an information database—a means of co-
ordinating and accessing geographic data. The second, and
more recent, is the use of GIS as an analytical tool—a means
of specifying logical and mathematical relationships among
map layers (i.e., modeling) to yield new derivative maps.
Building upon these two, we now see a third stage—the use
of GIs as a decision support system—a means for deciding
how to act upon the analyses produced.

With these later stages, we see the system evolving to ac-
commodate the addition of new information to augment that
in the database. With GIS as a database, we get nothing more
from the system than what went in in the first place. Admit-
tedly, we may access those data in new and novel combina-
tions; but the fact remains that the system is little more than
an automated data bank. As GIS evolved to take on a more
analytical focus, we see the development of special tools for
the addition of new information—knowledge of relationships
and/or process. Derivative mapping and simulation modeling
truly add new data to the database by combining existing
data with knowledge of relations and process. Finally, as GIS
evolves to accommodate decision making behavior, we will
witness the development of specialized tools to speciiy how
to act upon the outcomes of our analytical models. It is to
this issue that the following paper is addressed, with special
reference to raster GIS.

Making decisions about the allocation of land is one of
the most fundamental activities of resource development
(FAO, 1976). With the development of GIS, we now have the
opportunity for a more explicitly reasoned process of land-
use evaluation. However, despite the wide range of analytical
tools these systems provide, they are typically weak in the
provision of decision support procedures (Honea et al.,
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1991). Over the past year, the Clark Labs have been involved
in an exploration of decision making procedures for land al-
location problems on behalf of the United Nations Institute
for Training and Research. One of the difficulties we encoun-
tered was this lack of appropriate tools. As a result, we
found the need to develop a series of new program modules
for the IDRISI geographic analysis software system (Eastman,
1993). These are described in the following sections and will
be illustrated by means of a hypothetical case study. A sec-
ond difficulty we encountered was the broadly divergent use
of decision terminology (e.g., see Rosenthal (1985)) that ex-
ists in the Decision/Management Science and Operations Re-
search fields. Accordingly, we have adopted the following set
of operational definitions which we feel are in keeping with
the thrust of the Decision Science literature and which are
expressive of the GIS decision making context.

Definitions*

Decision

A decision is a choice between alternatives. The alternatives
may represent different courses of action, different hypothe-
ses aboul the character of a feature, different sets of features,
and so on.

Criterion

A criterion is some basis for a decision that can be measured
and evaluated. It is the evidence upon which a decision is
based. Criteria can be of two kinds: factors and constraints.

Factors

A factor is a criterion that enhances or detracts from the suita-
bility of a specific alternative for the activity under considera-
tion. It is therefore measured on a continuous scale. For
example, a forestry company may determine that the steeper the
slope, the more costly it is lo transport wood. As a result, better
areas for logging would be those on shallow slopes—the shal-
lower the better. Factors are also known as decision variables in
the mathematical programming literature (Fiering, 1986) and
structural variables in the linear goal programming literature
(lgnizio, 1985).

IThis section is taken substantially from Eastman et al. (1993a) and
Eastman ef al. (1993b). Indeed, this paper is a modification and am-
plification of the former of these to give a broader treatment of
Multi-Criteria Evaluation as well as Multi-Objective decision
making,.
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Constraints
A constraint serves to limit the alternatives under considera-
tion. A good example of a constraint would be the exclusion
from development of areas designated as wildlife reserves. An-
other might be the stipulation that no development can proceed
on slopes exceeding a 30 percent gradient. In many cases con-
straints will be expressed in the form of a Boolean (logical)
map: areas excluded from consideration being coded with a 0
and those open for consideration being coded with a 1. How-
ever, in some instances the constraint will be expressed as
some characteristic that the final solution must possess. For ex-
ample, we might require that the total area of lands selected for
development be not less than 5000 hectares. Constraints such as
this are often called goals (Ignizio, 1985) or targets (Rosenthal,
1985). Regardless, both forms of constraint have the same ulti-
mate meaning—to limit the alternatives under consideration.

Decision Rule

The procedure by which criteria are combined to arrive at a
particular evaluation, and by which evaluations are com-
pared and acted upon, is known as a decision rule. A deci-
sion rule might be as simple as a threshold applied to a
single criterion (such as, all regions with slopes less than 35
percent will be zoned as suitable for development) or it may
be as complex as one involving the comparison of several
multi-criteria evaluations.

Decision rules typically contain procedures for combin-
ing criteria into a single composite index and a statement of
how alternatives are to be compared using this index. For ex-
ample, we might define a composite suitability map for agri-
culture based on a weighted linear combination of informa-
tion on soils, slope, and distance from market. The rule
might further state that the best 5000 hectares are to be se-
lected. This could be achieved by choosing that set of raster
cells. totaling 5000 hectares, in which the sum of suitabilities
is maximized. It could equally be achieved by rank ordering
the cells and taking enough of the highest ranked cells to
produce a total of 5000 hectares. The former might be called
a choice function (known as an objective function or per-
formance index in the mathematical programming litera-
ture—see Diamond and Wright (1989)) while the latter might
be called a choice heuristic.

Choice Function

Choice functions provide a mathematical means for comparing
alternatives. Because they involve some form of optimization
(such as maximizing or minimizing some measurable character-
istic), they theoretically require that each alternative be evalu-
ated in turn. However, in some instances, techniques do exist to
limit the evaluation only to likely alternatives. For example, the
Simplex Method in linear programming (Feiring, 1986) is specif-
ically designed to avoid unnecessary evaluations.

Choice Heuristic
Choice heuristics specify a procedure to be followed rather than
a function to be evaluated. In some cases, they will produce a
result identical to a choice function (such as the ranking exam-
ple above), while in other cases they may simply provide a
close approximation. Choice heuristics are commonly used be-
cause they are often simpler to understand and easier to imple-
ment.

In general, two kinds of decision rules prevail—those in
which the decision rule involves the evaluation of alternative
hypotheses about individual features, and those in which it
involves a decision about alternative features to include in a
set. For example, a decision about whether areas are prone to
landslides or not is indicative of the first type while one that
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selects the best regions for agriculture exemplifies the sec-
ond. In essence, the first kind of decision is one of classifica-
tion while the second is one of selection.

Objective

Decision rules are structured in the context of a specific ob-
jective. The nature of that objective, and how it is viewed by
the decision makers (i.e., their motives), will serve as a
strong guiding force in the development of a specific deci-
sion rule. An objective is thus a perspective that serves to
guide the structuring of decision rules.” For example, we
may have the stated objective to determine areas suitable for
timber harvesting. However, our perspective may be one that
tries to minimize the impact of harvesting on recreational
uses in the area. The choice of criteria to be used and the
weights to assign them would thus be quite different from
that of a group whose primary concern was profit maximiza-
tion. Objectives are thus very much concerned with issues of
motive and social perspective.

Multi-Criteria Evaluations

The actual process of applyving the decision rule is called
evaluation. To meet a specific objective, it is frequently the
case that several criteria will need to be evaluated. Such pro-
cedures are called Multi-Criteria Evaluations. Another term
that is sometimes encountered for this is modeling. However,
this term is avoided here because the manner in which the
criteria are combined is very much influenced by the objec-
tive of the decision, and thus explicitly influenced by per-
sonal perspectives.

Two of the most common procedures for multi-criteria
evaluation are weighted linear combination and concor-
dance-discordance analysis (Voogd, 1983; Carver, 1991). In
the former, each factor is multiplied by a weight and then
summed to arrive at a final suitability index. In the latter,
each pair of alternatives is analyzed for the degree to which
one out ranks the other on the specified criteria. Unfortu-
nately, concordance-discordance analysis is computationally
impractical when a large number of alternatives is present
(such as with raster data where every pixel is an alternative).
However, weighted linear combination is very straightfor-
ward in a raster GIS. Indeed, it is the derivation of the
weights, within the context of the decision objective, that
provides the major challenge. Accordingly, this will be ex-
amined in further detail.

Muiti-Objective Evaluations

While many decisions we make are prompted by a single ob-
jective, it also happens that we need to make decisions that
satisfy several objectives. These objectives may be comple-
mentary or conflicting (Carver, 1991, p. 322) in nature.

Complementary Objectives

With complementary or non-conflicting objectives, land areas
may satisfy more than one objective. Desirable areas will thus
be those which serve these objectives together in some specified
manner, For example, we might wish to allocate a certain
amount of land for combined recreation and wildlife preserva-
tion uses. Optimal areas would thus be those that satisfy both
of these objectives to the maximum degree possible.

“It is important to note here that we are using a somewhat broader
definition of the term objective than would be found in the goal pro-
gramming literature (Ignizio, 1985). In goal programming, the term
objective is synonymous with the term objective function in mathe-
matical programming and choice function used here,
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Conflicting Objectives

With conflicting objectives, objectives compete for the available
land because it can be used for one or the other, but not both.
For example, we may need to resolve the problem of allocating
land for timber harvesting and wildlife preservation. Clearly the
two cannot coexist. Exactly how they compete, and on what ba-
sis one will win out over the other, will depend upon the na-
ture of the decision rule that is developed.

In cases of complementary objectives, multi-objective deci-
sions can often be solved through a hierarchical extension of
the multi-criteria evaluation process. For example, we might
assign a weight to each of the objectives and use these along
with the suitability maps developed for each to combine
them into a single suitability map indicating the degree to
which areas meet all of the objectives considered (Voogd,
1983). However, with conflicting objectives the procedure is
more involved.

With conflicting objectives it is sometimes possible to
rank order the objectives and reach a prioritized solution
(Rosenthal, 1985). In these cases, the needs of higher ranked
objectives are satisfied before those of lower ranked objec-
tives are dealt with. However, this is often not possible, and
the most common solution to conflicting objectives is the de-
velopment of a compromise solution. Undoubtedly. the most
commonly emploved techniques for resolving conflicting ob-
jectives are those involving optimization of a choice function
such as linear programming (Fiering, 1986) or goal program-
ming (Ignizio, 1985). In both, the concern is to develop an al-
location of the land that maximizes or minimizes an
objective function subject to a series of constraints.

Uncertainty and Risk

Clearly, information is vital to the process of decision mak-
ing. However, we rarely have perfect information. This leads
to uncertainty, for which two sources can be identified: data-
base and decision rule uncertainty. Database uncertainty is
that which resides in our assessments of the criteria which
are enumerated in the decision rule. Measurement error is
the primary (but not exclusive) source of such database un-
certainty. Decision rule uncertainty is that which arises from
the manner in which criteria are combined and evaluated to
reach a decision. Both sources contribute to the risk that the
decision reached will be incorrect.

When uncertainty is present, the decision rule will need
to incorporate modifications to the choice function or heuris-
tic to accommodate the propagation of uncertainty through
the rule and replace the hard decision procedures of certain
data with the soft ones of uncertainty. A variety of theoreti-
cal constructs have been developed to accommodate this un-
certainty, including Bayesian Probability Theory, Fuzzy Set
Theory, and Dempster-Shafer Theory (Lee et al.. 1987;
Stoms, 1987). In this paper, the issues of uncertainty and risk
are not addressed because they would detract from the main
issue of decision rule structuring for multi-criteria/multi-ob-
jective problems.

Multi-Criteria Decision Making in GIS

As indicated above, the most prevalent procedure for multi-
criteria evaluation is the weighted linear combination (Voogd,
1983, p. 120). With a weighted linear combination, factors
are combined by applying a weight to each followed by a
summation of the results to vield a suitability map: i.e.,

S5 = Ew,x, (1)
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where § is suitability, w, is the weight of factor i, and x, is
the criterion score of factor i,

This procedure is not unfamiliar in GIs and has a form
very similar to the nature of a regression equation. In cases
where Boolean constraints also apply, the procedure can be
modified by multiplying the suitability calculated from the
factors by the product of the constraints: i.e.,

S = E(wx )M, (2)

where ¢, is the criterion score of constraint j and I1 is the
product,

All GIS software systems provide the basic tools for eval-
uating such a model. In addition, in IDRISI, a special module
named MCE has been developed to facilitate this process. The
primary issues, however, relate to the standardization of cri-
teria scores and the development of the weights.

Standardizing Criterion Scores

Because of the different scales upon which criteria are meas-
ured, it is necessary that factors be standardized before com-
bination in Equations 1 or 2, and that they be transformed, if
necessary, such that all factors maps are positively correlated
with suitability.* Voogd (1983, pp. 77-84) reviews a variety
of procedures for standardization, typically using the mini-
mum and maximum values as scaling points. The simplest is
a linear scaling such as

Xy = [Ha - H““"];’[H"h“

where R is the raw score and m is an an arbitrary multiplier.

Through standardization, criterion scores will be ex-
pressed according to a consistent numeric range (e.g., 0-99,
0-255, etc.). In the case of IDRISI, the STRETCH module is used
to linearly scale all values to a 0 to 255, 8-bit integer range.
Thus, each factor will have an equivalent measurement basis
before any weights are applied.

— R,,.)* m (3)

Criterion Weights

Although a variety of techniques exist for the development
of weights, one of the most promising would appear to be
that of pairwise comparisons developed by Saaty (1977) in
the context of a decision making process known as the Ana-
Ivtical Hierarchy Process (AHP). The first introduction of this
technique to a GIS application was that of Rao et al. (1991),
although the procedure was developed outside the GIS soft-
ware using a variety of analytical resources.

In the procedure for Multi-Criteria Evaluation using a
weighted linear combination outlined above, it is necessary
that the weights sum to 1. In Saaty’s technique (Saaty, 1977),
weights of this nature can be derived by taking the principal
eigenvector of a square reciprocal matrix of pairwise compar-
isons between the criteria. The comparisons concern the rel-
ative importance of the two criteria involved in determining
suitability for the stated objective. Ratings are provided on a
nine-point continuous scale (Figure 1). For example, if one
felt that proximity to roads was very strongly more important
than slope gradient in determining suitability for industrial
siting, one would enter a 7 on this scale. If the inverse were
the case (slope gradient was very strongly more important
than proximity to roads), one would enter 1/7.

In developing the weights, an individual or group com-

"Thus. for example, if locations near a road were more advantageous
for industrial siting than those far away, a distance map would need
to be transformed into one expressing proximity.
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Figure 1. The continuous rating scale used for the pair-
wise comparison of factors in the multi-criteria evalua-
tion.

pares every possible pairing and enters the ratings into a
pairwise comparison matrix (Figure 2). Because the matrix is
symmetrical, only the lower triangular half actually needs to
be filled in. The remaining cells are then simply the recipro-
cals of the lower triangular half (for example, because the
rating of slope gradient relative to road proximity is 1/7, the
rating of road proximity relative to slope gradient will be 7).
Note that, where empirical evidence exists about the relative
efficacy of a pair of factors, this evidence can also be used.

The procedure then requires that the principal eigenvec-
tor of the pairwise comparison matrix be computed to pro-
duce a best fit set of weights (Figure 3). If no procedure is
available to do this, a good approximation to this result can
be achieved by calculating the weights with each column
and then averaging over all columns. For example, if we take
the first column of figures, they sum to 1.78. Dividing each
of the entries in the first column by 1.78 yields weights of
0.56, 0.07, 0.19, 0.11, and 0.07 (compare to the values in Fig-
ure 3). Repeating this for each column and averaging the
weights over the columns usually gives a good approxima-
tion to the values calculated by the principal eigenvector. In
the case of IDRISI, however, a special module named WEIGHT
has been developed to calculate the principal eigenvector di-
rectly. Note that these weights will sum to one, as is re-
quired by this weighted linear combination procedure.

Because the complete pairwise comparison matrix con-
tains multiple paths by which the relative importance of cri-
teria can be assessed, it is also possible to determine the
degree of consistency that has been used in developing the
ratings. Saaty (1977) indicates the procedure by which an in-
dex of consistency, known as a consistency ratio, can be pro-
duced (Figure 3). The consistency ratio (CR) indicates the
probability that the matrix ratings were randomly generated.
Saaty indicates that matrices with CR ratings greater than
0.10 should be re-evaluated. We have confirmed this by ob-
serving that re-evaluation only produces significant changes
in the weights when the CR exceeds 0.1. As a result, the pro-
cedure accepts the weights when the CR is less than this
threshold. Otherwise, the WEIGHT procedure analyzes the ma-
trix to determine where logical inconsistencies arise. It does
so by comparing direct pairwise comparison ratings with
those implied by the eigenvector weights. Discrepancies indi-
cate cases where the direct ratings are inconsistent with
those derived from all indirect as well as direct ratings, and
thus cases where re-evaluation would be productive in de-
veloping a consensus weight set.

Evaluation

Once the criteria maps (factors and constraints) have been
developed, it is a fairly simple matter to multiply each factor
map (i.e., each raster cell within each map) by its weight and
then sum the results. Because the weights sum to 1, the re-
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sulting suitability map will have a range of values that matches
that of the standardized factor maps that were used. After all
of the factors have been incorporated, the resulting suitabil-
ity map is then multiplied by each of the constraints to “zero
out” unsuitable areas. In IDRISI, a special procedure named
MCE has been created to undertake all of these steps with
maximum efficiency.

Once a suitability map has been prepared, it is common
to undertake a final step of deciding which cells belong to
the set that meets a particular land allocation area target. For
example, having developed a map of suitability for industrial
development, we may then wish to determine which areas
constitute the best 5000 hectares that may be allocated.
Oddly, this is an area where most raster systems have diffi-
culty in achieving an exact solution. One solution would be
to use a choice function where that set of cells is chosen
which maximizes the sum of suitabilities. However, the
number of combinations that would need to be evaluated is
prohibitive in a raster GIS. As a result, we chose to use a
simple choice heuristic—to rank order the cells and choose
as many of the highest ranks as will be required to meet the
area target. In IDRISI, a new module named RANK was devel-
oped to allow a rapid ranking of cells within an image. In
addition, it allows the use of a second image to resolve the
ranks of ties. The ranked map can then be reclassified to ex-
tract the highest ranks to meet the area goal.

Multi-Objective Decision Making in GIS

Multi-objective decisions are so common in environmental
management that it is surprising that specific tools to address
them have not been developed within GIS. The few examples
one finds in the literature tend to concentrate on the use of
linear programming tools outside the GIS, or are restricted to
cases of complementary objectives.

Complementary Objectives

As indicated earlier, the case of complementary objectives
can be dealt with quite simply by means of a hierarchical ex-
tension of the multi-criteria evaluation process (e.g., Carver,
1991). Here, a set of suitability maps, each derived in the
context of a specific objective, serve as the factors for a new
evaluation in which the objectives are themselves weighted
and combined by linear summation. Because the logic which
underlies this is multiple use, it also makes sense to multi-
ply the result by all constraints associated with the compo-
nent objectives.

Conflicting Objectives
With conflicting objectives, land can be allocated to one ob-
jective but not more than one (although hybrid models might
combine complementary and conflicting objectives). As was
indicated earlier, one possible solution lies with a prioritiza-
tion of objectives (Rosenthal, 1985). After the objectives have
been rank ordered, the needs of higher ranked objectives are
satisfied (through rank ordering of cells and reclassification
to meet areal goals) before those of lower ranked ones. This
is done by successively satisfying the needs of higher objec-
tives and then removing (as a new constraint) areas taken
from consideration by all remaining objectives. A prioritized
solution is easily achieved with the use of the RANK and RE-
CLASS modules in IDRISL. However, the instances where a pri-
oritized solution makes sense are rare. More often, a
compromise solution is required.

Compromise solutions to the multi-objective problem
have most commonly been approached through the use of
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Slope Gradient 0.03
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Slope Gradient 1/8 173 1" 17 1 Consistency Ratio 0.08

comparative importance of factors.

Figure 2. An example of a pairwise comparison matrix forassessing the

Figure 3. The weights derived by calculat-
ing the principal eigenvector of the pair-

mathematical programming tools outside the GIS (e.g., Dia-
mond and Wright, 1988; Janssen and Rietveld, 1990; Camp-
bell et al., 1992). Mathematical programming solutions (such
as linear or integer programming) can work quite well in in-
stances where only a small number of alternatives are being
addressed. However, in the case of raster GIS, the massive
data sets involved will typically exceed present-day comput-
ing power. In addition, the concepts and methodology of lin-
ear and integer programming are not particularly approach-
able to a broad range of decision makers. As a result, we
have sought a solution to the problem of multi-objective land
allocation under conditions of conflicting objectives such
that large raster datasets may be handled using procedures
that have an immediate intuitive appeal.

The procedure we have developed is an extension of the
decision heuristic used for the allocation of land with single
objective problems. This is best illustrated by the diagrams
in Figure 4. Each of the suitability maps may be thought of
as an axis in a multidimensional space. Here we consider
only two objectives for purposes of simple explanation. How-
ever, any number of objectives can be used.

Every raster cell in the image can be located within this
decision space according to its suitability level on each of
the objectives. To find the best x hectares of land for Objec-
tive 1, we simply need to move a decision line down from
the top (i.e., far right) of the Objective 1 suitability axis until
enough of the best raster cells are captured to meet our area
target. We can do the same with the Objective 2 suitability
axis to capture the most suitable land for it. As can be seen
in Figure 4, this partitions the decision space into four
regions—areas best for Objective 1 and not suitable for Ob-
jective 2, areas best for Objective 2 and not suitable for
Objective 1, areas, not suitable for either, and areas judged
best for both—i.e., areas ofconflict.

To resolve these areas of conflict, a simple partitioning
of the affected cells is used. As can be seen in Figure 4, the
decision space can also be partitioned into two further
regions.Those closer to the ideal point for Objective 1 and
those closer to that for Objective 2. The ideal point repre-
sents the best possible case—a cell that is maximally suited
for one objective and minimally suited for anything else. To
resolve the conflict zone, the line that divides these two
regions is overlaid onto it and cells are then allocated to
their closest ideal point. Because the conflict regions will be
divided between the objectives, both objectives will initially
be short on achieving their area goals. As a result, the pro-
cess will be repeated with the decision lines being lowered
for both objectives to gain more territory. The process of re-
solving conflicts and lowering the decision lines is iteratively
repeated until the exact area targets are achieved.
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wise comparison matrix. The Consistency
Ratio indicates the probability that the rat-
ings were developed by chance.

It should be noted that a 45-degree line between a pair
of objectives assumes that they are given equal weight in the
resolution of conflicts. However, unequal weighting can be
given. Unequal weighting has the effect of changing the angle
of this dividing line. In fact, the tangent of that angle is
equal to the ratio of the weights assigned to those objectives.

It should also be noted that, just as it was necessary to
standardize criteria for multi-criteria evaluation, it is also re-
quired for multi-objective evaluation. The process involves a
matching of the histograms for the two suitability maps. In
cases where the distributions are normal, conversion to stan-
dard scores would seem appropriate. However, in many
cases the distributions are not normal. In these cases, the
matching of histograms is most easily achieved by a non-par-
ametric technique known as histogram equalization. This is a
standard option in many image processing systems. How-
ever, it is also the case that the ranked suitability maps pro-
duced by the RANK module are also histogram equalized (i.e.
a histogram of a rank map is uniform). This is fortuitous be-
cause the logic outlined in Figure 4 is best achieved by re-
classification of ranked suitability maps.

As result of the above considerations, a new module
named MOLA (Multi-Objective Land Allocation) was devel-
oped to undertake the compromise solution to the multi-ob-
jective problem. MOLA first asks for the names of the
objectives and their relative weights. It then asks for the
names of the ranked suitability maps for each and the areas
that should be allocated. It then iteratively reclassifies the
ranked suitability maps to perform a first stage allocation,
checks for conflicts, and then allocates conflicts based on
minimum-distance-to-ideal-point rule using the weighted
ranks.

The Kathmandu Valley Case Study

To illustrate these multi-criteria/multi-objective procedures,
we consider the hypothetical problem of developing a zoning
map to regulate expansion of the carpet industry within agri-
cultural areas of the Kathmandu Valley of Nepal. The prob-
lem is to zone 1500 hectares of current agricultural land
outside the ring road of Kathmandu for further expansion of
the carpet industry. In addition, 6000 hectares will be zoned
for special protection of agriculture. The problem clearly
falls into the realm of multi-objective/multi-criteria decision
problems. In this case, we have two objectives: to protect
lands that are best for agriculture, while at the same time
finding other lands that are best suited for the carpet indus-
try. Because land can be allocated to only one of these uses
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Figure 4. The decision space formed by treating suitabilities for each
objective as a separate dimension. (Left) The decision lines isolating
the best regions to meet areal goals for the objectives, in the case of
two objectives, intersect to form four regions: two regions of choices de-
sired by one objective and not the other (and thus not in conflict), a re-
gion of choices not desired by either, and a conflict region of choices
desired by both. (Right) This conflict region is iteratively partitioned be-
tween objectives by means of a minimum-distance-to-ideal-point logic
that partitions the decision space with a line whose angle is determined

Multi-Criteria Evaluation
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Multi-Objective Allocation

at any one time, the objectives must be viewed as conflict-
ing—i.e., they may potentially compete for the same lands.
Furthermore, the evaluation of each of these objectives can
be seen to require multiple criteria.

In the illustration that follows, a solution to the multi-
objective/multi-criteria problem is presented as developed
with a group of Nepalese government officials as part of an
advanced seminar in GIS*. While the scenario was developed
purely for the purpose of demonstrating the techniques used,
and while the result does not represent an actual policy de-
cision, it is one that incorporates substantial field work and
the perspectives of knowledgeable decision makers. The pro-
cedure follows a logic in which each of the two objectives
are first dealt with as separate multi-criteria evaluation prob-
lems. The result is two separate suitability maps (one for
each objective) which are then compared to arrive at a single
solution that balances the needs of the two competing objec-
tives. The steps (as summarized in Figure 5) are as follows :

Solving the Single Objective Multi-Criteria Evaluations

Establishing the Criteria: Factors and Constraints

The decision making group identified five factors as being
relevant to the siting of the carpet industry: proximity to wa-
ter (for use in dying and the washing of carpets), proximity
to roads (to minimize road construction costs), proximity to
power, proximity to market, and slope gradient. For agricul-
ture they identified three of the same factors: proximity to
water (for irrigation), proximity to market, and slope gradi-
ent; and a fourth factor: soil capability. In both cases they
identified the same constraints: either objective would be
constrained to areas outside the ring road surrounding Kath-
mandu, existing agricultural lands, and slope gradients less
than 100 percent.

“The seminar was hosted by UNITAR at the International Center for
Integrated Mountain Development (ICIMOD) in Nepal, 28 September—
2 October 1992.
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Figure 5. A flow diagram of the multi-critera/
multi-objective decision making process for
cases of conflicting objectives as developed
in the IDRISI software system.

Standardizing the Factors

Each of the constraints was developed as a Boolean map
while the factors were standardized to a consistent range of 0
to 255. In addition, all factor maps were developed such that
high values would indicate more suitable areas. Thus, for ex-
ample, the proximity to market factor was developed as a
cost distance surface (accounting for variable road class fric-
tions) and then inverted after scaling to form the proximity
map. Standardization was achieved by undertaking a linear
rescaling of values using the minimum and maximum values
as the scaling end points. The only exception to this was the
slope gradient map where the scaling points were set at 0
and 100 percent (because slopes greater than 100 percent
were ruled out by one of the constraints). Figure 6 illustrates
these factor and constraint maps.

Establishing the Factor Weights

The next stage was to establish a set of weights for each of
the factors. In the nature of a focus group, the GIs analyst
worked with the decision makers as a group to fill out a
pairwise comparison matrix. Each decision maker was asked
in turn to estimate a rating and then to indicate why he or
she felt that way. The group would then be asked if they
agreed. Further discussion would ensue, often with sugges-
tions for different ratings. Ultimately, if another person made
a strong case for a different rating that seemed to have broad
support, the original person who provided the rating would
be asked if they were willing to change (the final decision
would in fact rest with the original rater). Consensus was not
difficult to achieve using this procedure. It has been found
through repeated experimentation with this technique that
the only cases where strong disagreements arise would be
those in which new variables were eventually identified as
needing to be incorporated. This is perhaps the greatest
value of the pairwise comparison technique—it is very effec-
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Figure 6. (Reading left to right and from top to bottom)
The proximity to water, road proximity, proximity to power,
slope gradient, proximity to market, and soil capability
factors, and the Boolean constraints. With the factor
maps, darker areas are those more suited to the objec-
tive in question. The Boolean constraint map illustrates
regions that cannot be considered in white (areas within
the urban ring road, forested areas, and areas on slopes
with gradients greater than 100 percent).

tive in uncovering overlooked factors and reaching a consen-
sus on weights through direct participation by decision
makers.

Once the pairwise comparison matrices were filled out,
the WEIGHT module was used to identify inconsistencies and
to develop the best fit weights.

Undertaking the Multi-Criteria Evaluation
Once the weights were established, the module MCE (for
Multi-Criteria Evaluation) was used to combine the factors

and constraints in the form of a weighted linear combination.

The procedure is optimized for speed and has the effect of
multiplying each factor by its weight, adding the results, and
then successively multiplying the result by each of the con-
straints. Because the weights sum to 1.0, and the factors are
standardized from 0 to 255, the resulting suitability maps

PE&RS

also have a range from 0 to 255. Figure 7 shows the result of
separate multi-criteria evaluations to derive suitability maps
for the carpet and agricultural industries.

Solving the Multi-Objective Land Allocation Problem

Once the multi-criteria suitability maps have been created for
each objective, the multi-objective decision problem can be
approached.

Standardizing the Single-Objective Suitability Maps

The first step was to use the RANK module to rank order the
cells in each of the two suitability maps. This prepares the
data for use with the MOLA procedure and has the additional
effect of standardizing the suitability maps using a non-para-
metric histogram equalization technique. Ranks were devel-
oped in descending order (i.e., the best rank was 1). For both
objectives, tied ranks were resolved by examining the other
suitability map and ranking in reverse order to the suitability
on that other map. This preserves the basic logic of the un-
correlated ideal points for conflicting objectives that is used
in the resolution of conflicts.

Solving the Multi-Objective Problem

The second step was to submit the ranked suitability maps
to the MOLA procedure. MOLA asks for the names of the ob-
jectives, the relative weight to assign to each, and the area to
be allocated to each. The module then undertakes the itera-
tive procedure of allocating the best ranked cells to each ob-
jective according to the areal goals, looking for conflicts, and
resolving conflicts based on the weighted minimum-distance-
to-ideal-point logic. Figure 8 shows the final result, achieved
after six iterations.

Discussion and Conclusions

The result illustrated in Figure 8 is very satisfactory. Areas
selected for each objective are geographically coherent and
meaningful in terms of the criteria specified. The procedure
is also suitable for use on large images (the analyses illus-
trated here took only seconds to perform). Perhaps most im-
portantly, in testing with decision makers in both Nepal and
Lithuania who have had no formal training in multi-objective
procedures, the logic was easily understood and acted as an
excellent vehicle for discussion of the criteria and objectives
involved and their relative strengths.

Although we have not yet undertaken a systematic test-
ing of this decision heuristic, it is logical to expect that the
results should be very close to that which would be achieved
through linear programming (assuming that a problem as
large as this could be solved). The rank/reclass logic that un-
derlies this process is one that is consistent with finding ar-
eas in which the sum of suitabilities is maximized. Only in
the resolution of conflicts, where a local rather than global
solution is used, would one expect that differences might oc-
cur. However, it should be noted that it was not our inten-
tion to duplicate the outcome of linear programming but,
rather, to provide a logically coherent procedure that would
be comprehensible to the majority of decision makers.

Another important feature of this heuristic is that, by
specifically searching out areas of no conflict between the
objectives, and by resolving conflicts only in areas where the
land is suitable for all objectives, the cost of a mis-allocation
will be minimized. In essence, we are pursuing a least-risk
solution by proceeding in this manner. Clearly, further re-
search is needed for a full evaluation of this procedure.
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Figure 7. (Left) Suitability for the carpet industry. (Right)
Suitability for Agriculture. Darker areas are those more
suited to the objective in question.

g

Figure 8. The final land allocation (shown as two Boolean
images for purposes of illustration in black and white).
(Left) The best 1500 hectares allocated to the carpet in-
dustry. (Right) The best 6000 hectares allocated to agri-
culture.
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