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Relative Radiometfic Normalization of
Landsat Multispectral Scanner (MSS) Data

Using an Automatic Scattergram-
Gontrolled Regression

Ghristopher D. Elvidge, Ding Yuan, Ridgeway D. Weerackoon, and Ross S. Lunetta

Abstract
A relative rcdiometric normalization /RRN) based on an Auto-
matic Scattergram-Controlled Regression (ASCR) has been de-
veloped to create radiometrically comparable multispectral
data sets, compensating for radiometric divergence present
in images acquired under different illumination, atmos-
pheric, or sensor conditions. The ascn procedure locates the
statistical centers for stable land and stable water data clus-
ters using the near-infrared date L vercus date 2 scattergroms
to establish an initial regression |ine. Thresholds are placed
about the initial line to select a "no-change" pixel set, which
is used in the regression analysis of each band to derive
gains and off sets for the radiometric normalization. The
ASCR procedure was designed for preparing large numbers of
multitemporal Landsat data sets for digital detection of land-
cover cnange.

lntroduction
The scientific requirement for increased understanding of hu-
man impacts on lerrestrial carbon stocks and biodiveriity has
created ienewed interest in the use of Landsat Multispeitral
Scanner (MSS) data for the analysis of land-cover change (Lu-
netta et a1., 1993). A series of five Landsat MSS sensors were
used to acquire Earth observations over a 2l-year period
(1972-1,592), forming the longest available set of repetitive
satellite observations of the Earth's surface.

Land-cover changes generally alter the reflectance of the
land surface, which can be detected using multitemporal
Landsat data sets. The analysis of land-cover change using
multitemporal Landsat data is complicated by the presence
of substantial radiometric differences between Landsat scenes
(Markham and Barker, t9B7). Because Landsat Ivtss had no
on-board calibration system, there are uncorrected radiomet-
ric differences between data acquired by different sensors
(e.g., Landsat 1 versus Landsat s). There was also drift in the
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radiometric oerformance of the individual sensors over time.
In addition, lhere were changes in the ground processing
orocedures between ']-,972 and 1992 which resulted in radio-
metric differences between scenes present in the archives.
Variations in solar illumination conditions, atmospheric scat-
tering, and atmospheric absorption result in differences in
the at-sensor radiance values that are unrelated to the reflec-
tance of the land surface.

Given sufficient time and resources, it would be possible
to model or calibrate each of these effects and generate mul-
tispectral datasets in physical measutement units {e.g.,
ground radiance or ground reflectance) for use in the analy-
sis of land-cover change. However, for large scale proiects
where change detection products are to be generated for the
hundreds of scenes required to cover a continental size area,
it would be advantageous to use an automated approach to
perform a relative radiometric normalization of scenes in a
single set of steps.

Relative radiometric normalizations use one image as a
reference and adiust the radiometric properties of subject im-
age(s) to match the reference (Hall ef o1., 1991). One advan-
tage of these procedures is that the original radiometric
condition of the reference image is retained, obviating the
computational effort required to convert each image to units
of radiance or reflectance. In this paper we describe an Auto-
matic Scattergram-Controlled Regression (ASCR) method that
we have developed for performing relative radiometric nor-
malization on large numbers of Landsat data sets.

Background
Relative radiometric normalization techniques are based on
the linear comparison of the statistical characteristics of two
images or of selected spectral control subsets from two im-
ages. These empirical methods have a similar linear transfor-
mation form -*o : orxr + b*, where xu is the kth band of the
subject image X *1 is the kth band of resulting normalized
image, and ao and b* are the gain and offset used to achieve
normalization of band k in image X.

Regression-based approaches to relative radiometric nor-
malization have been recognized for many years (Jenson,
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1983). Regression techniques are based on the observation
that within a given spectral band there is an overall linear
relationship between the digital number (DN) values for two
images acquired of the same ground area. In image pairs
where such linearity exists, regression analysis can be used
to derive a gain and offset for radiometrically normalizing
the subject image to match the reference image. In the Sim-
ple Regression (SR) normalization, the full contents of scenes
are analyzed using a linear regression (fenson, 1983). Suc-
cessful application of the sR normalization requires image
pairs that are devoid of statistical ouliers which are present
in only one of the images (e.g., clouds). In addition, the sR
normalization should only be applied to images in which the
vegetation is at a comparable growth stage (phenology).

The SR method works well where there are no maior
clouds or other phenomena present at one date but absent at
the other. Other-procedures have been developed to select
subsets of the image contents, believed to be spectrally sta-
ble, for use in radiometric normalization procedures. Schott
et a1. (1988) developed a Pseudo-lnvariani Feature (prr')
method which applies a threshold to the ratio of the near-in-
frared/red spectral bands to locate a set of land surface pix-
els in each image with low green vegetation cover. In the pm
method, the gains and offsets that are applied to the subject
image are determined based on the linear shift required to
make the mean and standard deviation of the subj-ect pixel
set match the reference image pixel set. Hall ef a1. (f SOf ) de-
vised an approach which uses dark and bright pixel sets se-
Iected independently foom each image based on a greenness-
brightness transformation (Kauth and Thomas, 1926). The
dark set typically consists of deep water pixels and thedark set typically consists of deep water pixels and the
bright set contains land surface pixels containing bright ma-
terials (e.g., soils or concretej and little green vegetation. The
mean values for the dark and bright pixel sets in each image
are used to define a gain and offset for each spectral band,
which is then applied to the full subject scene. It should be
noted that, in both of these procedures (Schott et al., 1,gBB;
Hall et o1., 1SS1), the subiect and reference pixel sets are not
required to be colocated within the scene.

Yuan and Elvidge (r993) developed a Scattergram-Con-
trolled Regression (SCR) for use in the digital detection of
land-cover change using Landsat MSS data. Instead of using
the whole image to derive gains and offsets as in the SR
method, the SCR approach uses pixels from a region of "no
change" identified using scattergrams. By identifying a "no-
change" pixel set, it is possible to avoid the use of pixels
containing cloud, cloud-shadow, and land-cover change in
the regression analysis. The SCR procedure assumes that the
majority of pixels in a scene have the same land cover and
phenological (vegetation growth) stage for both image dates.

The following text describes our current method for an Auto-
mated Scattergram-Controlled Regression (ASCR).

Study Arca
We selected Landsat MSS scenes from the Washington,
D.C. ,  area for  25 June 1990 (Plate 1a)  and B Julv  1923
(Plate 1b) for our research. The data sets were preproc-
essed by the U.S. Geological Survey ERoS Data Center for
the U.S. EPA North American Landscape Characterization
(NALC) project. The NALC preprocessing included geometric
registration and resampling the data to a common 60-metre
grid in a Universal Transverse Mercator proiection (Lu-
ne t ta  e /  o1 . .  1993 ) .

Our initial examination of the two scenes indicated that
they are very different from each other radiometrically even
though the images were processed identically. The 1990 data
were contrast stretched, then the 1gg0 contrast stretch was
applied to the 1973 image. Relative to the 1990 image, the
1973 image has a duller appearance, with less contrast than
the 1990 image. The 1973 image has a bluish tinge to it, as if
there were more haze present. It is not possible to say from
this observation alone that the 1973 dath had more haze or
not, because we are dealine with uncalibrated data, One area
of light cirrus cloud co.'e. iu.r be observed slightly to the left
of the 1973 image center. The 1990 image containi substan-
tial cloud cover and associated shadow.

Scattergrams
The description of the ASCR procedures will be with refer-
ence to the scattergrams presented in Figure 1 and the histo-
grams presented in Figure 2. Figure 1 shows the 1gg0 versus
1973 full-scene scattergrams for each spectral band. Large
numbers of pixels fall onto the same locations in the densest
regions of the scattergrams; therefore, an exponential stretch
was applied to visually enhance the relative magnitude of
pixel concentrations for elements of the scattergram matrix.
The regions having the densest numbers of pixels are shown
in white, surrounded by zones of gray and black, indicating
declining numbers of pixels. Areas outside the data clusterl
having no pixels present, are white.

Figure 1a shows the scattergram for Band t (0,5 to 0.6
pm) data from 1973 and 1990. The scattergram shows a sin-
gle dense data cluster containing land and water pixels. The
1990 cloud and cloud-contaminated pixels have anomalouslv
higher 1990 DN values and are pulled away from the land- 

'

water data cluster along the 1990 data axis. There are a large
number of 1g9o cloud pixels with saturated oN values in 

-

Band 1 (DN : 122). The fact that the 1973 image had more
haz-e or atmospheric scattering present than the 1990 image
is illustrated by the larger offset from the origin to the dense
land-water data cluster along the 1923 DN axis relative to the
1990 DN axis. This relationship is repeated to a Iesser degree
in Bands 2 and 3.

Figure 1b shows Band 2 (0.6 to 0.2 pm) data for 1973
versus 1990. The Band 2 and Band 1 scattersrams show the
same basic features. The lower end of the delnse data cloud
for Band 2 is closer to the origin than in Band 1 because
there is less atmospheric scattering in Band 2 than in Band
1

Figure 1c for Band 3 (0.2 to 0.8 pm) and Figure 1d for
Band + (0.8 to 1.1 pm) show similar features. In the near-in-
frared, water is much darker than the land surface, resulting
in two dense data clusters: a compact data cluster for watei
near the origin, and an elliptical data cluster for land-surface
pixels near the center of the scattergram. Clusters of 1990

The "no-change" pi
scattersrams of the :

pixels were manually selected based on
scattergrams of the near-infrared data from the subiect versus
the reference images. The near-infrared data were used be-
cause at these wavelengths the spectral clusters for water and
Iand are clearly separated, and a distinct axis of "no change"
can be observed. An analyst examines the scattergram and
se lec ts  and in i t ia l  l i ne  o f  " 'no  change. "  An enve lJpe o f  ten
DNs above and below the initial line defined the 'no-change"

pixels, and these pixels were then used to perform the re-
gression to derive the normalization gain and offset for each
spectral band. The disadvantage of the SCR method is that it
requires a visual determination of the initial position of the
axis of no change.

In this paper we present improvements made to the SCR
method in order to increase automation of the nrocedure.
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(c)

Plate 1. False color images of Landsat MSS Path 15 Row 33 of the Washington, D.C., area. The images were formed using
bands 1, 2, and 4 as blue, green, and red. The same contrast stretch was applied to each image. (a) 25 June 1990 image
with linear contrast stretch. (b) 8 July 1973 image with the same contrast stretch as (a). (c) ASCR normalized 8 July 1973
image with the same contrast stretch as (a).

cloud and cloud-contaminated pixels rise along the 1990 axis
from both the water- and land-surface dense data clusters. In
addition, there are data lobes protruding below the land data
clusters, resulting from shadow and shadow-contaminated
pixels present in the 1990 dataset.

PE&RS

Methods
The ASCR procedure involves the identification of a "no-
change" pixel set, taken to be those pixels occupying the
core of the water and land data clusters observable in the
near-infrared (Bands 3 and 4) scattergrams. Regression is
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cal and horizontal locations of the maxima for Band 4. These
locations are taken as the centers for the land and water data
clusters.

This procedure is presented graphically in Figure 2 us-
ing a histogram indicating the maximum number of image I
pixels occupying a single matrix cell for a given image X oN
value. For each band, three local maxima can be observed:
(1) at the low 1990 DN values there is a local maxima for
those pixels which were water on both dates; (2) at the mid-
dle of the histogram there is a second local maxima, repre-
senting the center of the land-surface data cluster on the
scattergram; and (3) a third local maxima, representing 1990
cloud pixels, is located at the high 1gg0 DN end of the histo-
gram. Many of these cloud pixels have saturated DN counts
of 1,22. The 1973 DN values for the scattergram cells selected
for the histogram are indicated with "+" marks. The scatter-
gram cells producing the local maxima for water and land
are indicated with labels.

then used to derive the gains and offsets used to radiometri-
cally normalize the subject image (Xl to match the reference
image (Iz).

Four procedures are used in ASCR normalization:
Procedure 1: Compute scattergrams of image X and Y for

the near-infrared bands (Figures 1c and 1dl. For Landsat
MSS, the image X versus image Y scattergram for a band is a
1,27 by 1,27 matrix. The matrix is filled with the numbers of
pixels having the indicated image X versus image Y digital
number (DN) values. We refer to the Band 3 scattergram as F.
and the Band 4 scattergram as Fr.

Procedurc 2: A search is conducted to locate the centers
of the water- and land-surface data clusters based on the Io-
cal maxima for the near-infrared band scattergrams (i.e., the
scattergram cells having the maximum number of water and
land pixels). The water data-cluster center is located at low
DN values near the lower left corner of the scattergrams, not
far from the origin. The center of the land-surface data clus-
ter is located near the center of the scattergram. To locate the
land and water data-cluster center points, we search Fr,,,-*
:  F. ( i ; .o .3.  i , - , -3) .  F," - " ,  :  F. ( i , * " " , .  i , ** , ) ,  Fo,_*  :
Fo(ir-",4, i,,."-4). and Fn*".* : F, (i"-*4, i.._*4); where i : row
locations in the scattergram; i : column locations in the
scattergram: Frr_u,, Fru-u*, Fn,_,*, and Fn,_u* are the corre-
sponding lower [water) maxima and upper fiandJ maxirsponding lowei
F" and F"; (i,-.,.

rax t  
'4 lnax '  u 'u  r  4umax uru

) maxima and upper fiandJ maxima of
. and Fn; (i,-*r, i,-*.) and (i"*..., j"-"*.) u." the corresponding

vertical and horizontal locations of the maxima for Band 3;
and (i,-o*n, j,",.".) and (i"",,"*, j"-.*,) are the corresponding verti-
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Figure 1. Band-by-band full scene scattergrams for the
1990 versus 1973 Landsat MSs data. (a) Scattergram of
the 1990 Band 1 versus 1973 Band 1. (b) Scattergram
of the 1990 Band 2 versus 1973 Band 2. (c) Scatter-
gram of 1990 Band 3 versus 1973 Band 3. (d) Scatter-
gram of 1990 Band 4 versus L973 Band 4.
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Figure 2. Histograms used to select the local maxima of
the Band 3 and 4 scattergrams. (a) Local maxima distri-
bution for Band 3. (b) Local maxima distribution for Band
4 .
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Tnarr 1. THe No-Cnnnce Recrolr rrrr tHe ExprRrverut Wes DflenMtNeo sv
rre InteRsEcr or Bnno 3 nuo Bnno 4 No-Cnnncr Recrons. Tne NoCnnnce

Recton ron n PnRlcuLln BeNo ls Dertnvnreo gv Ltr.txrritc rgE CerurER or
WATER AND CerurER or LAND FoR THAT BAND nruo Expntonc PERpenorcurnnrv
ro rHe Warpn-Lrro Lrne up ro Ter Drcrrlr NUMBERs (HPW) oN ErrHEn Sroe

OF THE L INE.

TnerE 3. Covplnrsort oF rHE lNrrAL EsTMATtoNS nto Ftlul EsrtMATtoNS FoR
THE NoRMALtzATToN LTNES roR rHe ExpeRtvtENTAL IMAGE DATA. THE RMSs ARE
THE Roor Menru Seulnes FoR THE NGCHANGE REGtoN FoR CoRRESPoNDING

NORMALIZATION LINES.

Initial estimates
fTom scattergrams

Refined estimates
through regression

Positions
(1990 ,  1973 )

Center of
Water

Center of
Land HPW HVW Band a*o b.o RMSI bL RMSK

16 .48
15 .94

Once the above centers are determined, coefficients (a :
gain, b = offset) are computed for an initial "no-change"
axes for Band 3 and Band 4 from the positions of the land
and water data-cluster centers. That i i , Iet

o. , ,=4
I 'maxa 

-  
l lmax:

A  - i  * "
u J u  -  

l l m n 3  u 3 o  l l m d x l

u" ='l*":I!4
Iumaxl -  l lmax+

bn" : l,*.*n-Qsn 
* it-u*+

The no-change region is defined based on HpwNC, the esti-
mated half perpendicular width of the no-change region for
the Band 3 and Band 4 scattergrams (Figure 1). In computa-
tion, only the half vertical width HVwNC of the no-change re-
gion is used. HPWNC and HVwNC have the following relation-
snrp:

H V W N C : \ 1 - 0 6 ( u e w r , . 1

where oo is the slope of the initially estimated axis for a
given band. For our initial effort, an HPWN. value of 10 digi-
tal numbers has been used. We are currently experimenting
with an automated selection of HVWNC based on the width of
the land and water data clusters on Figure 2 at a fixed per-
centage (e.g,, 50 percent) of the peak height.

The NC (no-changeJ pixel set is then selected as

NC : (x,y) ', lyr-b.n-ar" x. l ( HVWNC. and

I yn- bo,- an",xn | < HVW*..

Procedure 3: Compute regression lines for all four bands.
Only pixels falling into region NC, determined based on the
Band 3 and Band 4 scattergrams, are used for regression (Fig-
ure 1), The regression coefficients for band k are computed
from a least-squares equation: i.e.,

TABLE 2. Tte Srnrsrrcs or rHe NoCHnruce Recror.r FoR THE ExpERIN4ENTAL

Sublect Image
(1s73)

Reference Image
t1ee0)

Band Mean Variance Mean Variance Covariance

0 .7965  -2 .8 ' t 61  5 .4460
0.9597 -2.2535 6.0677

4.4048 6.11.74 1. .2551. -4.5246 5.957s
-  1 .2069  6 .7622  7 .21 .53  -0 .3041  6 .7257

1
2
3
4

1 0
1 0

Band g

Band a
( 1 0 , 1 1 J

l  J , c ,

( 65 ,53 )

l l  / , o J )
1 .3095
1 .241 .4

't

2
J

4

33.32
23.29
45.61
48.98

2 3 . O 2
43.70

295.42
5 1 6 . 8 7

2 3 . 7 2
20.10
54.74
59.22

44 .26
105 .34
531..42
808.60

18.34
41.94

382 .58
628.1.4

A- = p (Yo-br-aoxr) '  :  min

where NC is the number of "no-change" pixels.
To solve this equation, one obtains the rectification coef-

ficients

ok : s!"''J,*/s{.).,* (1)

b* :  71"r - oktt" ' )  (2)

where xf"'t and;4"t are the means of the no-change region on
two dates, s["),* is the sample vatiance of xo, and s$").,. is the
sample covariance of x*, and yo in the no-change region. That
is ,

1 5
* t , " , : TNc t  3 " ,

4' '  :  * i [ "

s,"'li*r : 
m, p (x, - 4.',,),

s{""lr"r : 
ma p (x. - x[,.,) (y* - X"))

Procedure 4: Normalize image X using coefficients computed
above.  That  i s ,  fo r  k  :  1 ,2 ,3 ,4 ,  compute

* r : a * x . - F b *

Results
The location for the center of water is (10,1L) for Band 3 and
(s,s) for Band 4. The location for the center of land surface
is (65,53) for Band 3 and (77,63) for Band a (Table 1). These
points define the initial positions of the regression lines for
Band 3 and Band 4. The no-change region statistics, such as
means, variances, and covariance, are given in Table 2. The
ASCR results are given in Table 3. The initially determined
Iocations of the axes of no change obtained by scattergram
searching are close to the axes determined by controlled re-
gression refinement for the infrared bands. A total of
6,154,810 pixels fel l  in the no-change region and were se-
lected by regression. These pixels account fot 77.64 percent
of the pixels in the whole scene. Thus, the majority of the
pixels in the scene contributed to the regression and shared
the error of normalization. The RMSs for the no-change re-
gion are given in Table 3.

The haze effect in the original image has been signifi-
cantly reduced in the normalized 1973 image (Plate 1c) and,
by visual comparison, one can conclude that the normalized
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L973 image provides a better spectral match to the 1990 im-
age than does the nw L973 image.

Discussion
We have developed an Automatic Scattergram-Controlled Re-
gression (ASCR) for performing relative radiometric normali-
zations of multispectral images. The ascR algorithm involves
the identification of a set of "no-change" pixels, which are
selected using scattergrams of the reference versus the sub-
ject images in the near infrared bands. This algorithm has
been developed to improve the analysis of land-cover change
using recent and historic Landsat MSS data. The ascR proce-
dure could be used with other types of similar multispectral
datasets, such as SPOT or Landsat Thematic Mapper data, as
long as the scenes are coregistered.

Compared with other linear radiometric relative rectifica-
tion methods, the ASCR method has the following advantages:
(1) cloud/shadow/snow effects are reduced compared with
simple regression method; (2) a large percentage of the total
number of image pixels is used; (3) normalization errors are
distributed among different land-cover types, preventing er-
ror accumulation on some particular land-cover tvoes that
might have been introduced by training set selectlont (4) the
necessity of identifying bright and dark radiometric control
pixels is eliminated; and (s) the speed of the normalization
procedure is accelerated by reducing human intervention
compared with other empirical methods, though it may not
necessarily reduce the time of computation.

The ASCR procedure is designed to be applied to imagery
acquired under similar solar illumination geometries and
similar phenological conditions. The basic assumption of the
ASCR method is that land cover for a large portion of the
land surface covered has not changed between the subject
and reference images. In addition, the procedure requires the
presence of both land and water pixels in the scene. Consid-
ering the large area covered by Landsat scenes (185 by 1Bb
km), these conditions will generally be met.

Our results indicate that the ASCR method is effective in
normalizing the radiometric characteristics of subject images
to match reference image, with a minimal amount of human
intervention. This procedure should be especially useful for
the analysis of land-cover change. Our research is now focus-
ing on the development of an automated procedure for se-
lecting the thresholds used to define the "no-change" pixels.
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