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Abstract

Growing industrial development in the Mexico/U.S. border
region is creating potential health risks for citizens of both
nations. Planners and policy makers working in this region
must prepare for hazardous material accidents in a situation
of limited information. This research develops a geographic
information system-based approach for estimating and deter-
mining community vulnerability to hazardous material re-
leases in Nogales, Sonora/Arizona. A composite mapping
analysis of human-related and hazard-related variables de-
termines high vulnerability locations. In addition, a sensitiv-
ity analysis explores a full range of vulnerability scenarios
based on different weighted combinations of the human-re-
lated and hazard-related factors. Results demonstrate that a
Gis-based approach can effectively compensate for much of
the inherent subjectivity in a composite mapping analysis.

Introduction

Growing industrial development near human settlements at
the Mexico/U.S. border concerns citizens of both nations, es-
pecially in light of the recent ratification of the North Ameri-
can Free Trade Agreement (NAFTA). Maquiladoras, or multi-
national industrial plants in Mexican communities near the
U.S. border, have been attracted to the region since the mid-
sixties when the Mexican Border Industrialization Program
was established. This allowed multinational firms to main-
tain proximity to the U.S. market, but still benefit from the
lower labor costs and more limited environmental regulation
enforcement in Mexico. Initially, only a few plants existed,
but in recent years the number of maquiladoras have in-
creased rapidly (Perry et al., 1990).

Many maquiladoras produce, store, or use a variety of
hazardous materials. Accidental releases of these hazardous
materials may severely affect the well-being of local commu-
nities (Perry ef al., 1990). To properly prepare for hazardous
material emergencies, planners and policy makers in border
communities must know which locations and populations
are most vulnerable to potential hazardous material releases.

An important part of preparedness for potential hazard-
ous material release incidences is vulnerability analysis (Na-
tional Response Team, 1987). A vulnerability analysis identi-
fies the geographic areas and populations susceptible to
damage or injury should a hazardous material release occur.
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Planners and policy makers can use this information for both
long-range development planning, as well as structuring
emergency response activities such as evacuation planning
and emergency response facility location.

Assessing community vulnerability typically requires
gathering large amounts of primary, or “mass balance,” data
on the locations and amounts of hazardous material in a
community. Often, smaller communities lack the resources to
gather such data. The problem of gathering primary data is
further confounded in trans-border communities with differ-
ent political and legal systems. Therefore, a viable alternative
to gathering **mass balance' data is modeling community
vulnerability using information on the locations of potential
hazard material generation sites relative to the locations of
sensitive populations and institutions.

Because the spatial arrangement and intensity of human-
related and hazard-related factors determine community vul-
nerability, a geographic information system (GIS) can provide
a powerful tool for analyzing the relationships among these
factors and assessing community vulnerability. A particularly
useful GiS-based method is composite mapping analysis
(CMA). CMA is a technique commonly used in environmental
applications such as land-use suitability analysis or in as-
sessing environmental sensitivity. A CMA characterizes loca-
tions based on the spatial coincidence of relevant variables
that affect a proposed or existing activity (O'Banion, 1980;
Hepner, 1984). Because it is based on spatial coincidence, a
CMA substantially benefits from the polygon overlay or raster
cell manipulation capabilities of a GIS.

A recurring question associated with CMA is how to
weight the various factors which impact the phenomenon be-
ing studied. A myriad of hazard-related and human-related
variables, such as release sites locations, potential contami-
nant pathways, population density, and the locations of sen-
sitive institutions such as schools, can affect community
vulnerability to hazardous material releases. The relative im-
portance of each factor must be considered when combining
spatial variables through a CMA. Typically, variable weights
are determined through the consensus of an expert panel
[H('pner 1984). However, the availability of expert knowl-
edge is often limited in smaller communities. Even when
expert knowledge is available, a consensus is often difficult
to attain, a problem that can be especially acute in a trans-
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border situation. Finally, each variable’s weight can change
based on the needs of the particular vulnerability analysis
(e.g.. long range development policy versus emergency re-
sponse planning).

In this paper, we demonstrate the effectiveness of com-
bining the spatial analytical tools in a GIS with a structured
and systematic method for handling the subjectiveness often
present in a community vulnerability analysis. A GIS-based
CMA integrates a wide range of hazard-related and human-re-
lated factors that potentially affect community vulnerability
to hazardous material releases. The GIS platform not only en-
hances the CMA approach to vulnerability analysis, but also
allows us to develop and explore a well-structured set of
vulnerability scenarios based on different weighting of the
relevant variables. Results from an application of the model
in the Mexico/U.S. border community of Nogales, Sonora/
Nogales, Arizona indicate both the robustness of the cMA
methodology as well as the flexibility of GIS for structuring
inherently subjective and changeable model components
such as vulnerability factor weights.

Study Background

Guidelines for Hazards Analysis

To improve planning and preparation for chemical emergen-
cies, Congress enacted SARA (Superfund Amendments and
Reauthorization Act) in 1986. Part of SARA is Title III or the
Emergency Planning and Community Right-to-Know Act
(EPCRA). EPCRA’s purpose is to encourage cooperation among
government agencies, the public, and industry in preparing
for possible hazardous material accidents. Part of EPCRA re-
quires local municipalities to prepare hazardous material
emergency response plans. The Hazardous Materials Emer-
gency Planning Guide (National Response Team, 1987) pro-
vides local communities guidance in preparing emergency
response plans. This guide identifies hazards analysis as a
critical part of hazardous material emergency planning.

Hazards analysis consists of three procedures: hazards
identification, vulnerability analysis, and risk analysis. Haz-
ards identification involves identifying facilities and trans-
portation situations which may cause injury to life, or dam-
age to property and the environment (National Response
Team, 1987). Hazards identification is greatly facilitated in
the U.S. by laws requiring industrial facilities to disclose in-
formation on the amounts and types of hazardous materials
produced, used, or stored (US Code of Federal Regulations
40 § 302, 355, 372). This legal apparatus is not available in
Mexico.

The National Response Team guide defines vulnerability
as “the susceptibility of life, property, and the environment
to injury or damage if a hazard manifests its potential” (Na-
tional Response Team, 1987, p. 20). A vulnerability analysis
identifies the geographic areas and populations susceptible to
damage or injury should a hazardous materials accident oc-
cur. It includes an analysis of the extent of the vulnerable
zone and populations within the zone in terms of size and
types (e.g., residents, employees, sensitive populations, hos-
pitals, schools, etc.).

Risk analysis is an assessment of the probability that a
hazardous material accident may occur. Data needed for de-
termining accident probability are often difficult to acquire,
making risk analysis less feasible in smaller communities
(National Response Team, 1987). This is especially true for
communities on the Mexico/U.S. border.

A complete hazards analysis requires assessing all three
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of the components discussed above. However, a full-scale
hazards analysis requires data that are often not available for
a given study area. Data availability is a major problem in a
trans-border situation with different legal structures, political
environments, and data collection procedures. In these situa-
tions, focusing attention on the vulnerability analysis phase
can still generate useful inputs for emergency planning and
policy analysis. The data requirements for a vulnerability
analysis are less stringent and yet its results provide local
decision makers with estimates of the locations and popula-
tions at risk if an accident occurs,

Vulnerability Analysis Using GIS

A vulnerability analysis assesses spatial proximity among po-
tential incident sites and the populations that are likely to be
affected. Several published studies demonstrate effective uses
of GIs for vulnerability assessment to hazardous materials.
Although different in scope and purpose, these studies typi-
cally use two standard GIS techniques.

Montz (1986), Hillsman and Coleman (1986), and Gould
et al. (1989) provide examples of a basic GIS overlay ap-
proach. This technique involves overlaying an estimated haz-
ard zone onto several relevant GIS data sets, such as demo-
graphic, infrastructure, and institutional data. Hazard zones
may be identified by buffering a potentially hazardous site
(e.g., Montz, 1986), or by identifying a hazardous plume in
the case of air-borne contaminants (e.g., Gould et al., 1989).
The second technique, composite mapping analysis, was
mentioned in the introduction. This approach uses GIS over-
lay capabilities, but improves this strategy through scaling
and weighting of the GIS data layers. The result is a final cov-
erage consisting of cumulative vulnerability scores. These
scores provide a quantitative assessment of the vulnerability
level at each location. This contrasts with the qualitative,
“binary” vulnerability levels provided by the basic GIS over-
lay approach. A good example of this approach is the vulner-
ability analysis of Santa Monica, California by McMaster
(1988).

Several key data sets are essential to any GIS vulnerabil-
ity study. These include hazardous material sources (i.e., ge-
ographic location and chemical properties), demographic and
institutional characteristics of the community, and the physi-
cal nature of the environment. Earlier work (Montz, 1986;
McMaster, 1988; Hillsman and Coleman, 1986; Gould et al.,
1989) has effectively addressed the first two data require-
ments. In the U.S. this has been accomplished using hazard-
ous material inventories (required by EPCRA) and published
census information. The third data requirement, the physical
nature of the environment, has received little attention.

Study Area

The border cities of Nogales, Arizona and Nogales, Sonora
are good examples of Mexico/U.S. border communities (see
Figure 1). Roughly 20,000 people live in Nogales, Arizona
while approximately 250,000 live in Nogales, Sonora (Zur-
ick, 1992). The topography of Ambos Nogales (**Ambos No-
gales” meaning “Both Nogales” in Spanish) consists of many
hills with the primary drainage flowing from south to north.
Surface runoff flows from several secondary washes into the
main wash, the Nogales Wash, which flows north from No-
gales, Sonora through downtown Nogales, Arizona and even-
tually into the Santa Cruz River basin. There are approxi-
mately 80 industrial facilities (mostly maquiladoras or multi-
national industrial firms) in Nogales, Sonora (see Figure 2).
Health officials (e.g., Zurick, 1992), environmental activists

PE&RS



PEER-REVIEWED ARTICLE

ARIZONA

NEW
MEXICO

Ciudad
Juarez

Chihuahua

CHIHUAHUA

Figure 1. Location of Ambos Nogales.

(e.g., Kamp, 1991), and the media (e.g., USA Today, 27 Octo-
ber 1993) have focused attention on the risk to personal
health and safety in the Nogales area due to these facilities.
As recently as February 1994 over 4,000 people were evacu-
ated from both cities when evidence of a highly flammable
chemical was detected in the Nogales Wash (New York
Times, 18 February 1994). In the U.S., local communities
such as Nogales, Arizona are required by law to prepare for
possible hazardous material accidents such as the February
1994 event. The GIS-based community vulnerability model
provides an effective tool for hazardous release preparedness.

Methodology

Composite Mapping Analysis

In composite mapping analysis, separate thematic data lavers
are combined based on spatial coincidence. An advantage of

composite mapping lies in its flexibility: there are many ways
information in the separate thematic data layers may be com-
bined depending on the analysis needs and postulates about

the effects of different spatial variables. This also means that

data preparation for composite mapping is a crucial step that
affects the overall accuracy of the final map composite.

An important early step in a CMA is projecting the poten-
tial levels of a given variable onto a numeric scale reflecting the
relationship between the variable’s intensity and the impact on
the existing or proposed land use. For example, a scale index
can reflect the relationship between percent slope and residen-
tial land-use suitability or the relationship between population
density and hazardous material vulnerability. A scaling index
represents the influence of variations within a particular varia-
ble (O’'Banion, 1980; Hepner, 1984). Often, scale indices are de-
veloped through the consensus of an expert panel (Hepner,
1984), although this is not always possible.

Before the scaled spatial data sets are combined in CMA to
produce a location-specific composite score, it is also necessary
to develop a set of weights that reflect the relative importance
of a variable. In contrast to scale indices, variable weights re-
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flect relative importance among different variables. If each vari-
able is appropriately scaled, the variable weights can be stated

so that the overall composite score is a simple combination of

the individual (scaled) variables. An intuitive and manageable

approach is to structure the weights so that the overall score is
a linear combination of the scaled variables.

As in the assignment of scores in the scaling procedure,
determining the appropriate weight for each data layer may
typically be achieved through expert consensus. Lacking this
consensus, a structured methodology must be developed that
accurately models the phenomena being studied. Later in
this paper we propose using sensitivity analysis to achieve
this purpose. Although we could have conducted a sensitiv-
ity analysis at both levels of the CMA (i.e., scale indices and
variable weights), the subjectivity and variability is substan-
tially greater with the variable weights than with the scale
indices. For example, it is clear that population density
should be scaled so that higher density reflects greater vul-
nerability. However, it is less clear how to weight this factors
relative to other human-related and hazard-related factors.

Data Sources and Preparation

The database for our Gis-based community vulnerability
analysis consisted of eight spatial data layers reflecting varia-
bles that can be meaningfully partitioned into two major
components; hazard-related and human-related factors. The
hazard-related data layers included the location of industrial
facilities (i.e., potential hazard release sites) and two modes
of hazardous material transmission (surface and sewer trans-
mission). Human-related data included data layers represent-
ing two sensitive population groups (population under 18
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Figure 2. Land use and industrial facilities in Ambos No-
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years and population over 65 years), a data layer of general
population density, a data layer of economic/infrastructure
condition, and a data layer of sensitive institutions (schools,
hospitals, and clinics). We used a linear scaling index rang-
ing from 0 to 10 (0 representing no impact on community
vulnerability and 10 represented high impact) for each GIS
data layer. Because the input data layers are scaled in this
ordinal fashion, the final vulnerability scores also must be
interpreted as ordinal data.

Hazard-Related Data Sets

Because industrial facilities in Mexico do not publicly dis-
close inventories of their hazardous materials, we required a
surrogate for this information. Bowen et al. (1994) used a
computer model, the INVENT model (Ashact Ltd. & Dagh Wat-
son, Spa., 1989), to generate estimates of hazardous waste
from industrial facilities in Mexico at a regional scale., The
model provides quantitative estimates of hazardous waste
generation based on employment levels and manufactured
products. Data on Nogales, Sonora’s maquiladoras are availa-
ble through EI Directorio Industrial, published by the Colegio
de la Frontera Norte (COLEF, 1990). Street addresses were
used in combination with aerial photographs and field verifi-
cation to digitize a GIS data layer of industrial facilities.

Using employment and product data for each maquila-
dora as input, the INVENT model estimated the hazardous
wastes generated by each maquiladora. Estimates from IN-
VENT were grouped into five hazard categories: (1) fire haz-
ard, (2) sudden release or pressure, (3) reactive, (4) immedi-
ate (acute) health hazards, and (5) delayed (chronic) health
hazards. Because the primary focus of this research is emer-
gency response planning, we selected those facilities shown
to generate wastes in the fire hazard and acute health hazard
categories for further data preparation. Because the INVENT
model is designed for regional or aggregate estimates, as a
conservative measure we dismissed the quantitative output
from the model and used the output only to identify the
presence of a particular hazardous material type at a given
site. Assuming that the amount of hazardous material associ-
ated with each facility is proportional to the size of the facil-
itv, we postulated that larger facilities posed a greater threat
than smaller facilities, Using the number of employees per
facility as a measurement of facility size, we ranked the facil-
ities from lowest to highest, scaling them from 1 to 10. As a
referee pointed out, this assumption may not hold in all
cases. For example, larger companies may have more re-
sources for proper handling of hazardous material and there-
fore pose less risk. Nevertheless, given the lack of primary
data, this seemed more tenable than assuming that all facili-
ties posed equal risk.

The next step involved defining a hazard zone for each
industrial facility. The maximum initial evacuation distance
suggested by the U.S. Department of Transportation for the
most hazardous substances is approximately 500 metres (1).S.
Department of Transportation, 1984). Although some materi-
als require a smaller evacuation radius, we used 500 metres
for all facilities. Because many industrial facilities are within
500 metres of one another, a question arises about how to
score overlapping hazard zones. It is likely that hazard po-
tential is greater in these overlap zones, but it is unclear how
these potentials combine (e.g., additive versus multiplica-
tive). Therefore, we used a conservative approach and desig-
nated the overall hazard potential in the overlap by the
highest score in that zone.

Because topography significantly influences the behavior
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of an accidentally released hazardous material, it was impor-
tant to consider the effect of the transmission of hazardous
materials on potentially vulnerable populations. For exam-
ple, as recently as February 1994 over 4,000 people were
evacuated from Ambos Nogales because evidence of a haz-
ardous chemical was channeled through in the Nogales Wash
(New York Times, 18 February 1994). To represent the influ-
ence of topography on contaminant transmission, we used a
least-cost-path algorithm with a raster data layer in which
cell values represent elevation. Each transmission path was
buffered with a 500-metre radius, creating a transmission
hazard zone. Each zone was scaled from 1 to 10 depending
on its release site characteristics. A similar data set was cre-
ated for sewer transmission,

Human-Related Data Sets

The 1990 U.S. Census and the 1990 Mexican Census pro-
vided population data for Nogales, Arizona and Nogales, So-
nora, respectively. An important objective in vulnerability
analysis is to identify sensitive subpopulations (National Re-
sponse Team, 1987). Two sensitive population data layers
were derived from digital census coverages, population den-
sity under 18 years and population density over 65 years. A
third GIS coverage was created for general population density
(ages over 18 and under 65). By creating a separate GIS data
layer for each of these subpopulations, it is possible to
weight them separately in the composite model. As in the
hazard-related data layers, the population density data layers
were scaled from 0 to 10 based on increasing density, with
unpopulated areas receiving a 0.

Two other human-related data sets were created for the
community vulnerability model. The National Response
Team (1987) recommends including schools, hospitals,
nursing homes, and day care centers as sensitive institu-
tions in a vulnerability analysis. For this study, we were
able to create a GIS coverage of schools (preschools, elemen-
tary schools, and secondary schools), hospitals, and clinics
for both sides of the border. Information for the sensitive in-
stitutions data layer were obtained from the Nogales, Ari-
zona USGS 7.5-minute quadrangle and the Nogales, Sonora
Carta Urbana (published by the Mexican Instituto Nacional
de Estadistica Geografia e Informatica). These institutions
were given a 100-metre buffer, and the data layer was
scaled from 0 to 10. In the final coverage, all areas within
100 metres of a preschool were assigned a score of 10,
while locations proximal to elementary schools, hospitals,
clinics, secondary schools, and prisons received scores of 8,
6, 4, 2, and 1 (respectively).

The final human-related coverage provided a measure of
the economic condition of the human landscape. Montz
(1986) points out that the socio-economic status of an area or
population group is an important factor to consider when
preparing for an emergency situation. Due to poor warning
systems and lack of effective transportation, poorer neighbor-
hoods may be considered areas of higher risk in the event of
a hazardous material accident. Socio-economic data were de-
rived from the U.S. and Mexican censuses. For areas within
the U.S., we used the ntean home value as a surrogate for so-
cio-economic status. Because the Mexican census does not
provide an equivalent to mean home value, an index was de-
rived from data on minimum monthly salary, and home con-
struction (percent with potable water and sewage) was used
for Nogales, Sonora. This index was based on a similar index
for Nogales, Sonora developed by researchers at the Colegio
de la Frontera Norte (COLEF, 1992),
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Model Implementation

Traditionally, a CMA assigns a single weight to each scaled
variable with the requirement that the weights are scaled
such that the overall composite score is a linear combina-
tion: i.e.,

C= EI WX, (1)

Z w; = 1.00 (2)
=1

where C is the composite score for a given spatial unit, x, is
an individual (scaled) variable for that unit (corresponding to
a thematic data layer), w, is the weight assigned to that varia-
ble, and n is the number of variables. However, in the cur-
rent analysis we used a two-level approach which allows for
distinctions among the components that comprise each varia-
ble's weight. This greatly facilitates the structuring of these
weights in the sensitivity analysis discussed below.

The various data sets of the GIS community vulnerability
model comprise two distinct components. On the one hand
are human sensitivity variables, which combined produce a
composite data set of human sensitivity to hazardous materi-
als. On the other hand are hazard potential variables which
combined produce a composite data set of hazard risk. The
combination of these two composite data sets produces a
data set which identifies community vulnerability to hazard-
ous substance releases. Figure 3 illustrates the conceptual
structure of this model.

The distinction between human-related variables and
their composite factor with hazard-related variables and their
composite factor suggests a two-level approach to determin-
ing individual weights. At a macro level, there is a need to
create the most accurate balance in weighting the composite
human-related factors against the hazard-related factors. Con-
versely, at a micro level the weighting combinations must
truthfully represent the importance of each individual varia-
ble in representing the overall human-related and hazard-re-
lated composites. This distinction is meaningful because it
highlights differences in subjectivity and variability that exist
at each level. For example, at the macro-level fire department
personnel may suggest that identifying hazard potential is
the most important factor contributing to community vulner-
ability, Health officials, on the other hand, may suggest that
human populations are more important. In contrast, at the
micro-level subjective judgement may be required for the rel-
ative weighting of surface transmission routes versus sewer
transmission routes in defining the overall hazard-related
composite factor for a given material type,

In order to maintain a conceptual distinction among
macro versus micro-level, we determined the overall vulner-
ability score for a spatial unit according to the following
equation:

C=WH+VZ=(WXwh + VY vZ) (3)

1

with the requirements

2w, = 1.00 (4)
v, = 1.00 (5)

=1
W+ V=100 (6)
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+ +
Composite
Figure 3. Conceptual view of GIS-
based community vulnerability model.

where W and V represent the macro-level weights for hu-
man-related and hazard-related composite factors (respec-
tively), H and Z represent the composite human-related and
hazard-related factors (respectively), w, and v, represent mi-
cro-level weights corresponding to human and hazard-related
variables h, and z, (respectively), n is the number of human-
related variables, and m is the number of hazard-related vari-
ables. A sensitivity analysis explores the subjectivity and
variability in variable weights at both the macro and micro-
levels in a carefully structured manner,

Sensitivity Analysis

Sensitivity analysis is a technique for dealing with subjectiv-
ity and variability in model parameters. A sensitivity analy-
sis assesses the variability of model results to changes in
parameter values (Macgill, 1989). The range of parameter val-
ues used in a sensitivity analysis should represent a range of
logical alternatives. In other words, the purpose of the sensi-
tivity analysis is to test the model for output over a range of
legitimate uncertainty (Minshull, 1975; Macgill, 1989). By
changing the parametric inputs of the model, different yet
equally valid scenarios are created. A GIS’s capability to re-
petitively perform a task with unchanging precision makes it
an effective tool for this type of modeling,

We developed a set of vulnerability scenarios based on
combinations of macro-level and micro-level assumptions re-
garding the relative importance of variables in determining
community vulnerability. At the macro-level is the broad as-
sumption regarding the overall importance of the human
component (human-related variables) versus the hazard com-
ponent (hazard-related variables) of the model; we refer to
these as macro-level strategies. On the other hand, a series of
micro-level strategies vary the importance of human-related
variables relative to other human-related variables, and haz-
ard-related variables relative to other hazard-related varia-
bles.

We explored three macro-level strategies. First is a bal-
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TaBLE 1. SUMMARY OF MACRO STRATEGIES

TaBLE 3. SummaRY OF MICRO STRATEGIES FOR HAZARD COMPONENT

Proportional

Description of Strategy Weighting Coeff.

Proportional Weighting

Macro Human Component proportionally Human: 0.50
Strategy 1 equal to Hazard Component. Hazard: 0.50
Total: 1.00

Macro Human Component favored over Human: 0.75
Strategy I Hazard Component. Hazard: 0.25
Total: 1.00

Macro Hazard Component favored over Human: 0.25
Strategy III  Human Component. Hazard: 0.75
Total: 1.00

TABLE 2. SUMMARY OF MICRO STRATEGIES FOR HumAN COMPONENT
Proportional
Description of Strategy Weighting Coeff.

Micro All Data layers proportion-  Under 18: 0.200
Strategy  ally equal. Over 65: 0.200
Hum-A General population: 0.200
Sensitive institutions: 0.200

Economic condition: 0.200

Total: 1.000

Micro Sensitive populations (under Under 18: 0.273
Strategy 18 & over 65) and institu- Over 65; 0.273
Hum-B tions heavier than general General population:  0.091

Sensitive institutions: 0.273
Economic condition: 0.091
Total: 1.000

population (19-64) and eco-
nomic condition.

anced strategy, where the overall weight of the human-re-
lated variables is proportionally equal to the overall weight
of the hazard-related variables. Second is a macro-strategy
where the overall weight of the human-related variables are
greater than the hazard-related variables. Finally, a third
macro-strategy favors the contribution of the hazard compo-
nent (i.e., the inverse of macro-strategy #2). Table 1 summarizes
the three macro strategies and indicates relative proportions
for the composite human-related and hazard-related factors.
The macro coefficients were chosen with the intention of ap-
proximating legitimate assumptions about community vul-
nerability. Consequently, a 0.00 versus 1.00 macro-strategy is
not represented because community vulnerability is by defi-
nition a function of both components (i.e., human and haz-
ard).

The objective of the micro strategy is to develop weight-
ing coefficients for individual data layers that reflect variabil-
ity relative to other human-related or hazard-related varia-
bles. Two micro strategies are used for the human compo-
nent and three for the hazard component. Micro strategy
Hum-A represents a benchmark strategy where all human-re-
lated variables are weighted proportionally equal to one an-
other. Hum-A may be referred to as a ‘‘general sensitivity”
strategy. Micro strategy Hum-B represents a weighting strat-
egy better suited to an emergency evacuation situation. The
Hum-B micro strategy weights the density under 18, density
over 65, and sensitive institutions data layers heavier than
the general population and economic condition data layers.
These variables are weighted heavier to reflect their relative
importance in determining community vulnerability for an
emergency evacuation situation. Table 2 summarizes the rel-
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Description of Strategy Coeff.
Micro Hazard sites heavier than Hazard sites: 0.500
Strategy  surface and sewer transmis-  Surface transmission: 0.250
Haz-A sion [weighted equally). Sewer transmission; 0.250
Total: 1.000
Micro Hazard sites heavier than Hazard sites: 0.500
Strategy  surface and sewer, and sur-  Surface transmission: 0.333
Haz-B face heavier than sewer. Sewer transmission: 0.167
Total: 1.000
Micro Hazard sites heavier than Hazard sites: 0.500
Strategy surface and sewer, and Surface transmission: 0.167
Haz-C sewer heavier than surface. ~ Sewer transmission: 0.333
Total: 1.000
TaBLE 4.  MAcCrO- AND MICRO-STRATEGY COMEBINATIONS
Macro 1 Macro 11 Macro 111
IHum = 0.50 EHum = 0.75 ZHum = 0.25
ZHaz = 0.50 EXHaz = 0.25 XZHaz = 0.75
Micro Micro
Strategy and  Strategy  Scenario 1 Scenario 7 Scenario 13
Hum-A Haz-A
Micro Micro
Strategy and  Strategy Scenario 2 Scenario 8  Scenario 14
Hum-A Haz-B
Micro Micro
Strategy and  Strategy Scenario 3 Scenario 9 Scenario 15
Hum-A Haz-C
Micro Micro
Strategy and  Strategy Scenario 4  Scenario 10  Scenario 16
Hum-B Haz-A
Micro Micro
Strategy and  Strategy Scenario 5  Scenario 11  Scenario 17
Hum-B Haz-B
Micro Micro
Strategy and  Strategy Scenario 6  Scenario 12  Scenario 18
Hum-B Haz-C

ative proportions for human-related variables in each micro
strategy.

All three of the hazard-related micro-strategies consider
the hazard sites data layer to be relatively more important
than transmission pathways. The rationale is an assumption
of greater hazard risk near the site of a hazardous releas=
than along its dispersion path(s). In the Haz-A micro strat-
egy, the hazard sites data layer is weighted twice as heavy as
the two transmission paths (surface and sewer), which are
weighted equally. The Haz-B micro strategy weights surface
transmission heavier than sewer transmission, and Haz-C
weights sewer transmission heavier than surface transmis-
sion. Table 3 summarizes the relative proportions for hazard-
related variables in each micro-level strategy.

Community vulnerability scenarios are generated by
combining macro and micro strategies. For each simulation
“experiment” or scenario, one macro strategy is combined
with one human micro strategy and one hazard micro strat-
egy. With three macro strategies, two human micro strategies
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and three hazard micro strategies, 18 possible combinations,
or vulnerability scenarios, exist (see Table 4).

Given the relative weights corresponding to a macro-
level and micro-level combination, the next step requires cal-
culating the appropriate weights assigned to each data layer
for every scenario. To calculate the actual weights for the
data layers, the human and hazard weighting coefficients for
each macro strategy are multiplied by the respective weight-
ing coefficients of the six micro strategy combinations. The
actual weights for the data layers are, in effect, a proportion
of a proportion. This is more clearly indicated by examining
the computational formulas for constructing each variable’s
“synthetic weight” in a given scenario: i.e.,

Wt=Ww, (7)
Vi=Vy, (8)

where Wand V are the macro-level weights for the human-
related and hazard-related composite factors (Table 1) and w,
and v, are the micro-level weights for human-related and
hazard-related variables (Tables 2 and 3, respectively).

Table 5 provides the resulting synthetic variable weights
wiand v} for each vulnerability scenario. A particular vulner-
ability scenario is identified combining a human-related mi-
cro-strategy with a hazard-related micro-strategy and then
selecting the appropriate macro-level weights for each micro-
level strategy. For example, the highlighted boxes in Table 5
correspond to Scenario 10: this scenario combines the macro-
strategies of Hum-B with Haz-A and gives the human-related
factors an overall weight of 0.75 and the hazard-related factors
an overall weight of 0.25. In contrast, Scenario 16 (which has
the same micro-level strategies but the complementary macro-
level weighting) can be identified by simultaneously choos-
ing the box to the right of the upper highlighted box and the
box to the left of the lower highlighted box.

We implemented the community vulnerability model us-
ing ARC/INFO GIS software. We ran the model using an arc
macro language (AML)-based macro that weights the scaled
data layers, adds them together, and then reclassifies the GIS
composite into five ordinal levels of community vulnerabil-
ity. By simply changing the weights assigned to each data
layer in the AML, it is possible to use the same AML for all 18
vulnerability scenarios.

Results

Figures 4a, 4b, 4c, and 4d illustrate the output from the com-
munity vulnerability model for four scenarios. Figures 4a, 4b,
and 4c contrast the results from the three macro-strategies
(Human = Hazard, Human > Hazard, and Human < Hazard,
respectively) while holding the micro-strategies (Hum-A and
Haz-A) constant. Figure 4d illustrates the effect of a change
in micro-strategy, specifically, Hum-B in place of Hum-A un-
der the same macro-strategy illustrated in Figure 4a (Human
= Hazard). As indicated previously, the resulting composite
vulnerability scores are ordinal data classified into “very
low,” “low,” “medium,” “high,” and “very high" vulnerabil-
ity zones.

There are several noteworthy features of Figures 4a
through 4d. Note that the different thematic data layers enter
into the final composite vulnerability layer depending on the
relative weights in each scenario. For example, Figure 4a in-
dicates a spatial pattern of vulnerability that reflects an amal-
gamation of the buffers around hazard sites, transmission
pathways, and the urban settlement pattern. However, Figure
4b illustrates that the greater weight of the human-related
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TagLe 5.  CALCULATION OF SCENARIO COEFFICIENTS (HIGHLIGHTED EXAMPLE OF
Scenario #10)
Macro Strategies

I Il & I1I I & 11
Macro Marco Macro

Micro Wt. Wt. Wt.

Micro Wt. Coeff. Coeff. Coeff.
Strategy  Data Layer Coeff. 0.50 0.75 0.25
Under 18 0.200 0.100 0.150 0.050

Over 65 0.200 0.100 0.150 0.050

Hum-A  Gen. pop. 0.200 0.100 0.150 0.050
Sen. inst. 0.200 0.100 0.150 0.050

Econ. con. 0.200 0.100 0.150 0.050

Under 18 0.273 0.137 0.205 0.068

Qver 65 0.273 0.137 0.205 0.060

Hum-B Gen. pop. 0.068 0.046 0.068 0.023
Sen. inst. 0.273 0.137 0.205 0.068

Econ. con. 0.068 0.046 0.068 0.023

Sites 0.500 0.250 0.375 0.125

Haz-A Surface 0.250 0.125 0.188 0.063
Sewer 0.250 0.125 0.188 0.063

Sites 0.500 0.250 0.375 0.125

Haz-B Surface 0.333 0.167 0.250 0.083
Sewer 0.167 0.084 0.125 0.042

Site 0.500 0.250 0.375 0.125

Haz-C Surface 0.333 0.084 0.125 0.042
Sewer 0.167 0.167 0.250 0.083

variables generates a spatial vulnerability pattern that
strongly reflects urban development. Conversely, when haz-
ard-related variables are given greater emphasis (Figure 4c),
the composite vulnerability pattern mostly reflects site buf-
fers and transmission pathways. A related observation is that
differences due to changes in macro-strategy are much
greater than differences due to changes in micro-strategy:
note the minor changes in the vulnerability pattern between
Figure 4a and Figure 4d.

While visually assessing output from the model is help-
ful in providing an initial impression of the model’s behav-
ior, an important advantage of using a GIS is its utility as a
quantitative tool. Assessing the sensitivity of the model’s
output can be achieved by examining its robustness, or the
variability of the model results given changes in data inputs
(Macgill, 1989). We assessed the community vulnerability
model’s robustness by quantitatively comparing the 18 vul-
nerability scenarios. Particularly important to emergency
evacuation planning are quantified measures of (1) the num-
ber of people in highly vulnerable zones and (2) the loca-
tions of highly vulnerable zones.

Estimates of the people most vulnerable to a hazardous
substance release is important for emergency planning (Na-
tional Response Team, 1987). To analyze the 18 vulnerability
scenarios for quantitative differences, we calculated the num-
ber of people (all age groups) within each vulnerability zone.
Figure 5 shows a plot of scenarios 1, 7, and 13 (correspond-
ing to Figures 4a, 4b, and 4c). The large fluctuation in calcu-
lated totals for each zone provides a quantitative account of
the significant visual differences in Figures 4a, 4b, and 4c.
Figure 6 is a plot of scenarios 1 and 4 (corresponding to Fig-
ures 4a and 4d), representing a change in the human micro
strategy weighting. Figure 7 complements these results by
providing a plot of scenarios 1 and 2, representing a change
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Figure 4. (a) Scenario 1 results (Human = Hazard; Hum-A and Haz-A). (b) Scenario 7 results (Human > Hazard; Hum-A and
Haz-A). (c) Scenario 13 results (Human < Hazard; Hum-A and Haz A). (d) Scenario 4 results (Human = Hazard; Hum-B and
Haz-A).
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in hazard micro strategy weighting (Haz-B in place of Haz-A
under the Human = Hazard macro-strategy).

The influence of macro- and micro-strategy weighting,
although apparent through the visual examination of the vul-
nerability scenarios, is more evident in the plots illustrated
in Figures 5, 6, and 7. The amount of variation between
these scenarios is consistent with the pattern assessed
through the visual examination of the vulnerability scenar-
ios. This quantitative analysis of differences among vulnera-
bility scenarios confirms that changes in macro strategy influ-
ence model output the most, followed by changes in human
micro strategy and changes in hazard micro strategy.

The robustness of the model can be assessed more com-
pletely by comparing all 18 vulnerability plots. Figure 8
shows the 18 vulnerability scenarios plotted simultaneously.
Note that the greatest fluctuation of population estimates is
for the very low, low, and medium vulnerability zones. Con-
versely, population estimates for the high and very high
zones 4 and 5 are consistent across all vulnerability scenar-
ios. This suggests that the GIS-based community vulnerability
model is robust in predicting estimates of high and very high
vulnerability, while it is less robust in predicting very low,
low, and medium vulnerability. This result is encouraging:
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estimates for the highest vulnerability zones are more impor-
tant for evacuation planning and other analysis needs than
estimates for the medium to low vulnerability zones.
Descriptive statistics of the population estimates across
scenarios provides a clearer assessment of model robustness.
Table 6 provides the mean, standard deviation, and coeffi-
cient of relative variation (CRV) for the population estimates
across vulnerability scenarios. Table 6 provides these statisti-
cal measures for aggregate population estimates as well as
the critical age cohorts of less than 18 years old and over 65
years old. Note that, for the aggregate population estimates,
the CRv for vulnerability zones 1 and 2 are higher than for
zones 4 and 5 (57 percent and 45 percent compared to 34
percent and 31 percent). Somewhat surprising is the low CRV
for the medium vulnerable zone. This indicates that the
model is most robust in predicting medium vulnerability yet
still resilient in predicting high and very high vulnerability.
A similar pattern is evident for the population estimates of
the sensitive age groups (under 18 and over 65). With the
over 65 group, however, notice that the most robust results
are the medium and very high categories (with CRVs of 7 per-
cent and 18 percent). This comparison of the CRVs confirms
earlier conclusions that population estimates in the high and
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very high categories are quite robust, especially when look-
ing at the entire population (i.e., all age groups).

Another important aspect of analyzing the model output
is determining the reliability of the population point esti-
mates (i.e., means), because these values are often used for
analysis purposes. Table 7 provides 95 percent confidence
intervals for the population estimates in Table 6. An esti-
mated 3,706 to 4,193 people are within the very high vulner-
able zones of the Ambos Nogales area. Within those highly
vulnerable zones, between 1,638 and 1,860 are under the age
of 18, while an estimated 88 to 95 are over 65 years old. The
“tightness’ of these intervals indicates that estimates from
the community vulnerability model are reliable across vari-
ous analysis needs.

Although estimating the number of people within vul-
nerability zones is important to emergency planning, deter-
mining the Jocations of high and very high vulnerability
zones is also crucial (National Response Team, 1987). A lo-
cational analysis of these zones will suggest the geographic
areas in which efforts such as emergency response should be
concentrated. Figure 9 illustrates the classified locations
based on the frequency of appearance in the high or very
high vulnerability zones across the 18 community vulnerabil-
ity scenarios. The frequency of predictions for each cell is
indicated in the map legend. These locations are based on a
map resolution of 20 metres?, which is the resolution of the
coarsest data layer in the analysis. Figure 9 illustrates three
frequency categories: cells where fewer than 6 of the 18 vul-
nerability scenarios predicted high or very high vulnerabil-
ity, cells where 6 to 12 scenarios predicted high or very high
vulnerability, and cells where greater that 12 of the 18 sce-
narios predicted high or very high vulnerability.

While the prediction of high or very high vulnerability
may be important for a given postulated scenario, locations
that consistently exhibit high vulnerability across scenarios
may merit special consideration in emergency response plan-
ning. For example, a liberal assessment of community vul-
nerability would consider all cells predicted as highly vul-
nerable or very highly vulnerable in an emergency
preparedness plan. That is, even if only one scenario out of
18 predicted an area to be vulnerable, it should be consid-
ered in the plan. A more conservative approach looks at
those areas where more scenarios predicted vulnerability
(e.g., more than 12). That is, given the range of assumptions
from all 18 scenarios, these areas are most likely to be of
concern to emergency planners.

Once the most vulnerable locations are identified, the
GIS data sets can be used for emergency planning implemen-
tation. Each vulnerable zone, or “top priority planning area,”
can be analyzed separately. Information on population char-
acteristics and sensitive institutions can be calculated easily
using the GIS. For example, Figure 10 illustrates nine “top
priority planning areas” based on frequency of appearance in
the very high and high vulnerability zones while Table 8 il-
lustrates the characteristic of each zone. In general, these
zones are densely populated, have significant numbers of
children, and contain sensitive institutions. One area (Area
B) has a substantial number of elderly population and two
other areas (Area D and Area E) contain a number of elemen-
tary schools. This information is useful to planners, as it
identifies which parts of the city are in most critical need of
attention. Once identified, the top priority zones may be
used with a GIS data set of street networks to determine opti-
mal emergency evacuation routes, or to determine the opti-
mum location for proposed emergency response facilities.
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TABLE 6. VARIATION ACROSS 18 VULNERABILITY SCENARIOS

Population: All Ages

Vulnerable Zone low high mean s.d. CRV
(1) Very Low 8,253 60,896 35,599 20,507 57%
(2) Low 14,346 58,684 33,360 15,019 45%
(3) Medium 31,683 54,016 38,430 6,676  17%
(4) High 6,091 17,213 11417 3,889  34%
(5) Very High 1,547 5,433 3,949 1,242 31%
Population Under 18 Years
Vulnerable Zone low high mean s.d. CRV
(1) Very Low 3,197 27,239 15,471 9,379 60%
(2) Low 6,225 25,872 14,621 6,822 47%
(3) Medium 12,349 22,530 15,351 3,111 20%
(4) High 2,403 7,158 4,792 1,699 35%
(5) Very High 649 2,392 1,749 567  32%
Population Over 65 Years
Vulnerable Zone low high mean s.d. CRV
(1) Very Low 463 2,027 1,332 557 42%
(2) Low 511 1,846 1,079 474 44%
(3) Medium 1,760 2,224 1,966 129 7%
(4) High 169 641 389 172 44%
(5) Very High 61 117 92 17 18%

TaBLe 7. ESTIMATED PoPULATIONS AT 95 PERCENT CONFIDENCE LEVEL

Population: All Ages

Vulnerability Estimated
Zone mean s.e. Range
(1) Very Low 35,599 2050 26,127-45,071
(2) Low 33,360 1501 26,422-40,298
(3) Medium 38,430 667 36,430-41,153
(4) High 11,417 388 9,622-13,212
(5) Very High 3,949 124 3,706-4,193
Population Under 18 Yrs
Vulnerability Estimated
Zone mean 5.8 Range
(1) Very Low 15,471 937 13,633-17,310
(2) Low 14,621 682 13,284-15,958
(3) Medium 15,351 311 14,741-15,961
(4) High 4,792 169 4,459-5,125
(5) Very High 1,749 56 1,638-1,860
Population Over 65 Yrs
Vulnerability Estimated
Zone mean s.e, Range
(1) Very Low 1,332 55 1,223-1,441
(2) Low 1,079 47 986—-1,172
(3) Medium 1,966 12 1,940-1,991
(4) High 389 17 356—423
(5) Very High 92 1 88-95

Summary and Conclusion

Community vulnerability to industrial contaminants at the
Mexico/U.S. border is a serious issue concerning many peo-
ple in both countries. In this paper, we demonstrate the use
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Figure 9. Frequency of predicted ‘‘very high'' or “‘high"’
vulnerability by location.

of GIS to assess community vulnerability analysis in a trans-
border situation. The spatial arrangement and intensity of the
hazards and the demographics of the human landscape deter-
mine community vulnerability. This can be affected by the
complexities of the physical landscape. This paper demon-
strates the effectiveness of a GIS for modeling the interrela-
tionships of these factors.

Another contribution is using a GIS to develop a struc-
tured and systematic method for handling the subjectiveness
inherent in community vulnerability analysis. Subjective
decisions are required to determine the most appropriate
weighting strategy used in the community vulnerability
model. At a macro level are assumptions about the relative
importance of human-related variables versus hazard-related
variables. Assumptions at the micro level involve the relative
importance of each variable within the human or hazard
component of the model. A GIS facilitates the easy re-weight-
ing and re-assessment of model results subject to changes in
these subjective weights. Because subjectivity is inherent in
many planning activities, a GIS is more appropriate than
strictly quantitative analyses. A structural framework using
scaling indices and variable weighting strategies helps
“bridge the gap” between complete subjectivity and objective
analysis. As demonstrated, planners and policy makers can
concentrate on locations that appear robust across many dif-
ferent modeling scenarios.

Although focused on technical aspects of GIS-based com-
munity vulnerability modeling, this research also highlighted
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practical issues associated with trans-border studies. In par-
ticular, differences in data availability, quality, and spatial
resolution between the two countries affected model results.
This problem is especially acute given the potentially infinite
resolution of a GIS.

In theory, it is reasonable to build a model that treats
Ambos Nogales as one city. The international border divides
a continuous landscape of human beings, all of whom may
be equally harmed by industrial contamination. In practice,
however, data of equal quality for both sides of the border
were difficult, and in some cases impossible, to obtain. Haz-
ardous chemical inventories, for example, required by law in
the United States and disclosed to the public, are not pub-
licly available in Mexico. In addition, differences in the spa-
tial resolution of available socioeconomic data existed be-
tween the two countries. More specifically, census data from
Mexico had a much coarser spatial resolution than census
data from the United States. This undoubtably affected
model results: note the change in spatial resolution of the
vulnerability pattern across the border in Figures 4a through
4d. The reliability of a GIS model such as this could be
greatly improved if hazardous material inventories were
available and if spatial data reporting between the two coun-
tries were standardized.

Finally, a topic for further investigation is the reliability
of the GIS community vulnerability model in different physi-
cal and urban settings. Ambos Nogales was particularly well-
suited for this analysis due to the channelizing effect of its
physical morphology, its compact and dense urban form, and

,

Figure 10. Top priority planning areas.
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TaBLE 8. CHARACTERISTICS OF TOP PRIORITY PLANNING AREAS

Nogales
Sensi- Industry Wash
Total % % tive within within
popula-  under over institu- 500 500
Area tion 18 65 tions meters?  meters?
A 126 30 <1 E (1) No Yes
B 226 34 17 E (2) No Yes
C 106 36 <1 No Yes
D 1042 40 <1 E (4); No Yes
P (1)
E 938 38 <1 E (3) No Yes
F 5733 44 <1 Yes No
G 1629 44 <1 E (1) No Yes
H 147 31 <1 E (2) No Yes
| 4364 44 <1 Yes Yes

Notes: Number in parenthesis illustrate the number of institutions; E
= elementary school, P = preschool.

the proximity among maquiladoras and populations and in-
stitutions at risk. Further research should assess this model-
ing strategy in other trans-border and non-border settings
with potential vulnerability to hazardous material releases.
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