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Abstract 
A model based on multiple photointerpretations for estimat- 
ing local boundary uncertainty [or 'Ifuzzy boundary width") 
between forest stands is developed and presented, using an 
urtificial data set consisting of textured images of known 
class characteristics and locations. A fuzzy width estimator 
has been developed by breaking down the perceptuul process 
of photointerpretation into two components: discrimination 
and variability. Discrimination consists of the ability of the 
photointerpreter to detect a difference in texture. Variability 
consists of the intrinsic spatial variability of the texture itself. 
A quantitative analysis of these effects led to a model relat- 
ing the image construcfion parameters to the fuzzy boundary 
widths. The study is useful for examining the effect of con- 
text on boundary uncertainty and for suggesting how one 
might assess the uncertainty of boundaries extracted by more 
automated algorithms. 

introduction 

The Importance of Uncertainty 
GIS technology and techniques are increasingly used for for- 
est management (Tomlinson, 1987). In Canada, as is typical 
elsewhere, digital forest maps are maintained using a variety 
of commercial platforms (Dick and Jordan, 1990). There are 
some significant difficulties, however, which are not directly 
addressed by the new technology, regardless of the particular 
technology adopted (e.g., raster versus vector). 

One such difficulty relates to the fact that forest inven- 
tory continues to be based primarily on the interpretation of 
aerial photographs by one individual. Any two photointcr- 
preters will not produce similar results (this is obvious from 
Figure I ) ,  even when using the same material. A single inter- 
preter may even provide significantly different results on two 
occasions (Nantel, 1993). Furthermore, photointerpretation 
accuracy is never very high (Biging et al., 1992). Thus, it is 
difficult to evaluate changes in forest conditions over time, 
because the uncertainty in any forest map is high. It also 
means that it is difficult to reconcile two forest maps pro- 
duced by the photointerpretation process (Figure 2). The 
availability of digital map products and GIs may worsen the 
problem, because more is being asked from map comparisons 
than when maps were only available on paper. In particular, 
when maps are incorporated into databases, the mapped rep- 
resentation of any given database object must be consistent 
from one time to the next. This is very hard to achieve with 
existing map representations, and is one of the reasons why 
the forest must be reinventoried every ten to fifteen years, 
and why the old inventory is usually replaced, rather than 
modified (Qu6bec Ministry of Natural Resources, pers. 
comm.). 
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A second difficulty consists of the fragmentation of for- 
est stands when time management is involved, as, for exam- 
ple, in the construction of space-lime composites (Langran 
and Chrisman, 1988: Langran, 1992). As the forest changes, 
either naturally or because of exploitation, forest "polygons" 
(stands, etc.) must be broken into increasingly smaller 
regions. (Figure 2 provides a typical example of this.) Over- 
lay processes in GIS also lead to a related fragmentation prob- 
lem, with large numbers of very small polygons (so-called 
"sliver polygons") being generated when any two themes are 
overlaid (Goodchild, 1977: Dougenik, 1980). Existing tech- 
niques for "cleaning" up sliver polygons rely on merging 
them with their neighbors (Zhang and Tulip, 1990) or on 
moving segments (Dougenik, 1980), but only recently have 
such techniques become more sensitive to local context (Pul- 
lar, 1991). Sliver polygons are, however, an indicator of spa- 
tial uncertainty andlor of gradual change. Assigning them to 
one or another of neighboring polygons is not always appro- 
priate and, indeed, the "correct" handling of sliver polygons 
is a difficult problem. Moving boundary segments is also a 
complex task. The increasing number of themes managed by 
forestry GIS exercerbates these problems. 

A possible solution to these problems is to represent each 
forest "boundary" as having a "fuzzy" width and to apply an 
appropriate, probability-like approach to obtain spatial opera- 
tors which can be used to evaluate data consistency. Existing 
work on representing boundaries as having width (e.g., "epsi- 
lon" bands) includes that of Goodchild (1977), Chrisman 
(1982), Blakemore (19841, Chrisman and Lester (1991), Dunn 
et al. (1990), and Dutton (1992). In these treatments, however, 
a single width has been employed for all boundaries of a 
given map. We propose using a variable boundary width 
which depends on the two classes on each side of the bound- 
ary. In forestry, the boundary between a mature stand and a 
clear cut, for example, is relatively easy to find, whereas the 
boundary between two density classes may be relatively diffi- 
cult to identify (Lowell et al., 1992). If the width of these 
fuzzy boundaries corresponds to the real-world spatial uncer- 
tainty, then when two photointerpreted maps from different 
tirnes are compared, one may be able to determine which 
boundaries are consistent from one map to the other, and 
which boundaries are new and hence represent real change. 
In addition, if appropriate probabilistic techniques of overlay 
can be developed, the intersection of the two maps will not be 
a great number of meaningless fragments, but will represent 
the real changes between the two maps. 

In the epsilon-band technique, the band represents 
boundary error as a probability distribution function of pos- 
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Figure 1. Nine interpretations of Image #I (see Figure 
3a). 

sible boundaries around the "true" boundary location. This 
work has largely been focused on digitizing crror (Goodchild, 
1989). The problem of estimating the epsilon band width has 
been dealt with in this latter context, for example, by means 
of theoretical estimates (Dunn et al., 1990) based on details 
of the digitizing process. Hence, because digitizing errors are 
confined to the immediate neighborhood of the original lines 
on the paper map and are expected to be similar throughout 
the map, a single global estimate of epsilon band width has 
been assumed. Moreover, a variety of probability distribu- 
tions have been proposed to describe differences between the 
digitized line and the original. Alternatively, a global epsilon 
width is adopted and the amount of "coincident" lines 
which fall into this zone is estimated. Chrisman and Lester 
(1991) adopted such an approach in an agricultural contcxt. 

In a context where photointerpretation boundary error is 
likely to be high, the situation is considerably more complex. 
The epsilon bands (called "fuzzy widths" in this paper) are 
likely to differ depending on the location and local context 
of the boundary within the image. It is not clear that a useful 
global estimate can be obhined. Second, the errors are much 
larger than in the case of digitizing errors. In one discussion 
of the latter, a normal probability distribution function is ex- 
cludcd on thc grounds that this permits boundaries to be 
mislaid very large distances (Dunn et al., 1990). In aerial 
photointerpretation, such largc crrors arc not infrequent and 
certainly cannot be excluded. Third, understanding digitizing 
errors has tended to focus on the boundaries, to the exclu- 
sion even of polygons (Uunn et al., 1990). Yet boundary un- 
certainty is a function of adjacent polygons and cannot be 
studied or understood in terms of isolated polygons (Pullar, 
1991). Hence, while the techniques developed for measuring 
digitizing error can be used for characterizing photointerpre- 
tation boundary uncertainty, adjustment for the many con- 
textual differences must be made. 

Human and Computer Vision Research 
It is also instructive to examine the scientific literature on 
computer vision as it relates to texture discrimination. Ber- 

gen (1991) identifies two schools of inquiry in studies of hu- 
man visual processing, one initiated by Julesz (1962) and the 
other by Bcck (1966). Julesz began by characterizing image 
texture in terms of global first- and second-order statistics, 
while Beck began by identifying individual features of "tex- 
ture elements" and their spatial arrangement. Both lines of 
inquiry convcrgcd in the 1980s on a number of common ele- 
ments (Beck et al., 1987; Julesz, 1981) and refer to what Ber- 
gen calls a "micropattern" which is repeated randomly 
throughout the texture. Both have abandoned the notion that 
the spatial arrangement of these micropatterns is discrimina- 
tory and refer simply to the numbers or density of the micro- 
patterns, especially as a function of the size of the micro- 

Figure 2. In (a) and (b) are shown two forest maps of the 
same area, produced from interpretation of aerial photo- 
graphs at different times. In (c) is shown an overlay of 
the two maps. 
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pattern. Caelli (1985, 1986) has developed a three-stage 
computer algorithm based on this kind of analysis. The first 
stage consists of what Caelli calls impletion, or the process 
whereby excitation from strongly responding areas spreads to 
weakly responding areas, thus filling in areas which contain 
little or no structure. His second stage consists of correlation, 
which looks for agreement between outputs of different fre- 
quency filters at a given location (e.g., a "scale-hunting'" 
function), while his third stage consists of grouping, which 
seeks to assign pixels or features to regions in such a way as 
to maximize the correlation between values within regions 
and minimize it between regions. In 1986, Caelli introduced 
an additional level which involves adaptively seeking de- 
scriptors that yield regions of uniform structure. 

This work provides support for the central hypotheses of 
this paper. Our focus is not on texture segregation as such, 
but on an attempt to characterize the spatial error which can 
be associated with texture boundaries as they emerge from 
human visual processing. Although there has been a great 
deal of work on texture segmentation and discrimination, 
very little has focused on spatial uncertainty in boundary 
placement. Reed and Wechsler (1990) note that texture anal- 
ysis involves simultaneously maximimizing spatial and spa- 
tial frequency resolutions - something that cannot be done. 
Wilson and Granlund (1984) have discussed this same prob- 
lem as an extension of the Heisenberg uncertainty principle 
into the area of pattern recognition and signal processing. 
However, none of this work has attempted to quantify the 
spatial uncertainty involved in boundary placement. 

The work discussed by Bergen (1991) indicates that tex- 
ture discrimination must be simple. In this paper, which is 
focused on evaluating the spatial uncertainty of boundary 
placement, we have adopted as simple a model of texture as 
possible. Our approach is very similar to that described by 
Bergen, because we attempt to identify a characteristic mi- 
cropattern for each texture. This is defined by a region of 
sufficient size that the micropattern is stable throughout a 
larger textured region. This micropattern is extracted in 
terms of a measure of homogeneity. Because we are inter- 
ested in spatial uncertainty, we have identified several fac- 
tors as contributing to this uncertainty. First, the size of the 
micropattern and its relative spacing. Second, the variability 
within the texture, which contributes to the spatial uncer- 
tainty. And third, we label other effects which are more diffi- 
cult to quantify, "local context effects," because we believe 
that they are largely related to human visual processing of 
neighborhoods. Our work is a first study on the characteriza- 

ries produced by photointerpretation (Gong and Chen, 1992; 
Edwards, 1994), so that once each boundary has been iso- 
lated, measurement is possible, but isolating the appropriate 
boundaries is difficult. 

We have broken the development of a theory of photoin- 
terpretation uncertainty into stages. The first stage is to esti- 
mate boundary uncertainty for synthetic textures using an 
"absolute" ground truth (i.e., the spatial partition used to de- 
fine the synthetic images). This allows us both to isolate the 
limitations of photointerpretation in terms of a "real" ground 
truth and to test some of the basic premises of our approach. 
For example, we can quantlfy some of the effects of local 
neighborhoods on boundary uncertainty. Also, we have 
stated that we believe that boundary uncertainty (width) is 
related to the texture patterns on both sides of a boundary, 
and not on the texture characteristics of a single polygon. 
This first experiment allows us to test this hypothesis. The 
use of artificial textures is not a major drawback, because the 
perceptual processes involved are very similar, if not pre- 
cisely the same, to those used by interpreters of aerial pho- 
tography. The second stage is to generalize this work to the 
case where the ground truth is unknown (preliminary results 
on this second stage have been reported elsewhere - see, for 
example, Aubert et al. (1994) and Edwards (1994)). And the 
third stage is to adapt the resulting theory to a real photoin- 
terpretation context. In this paper, we shall present the re- 
sults of the first stage of the study. 

There are several challenges which must be overcome in 
order to be able to use this approach successfully. As men- 
tioned, techniques for evaluating the width of the uncer- 
tainty function associated with each boundary, based on the 
photointerpretation process, must be developed. Techniques 
for representing these boundary widths and for carrying out 
overlay operations must also be examined, and spatial data 
structures which support these approaches may need to be 
developed if they are to be integrated into GIs. Fuzzy set the- 
ory (Zadeh, 1965) provides one frarncwork for addressing the 
analysis issues using fuzzy uncertainty (e.g., Altman, 1992; 
Burrough, 1989). However, the single most difficult obstacle 
to using this theory consists of characterizing the "shape" of 
the uncertainty relation correctly. This paper presents results 
related to the development of techniques for evaluating the 
width and shape of "fuzzy" boundaries. This work has been 
developed with respect to characterizing uncertainty in the 
context of forestry, but could be applied to any context with 
similar kinds of uncertainty (including soils mapping). 

tion of spatial uncertainty in texture segmentation, focused 
especially on photointerpretation. We hope that the work 
will be generalizable enough to eventually provide uncer- 
tainty estimates for automated texture segmentation as well, 
or at least that the work will serve as a useful reference for 
others attempting to do so. This paper is not intended to be a 
"final" or definitive study for boundary uncertainty charac- 
terization in texture segmentation, whether it be based on 
human visual processing or independent computer process- 

General Procedures 
The first concern for understanding boundary uncertainty in 
maps obtained from aerial photointerpretation is to obtain re- 
liable measurements of this uncertainty. However, under 
most circumstanccs in forestry, the true boundary location is 
unknown and hence cannot be used as a reference. Proposed 
solutions include least-squares polynomial fitting through the 
digitizing points of the boundary (Gong and Chen, 1992), 
corridor generation techniques (Aubert et al., 19941, and 
clustering of boundary cur;es (Edwards, 1994). Most of these 
techniques are encumbered by the complexity of the bounda- 

Experimental Motivation and Hypotheses 
Presently, global, not local, errors are used in GIS and re- 
mote sensing to characterize data. For example, in  remote 
sensing a "confusion matrix" is usually determined to char- 
acterize classification error. This confusion matrix and de- 
rived quantities such as the overall accuracy (Lunetta et al., 
1991), the kappa coefficient (Rosenfeld and Fitzpatrick-Lins, 
1986), the user's error, and the producer's error (Story and 
Congalton, 1986) arc all global measures of error. That is, 
theyare obtained by ev&ating and summing across the en- 
tire classified image (or that part for which "ground truth" 
is available). It is not possible to obtain a reliable local er- 
ror estimate from these values. It is known, for example, 
that many classification errors are context dependent 
(Chrisman and Lester, 1991). But global error measures do 
not allow one to map such context dependencies. Other ex- 
amples of global errors are digitizing errors in  GIS, registra- 
tion errors in remote sensing, and DTM errors; the usual 
quoted errors apply uniformly to an entire region (map or 
image) and do not take into account local variability in 
these measures. 

In addition to quantifying local error, a secondary goal 
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was to understand better how photointerpretation is done. 
Does the photointerpreter attempt to identify uniform 
regions, or does the photointerpreter look for differences or 
"edges" which are significant enough and representative 
enough to map? Texture discrimination is known to involve 
both processes (Bergen, 1991). In Caelli's algorithm (Caelli, 
1985), texture edges appear to emerge during the second 
phase (correlation), which occurs in the spatial frequency do- 
main. Indeed, some measure of local homogeneity seems to 
emerge at this stage. Grouping into larger homogeneous 
regions appears to occur at the third stage, based on correla- 
tion measurements obtained at the second level. This sug- 
gests that photointerpretation proceeds by first generating 
"local" homogenous regions and boundaries, which are later 
grouped into larger regions and are classified into categories. 

The idea that the photointerpreted boundary follows a 
local texture difference suggests that the uncertainty in the 
boundary's placement is related, initially, to the scale of the 
texture variability on both sides of the boundary, and sec- 
ond, to some measure of difference between the two textures. 
These assumptions guided the analysis phase of the project, 
which was devoted first to test for the existence of such rela- 
tionships, and second, to quantify mathematically their form. 

It is also worth noting that multispectral image classifi- 
cation is not a dissimilar process. Texture segmentation tech- 
niques (Reed and Wechsler, 1990) result in boundaries 
which behave similarly to interpretation boundaries. The ma- 
jor difference is that any given segmentation software will 
generate the same boundary every time it  is run. However, 
different software and different parameters such as thresh- 
olds used in such software will produce different boundaries 
(Goodchild, 1988), and the differences are likely to be linked 
to similar causes as for photointerpretation. Very little work 
on boundary uncertainty has been carried out with regard to 
remote sensing image analysis. 

The use of the word "texture" here is intentionally spe- 
cific. We believe that much of the photointerpretation task is 
related to finding differences in texture patterns as well as 
image tone. The experiment design parallels the approaches 
taken by researchers studying human texture discrimination 
in that it consists of simulating textures, elliciting responses 
(in the form of interpretations), and analyzing the results in 
terms of the simulated textures. For the purposes of this ex- 
periment, we constructed fairly simple textured images with 
no spectral component, no mixtures of different textural 
components, and no three-dimensional (stereo) component. 
The images do contain both textural and tonal differences, 
however, and hence contain the core features to be expected 
in photointerpretation. 

Furthermore, experience with a variety of standard, sta- 
tistical image textural measurements led us to avoid using 
such measurements, at least in these early phases of the 
analysis. Standard texture measurements such as the co-oc- 
currence measures (Haralick et ul,. 1973) and derivative tech- 
niques such as the density of Laplacian edges (Rosenfeld and 
Thurston, 1971), etc., are difficult to relate to perceived tex- 
ture differences. The approach to texture characterization we 
have adopted is much closer to the structural texture analy- 
ses discussed by Haralick (1979) than to the widely used sta- 
tistical methods. 

The Data Set and Analysis Techniques 
In order to understand the relationships between forest tex- 
tures and the interpreters' choices of boundary, a set of three 
artificial images was created (Figure 3). These images were 
constructed using a set of carefully designed parameters and 
a random number generator operating within the framework 
of these parameters. These images look similar enough to 
black-and-white images of Ihe natural forest taken at rela- 

tively detailed scales that the interpreters had no dif!lculty 
imagining the task as a real interpretation task. 

To construct the images, a polygon mask was created so 
as to present both well-defined polygons and a variety of 
special cases we wished to examine, such as thin bottle- 
necks, small polygons, etc. Each polygon was assigned to 
one of six classes. Two different masks were created in this 
way (Figure 4). For a given class, a "grid" of tree-like shapes 
was generated. Each "tree" consisted of an intensity hemi- 
sphere, defined by the following equation: 

J' = I: ql - (r/Ri)2 (1) 

where i is the local (i.e., pixel) intensity, I,' is the peak 
intensity, r is the distance from the center, and R,' is the ra- 
dius of the "tree." These hemispheres were designed to sim- 
ulate forest crowns with nadir viewing and the sun at zenith 
(i.e., no shadowing). Furthermore, for a given class, the peak 
intensity and tree radii are constructed from a class mean 
and random deviate with a class-specific variance: i.e., 

rot = I ,  + kc1 (2) 

and 

R"' = R, + Irr, (3) 

where I, is the mean peak intensity for the class, R, is the 
mean tree radius for the class, u, is the standard deviation of 
the intensity for the class, a, is the standard deviation of the 
radius for the class, and k and 1 are random deviates follow- 
ing a normal distribution centered on zero with variance 1. 
The separation parameter was handled in a slightly different 
manner than the other two. The class-specific standard devi- 
ation of the separation parameter was used to define a nor- 
mal distribution about the grid point specified by the mean 
separation for that class: i.e., 

where x and yare the coordinates of the tree, 6x is the mean 
separation, n and m are integers which specify the grid coor- 
dinates of the tree placement, a,, is the class-specific stan- 
dard deviation for the tree displacement off the grid point, 
and p and q are random deviates following a normal distri- 
bution centered on zero of unit variance. The process of con- 
structing a texture for each class then consists in defining 
values for each of these six parameters (i.e., I,, o;, R,, u,, ax, 
a,,) and of using a random number generator to derive the 
appropriate normal distributions for each of the three varia- 
bles (intensity, radius, and separation). All values of i and r 
less than zero were reset to zero, disturbing slightly the strict 
normality of some of the data sets. Two sets of six parame- 
ters were created in this way [Table 1 and Table 2). Both sets 
of parameters were used with Mask #1, the first set for Image 
#I  and the second for Image #3. The first set of parameters 
was also used with Mask #2 to create Image #2. The parame- 
ters have been fine-tuned somewhat to generate more realis- 
tic-looking forest textures at an apparent scale of about 1: 
5000. The final stage of image construction consisted in add- 
ing a constant background to all images (40 intensity levels) 
and adding a random Gaussian noise (four intensity levels). 
The latter leads to images with a level of pixel-to-pixel varia- 
tion similar to that encountered in real images of the forest 
and ensures that interpreter attention is not focused on indi- 
vidual "tree crowns" but, rather, on the texture patterns. 

The use of a grid for assigning the placement of the 
"trees" may seem questionable. However, of importance for 
this study was LO be able to parameterize the distribution, 
and to ensure that the generated textures were of sufficiently 
random appearance that the perceptual processes involved 
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Figure 3. The artificially generated images used in the pho- 
tointerpretation studies. (a) lmage #1, produced by Mask #1 
using texture Category Set #I. (b) lmage #2, produced by 
Mask #2 using Category Set #l. (c) lmage #3, produced by 
Mask #I using Category Set #2. 

.-, 

would be similar to those engaged in real interpretation. 
Studies such as those described by Bergen (1991) support 
this approach, because the spatial arrangement of texture ele- 
ments has been shown to be less important in perception 
than is the density of the elements. Furthermore, from a for- 
estry perspective, a grid with random deviations is no better 
and no worse than a purely stochastic placing of crowns, 
and both have been used in a large number of computer sim- 
ulations for varying purposes. 

All three images were interpreted by the same nine pco- 
ple. These were mostly students, some with previous pho- 
tointerpretation experience, some without. Each interpreter 
was told that there were "between three and ten classes pres- 
ent in each image," in order to restrict the range of distinct 

categories which might be found. In conventional photointer- 
pretation, interpreters work with libraries of known texture 
patterns and hence also with a limited number of categories. 
Our interpreters were also told to apply a minimal mapping 
unit of one square centimetre to the interpretation (i.e., to 
group polygons smaller than this with adjacent polygons). 
This is also similar to the conventional interpretation proce- 
dure, in which a minimum mapping unit is employed. The 
order in which each subject interpreted the images was ran- 
domized. Some examples of the interpretations for Image #1 
are shown in Figure 5. 

Because analysis techniques were based on a variety of 
concepts, greater detail is provided. The goal of this work 
was to characterize the fuzziness of the boundaries between 
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category ~ u r g o v  #3 category #S 

Categorya Categary #4 Category #6 

Figure 4. The two masks used to generate the images 
shown in Figure 3. (a) Mask #I. (b) Mask #2. Shown 
also are the polygons labels. 

may be possible to characterize boundary uncertainty as a 
profile along the boundary, we have limited our attention to 
an average boundary uncertainty width for a boundary seg- 
ment of a given twain. It is further hypothesized that the 
width of the fuzzy boundary (i.e., a measure of the inter- 
preter-to-interpreter difference in the boundary location) is 
inversely related to the difference in texture between the two 
polygons on either side of the boundary. The larger the per- 
ceived difference in texture patterns, the smaller the differ- 
ence will be between interpreters when defining the boun- 
dary, and vice versa. When the difference in texture patterns 
is perceived to be very small, the boundary may not be de- 
tected at all. Thus, a second contribution to the fuzzy width 
must be some measure of variability of the texture on each 
side of the line. 

The focus on the twain imposes three additional condi- 
tions on the analysis, considered to be a kind of "local con- 
text." The first consists of the necessity of having a twain of 
sufficient length to distinguish the two polygons on either 
side. If the boundary is too short compared to the size of the 
texture grain on one side or the other; then few interpreters 
will be able to find the boundary (polygons C and M in Mask 
#I, Figure 4a). The second condition is that if the fuzzv 
width-is larger than the polygon width, then the polygon 
will be severely fragmented or even will cease to exist. 
Therefore, fuzzy widths larger than this value will not be 
seen. This introduces a bias against very large boundary un- 
certainties in the analysis. Hence, the boundaries obtained 
from each interpretation must be validated against the mask 
and cases of absent boundaries must be identified. 

A way of identifying these contextual effects has been 
developed and implemented. The approach depends, how- 
ever, on the ability to measure a spifial uncert^ainty value 
characteristic of the variabilitv of each texture. The value 
used is the square root of thekin&- surface area needed 
to characterize the texture vattern's variabilitv, derived di- 
rectly from the parameters Lsed to generate the texture pat- 
terns. The details of this formulation are given in the next 
section. This distance measures the "fuzziness" of the edge 
of a textured region in isolation from other textured regions. 
It is a local meGure consistent with recent work on tezture 
discrimination (Reed and Wechsler, 1990). For each polygon 
in the mask of a given image, and for its appropriate texture 
parameters, the characteristic scale of variability of the tex- 
ture is determined. The interior corridor or buffer zone limit 
of the polygon determined using the characteristic variability 
scale is computed (Figure 6a): i.e., a different corridor width 

Category I, 01 no UR Sx 0; 

1 45 7 1 1 2 2 
2 40 4 4 3 6 3 
3 35 3 4 1 9 4 
4 25 4 7 3 12 3 

polygons. This idea itself is based on the assumption that 5 35 3 5 3 9 3 
6 25 6 2 2 8 3 there may not be a hard and sharp line separating one forest 

stand from another (there usually isn't!). Because of this, 
boundaries between stands are not expected to be razor 
sharp as depicted on conventional forest maps. 'l'he standard 
means for evaluating the precision of forest maps (or any car- 
tographic theme) are global, area-based approaches. This in- 
cludes the use of confusion matrices in remote sensing or 
comparison of random sample plots with map polygons. We 
would like to have a local, boundary-based approach. 

The basic tenet underlying the analysis techniques is 
that the smallest unit of interest is a polygon pair and its 
common boundary (we call this unit a "twain"). Although it 

TAMLE 2. CATEGORY St1 #2 

Category I, VI R, U R  6x 
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I Figure 5. Two interp~ ,etations of Image #I. I 
is applicd to cach polygon boundary in the mask. This 
leaves a map of polygon "nuclei" with corridors between 
each nucleus. Any polygons which wcrc too small to prop- 
erly characterize the texture will have been removed at this 
stage. A new corridor (called the "outer polygon boundary") 
is thcn gencratcd around each nucleus, using the same corri- 
dor width as earlier (Figure 6b). Note thal Lllese corridor op- 
erations are equivalent to a morphological opening and 
closing of the polygons (Serra, 1982). 

The inner polygon boundary can be considered to en- 
close the region within which the texture can be unanibigu- 
ously perceived and, hence, the region in which the poly- 
gon's existence is "stable" (these polygon cores are shaded 
by category in Figure 6). The outer polygon boundary can be 
interpreted as the limit of the zone where the polygon's 
identification has a maximum likelihood of being valid (LC., 
maximum likelihood with respect to other polygons). This 
"variability map" is, from one point of view, a better repre- 
sentation of "ground truth" from the photointerpretation pm- 
cess than the original mask, because it represents the per- 
ceivable textured regions for the photointerpretation process. 
All non-perceivable spatial features have been removed fro111 
the original mask. This is not unlike thc convolution of an 
ideal signal with an instrument response functior~ as is prac- 
ticed in signal processing (see Tobler, 19691, resulting in an 
appropriately degraded ground truth map. In Figure 6c, the 
nine i~~lerprelalions acquired for Image #1 and shown in Fig- 
ure 1 are superimposed on this polygon-specific variability 
map. It can be seen that the boundaries in this mask corre- 
spond closely to the observed interpretation boundaries. 
There are some areas where polygons are more fragmented 
in the interpretations than in the original, but the contrary 
rarely occurs. The exception appears to be Category #6, 
which has a high variability scale (see next section) but a 
low mean intensity. As explained in the next section, these 
regions contribute little to boundary error because of their 
low mean intensity. 

This method of determining a polygon-specific variabil- 

ity map in terms of stable nuclei and unstable boundaries is 
central to the analysis presented in this paper. It does not 
address, however, the problem of inclusions of "minimum 
nlapping units" as used in plloluir~lerpretatio~~ practice. This 
latter consists of small regions which have been grouped into 
the larger regions because they are too small to map individ- 
ually. We have chosen to focus on boundary uncertainty di- 
rectly, by comparing interpreted boundaries against a "de- 
graded ground truth" computed as described above. The 
problem of inclusions becomes more important when there is 
no ir~dependent ground truth available. 

Note that the new outer boundaries correspond to the 
old polygon boundaries in Inany cases. If we think of the 
polygons as islands, then there are gaps or "holes" in the 
new map where the polygons were too thin to adequately 
rcprcscnt the texture variability. That is to say, they were too 
small to be perceived. This new map provides a corlvenienl 
tool for determining where local context (the proximity ef- 
fects of nearby spatial arrangements of polygons on the pho- 
tointerpretation process) disturbs the boundary identification 
process. Boundary segments for which the new outer hound- 
ary rnalches the old polygon boundary are indicators that the 
edge between two textured regions is relatively unaffected by 
local context, whereas old boundary segments which are af- 
fcctcd by local context have now disappeared. Using this 
map (Figure 6b), we can remove all cases where an old 
boundary segmcnt has disappeared from thc analysis. 

For the boundaries which have remained unchanged af- 
ter the corridor operations, we can reasonably cxpcct thcir 
associated boundary measurement errors to be related to the 
difference in texture pattern on both sides. Hence, we can 
average derived widths from several twains. The procedure 
is complicated by the fact that different interpreters will tend 
to discriminate less well and will fail to see some small re- 
gions which others have no dilficulty finding. These differ- 
ences among intcrprctcrs need to be removed from the 
sample before analysis proceeds. 

The boundary uncertaintics (or "mcasured fuzzy 
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Category #1 
Category #2 
Category #3 
Category #4 
Category #5 
Category #6 
Corridors 
Holes 

Set of interpretations 

Figure 6. The process of produc~ng a variability map from the image mask (for Image #I). (a) Beginning with the mask, 
generate polygon-specific corridors based on the texture variability alone. This results in the identification of "core" polygons 
wh~ch can be found by an interpreter. (b) Generate the inverse corridors from the core polygons. This leaves holes where 
polygon identification is confused. In (c), the resulting map is compared to the nine superimposed interpretations from Image 
# I  (see Figure 1). 

widths") for the nine interpretations were determined by 
generating a "proximity map" in a raster representation for 
each of the interpretations. This proximity map converts 
every pixel to a measure of its distance &om the nearest 
boundary. Then the average "proximity measure" for the lo- 
cations of each boundary on the mask, with respect to the in- 
terpreter proximity map, was determined. Furthermore, the 
proximity measures were assigned a positive or a negative 
value depending on which side of the line they fell. This al- 
lows one to define a random error, utilizing the sum of the 

absolute values of the displacement errors, and a systematic 
error, utilizing the sum of the relative values of the displace- 
ment errors. The systematic error measures displacements 
which are systematically towards or away from a given tex- 
ture class. The random error was considered to be the de- 
sired measure of "fuzzy width." Note that the approach 
adopted produces an approximation of the fuzzy width 
which is a little different from standard error analysis proce- 
dure, which would consist of a root-mean-square estimate 
(for a more rigorous approach, see Aubert et al. (1994)). Be- 
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boundaries between pairs of polygons with similar categories 
and relate them to the image texture parameters. 

Results of the Analysls 

Global Classification Error 
We begin the analysis with a more standard way of estimat- 
ing error: the use of a global classification error such as dis- 
cussed earlier on. This is done in order to provide a baseline - analysis for comparison with other studies, to provide some 
insight into category classification errors, and, also, to high- 
light some of the advantages of the local error analysis pro- 
posed in the paper compared with more traditional glabal 
approaches. 

Average Half Fuzzy Width 
A single confusion matrix was developed for each image 

(Tables 3 to 5) by averaging over all nine interpretations. For 
(a) each cell in the "mean" confusion matrix, the mean number 

of pixels over all nine interpretations was tabulated. In the 
case of interpreters who found more than the six classes as 
defined by the masks, all additional classes were grouped to- 
gether and tabulated under "Other" (such a practice did not 
significantly affect the results - about 4 percent of pixels 
were classed into the category "Other"). A modified kappa 
coefficient (K) was also calculated for each image (Foody, 
1992). The kappa coefficient accounts for errors of omission 
and commission, whereas the standard classification accu- 
racy measure does not. 

Global accuracy (i.e., the agreement between the inter- 
preted images and the mask used to generate the images] - ranged from 53 percent for Image #3 to 67 percent for Image 
#1. Similarly, K ranged from 0.454 to 0.541. While K is large 
enough to suggest that the classifications are not completely 

Average ~ a l f  Fuzzy width random (K = 01, the global accuracy demonstrates that differ- 
ent interpretations of the same images have a remarkable 

(b) amount of dissimilarity. Certainly in the case of Image #3, al- 
Figure 7. Differences are found among different interpre- most half the image is "incorrect" or "uncertain." It is ar- 

tations. Shown are fuzzy widths derived from two different gued here that this reinforces the examining 
interpretations, plotted in each case against the average local in gcneral, and boundary in particular* be- 
funy width. The line on each graph shows the location of Cause a priori much of the global may be 

an exact match. (a) lnterpreter #8. (b) lnterpreter %9. text specific. For example, Chrisman (1982) found that as 
much as 18 percent of surface area was contained in even 
small epsilon bands around map boundaries. Furthermore, 
the evidence seems to indicate that the accuracy of "real" 
photointerpretation is not much better than for our artificial 

cause the purpose of this study was to test the existence of a images (Biging et al., 1992). 
relationship between boundary uncertainty and characteris- Furthermore, comparing the classification accuracy per 
tics of the texture pair, an approximation of this kind was category between Table 3 (Image #I) and Table 4 (Image #2) 
deemed adequate. Following this, all nine fuzzy widths were shows some startling differences between the two images, 
averaged together to produce a mean measure for each twain. cvcn though the textures are the same. For example, the in- 

By plotting the fuzzy widths of an individual interpreter terpreters identified correctly 40 percent of Category #5 in 
aganst the mean fuzzy width for each twain, one can see the Image #I but only 13 percent in Image #2. The differences 
effect of interpreter bias (Figure 7). In fact, there appear to be for many of the other categories are equally striking. The 
two parameters of importance. Some interpreters obtain sys- most variable results are clearly those for Categories #2 and 
tematically lower fuzzy widths than do others. Also, some #5, the most variable textures. These results indicate that lo- 
interpreters are more consistent, whereas the fuzzy widths cal context may play a much larger role in interpretation ac- 
for others vary wildly about the mean. Although there does curacy than heretofore believed. 
not appear to be any systematic trend with previous photoin- The off-diagonal elements of Tables 3, 4, and 5 also sug- 
terpretation experience, no general conclusions with regard gest that global error estimates are an inappropriate quants- 
to photointerpretation practice can be drawn because these cation of uncertainty for many mapping purposes. On Images 
images are not standard aerial photographs. #1 and #2 - generated using the same image parameters but 

Once the mean fuzzy width has been estimated, the different masks - it is evident that Categories #2 and #5 were 
twains which are likely to be affected by local context are re- highly confused. However, at locations where a boundary be- 
moved from the sample. The analysis then consisted of at- tween polygons of Types #2 and #5 was identifiable, the 
tempting to obtain a relationship between the parameters fuzzy widths of the boundaries were relatively small (see 
used to generate the image textures which characterize the next section). Thus, the local context of each boundary (its 
texture discrimination, and the measured mean fuzzy widths length, the size of the polygons on either side, etc.) is impor- 
for each pair of categories which are spatially contiguous on tant to both the global and local error. 
the map. That is, we average fuzzy boundary width over all This is not to suggest that only boundary error is impor- 
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TABLE 3. EVALUATION OF GLOBAL IMAGE CLASS~FICAT~ON (IMAGE 1). (VALUES IN EACH CELL ARE THE MEAN NUMBER OF PIXELS OVER ALL NINE INTERPRETERS.) 

Truth [Mask) 

Category 1 2 3 4 5 6 Total 

I 1  19203 914 842 484 497 1195 23135 
n 
t 2 2924 20165 1431 873 9123 975 35491 
e 
r 3  1575 2917 18339 1258 6915 255 31259 
P 
r 4 778 807 335 10351 679 668 13618 
e 
t 5 1131 8360 682 1504 13427 596 25700 
e 
d 6 415 354 2994 1904 2567 15554 23788 

Other 309 1953 435 306 423 3583 7009 

Totals 26335 35470 25058 16680 33631 22826 160000 
% Correct 73 57 73 62 40 68 61 

k = (0.6065 - 0.1674)/(1-0.1674) = 0.5274 
k' = (0.6065 - 1/7)/(1- 1/71 = 0.5409 

(Kappa has been calculated b y  adding an additional column to Table 1 for "Other" to make i t  symmetrical. This c o l ~ u n n  sums to zero.) 

TABLE 4. EVALUATION OF GLOBAL IMAGE CLASS~FICAT~ON (IMAGE 2). (VALUES IN EACH CELL ARE THE MEAN NUMBER OF PIXELS OVER ALL NINE INTERPRETERS.) 

Truth  (Mask) 

Category 1 2 3 4 5 6 Total 

I 1  5928 487 439 0 44 248 7146 
n 
t 2 5 74 44700 2045 1192 15420 3605 67536 
e 
r 3  85 745 12365 22 3466 1659 18342 
P 
r 4  0 1174 257 10049 113 221 11814 
e 
t 5 2 3374 57 240 3408 185 7266 
e 
d 6 485 2003 6075 289 1986 30427 41275 
Other 101 2510 733 713 1779 785 6621 
Totals 7185 54993 21971 12505 26216 37130 160000 

% Correct 83 81 56 80 13 82 67 

k = (0.6670- 0.2355)/(1- 0.2355) = 0.5644 
k' = (0.6670 - 1/7)/(1- 117) = 0.6115 

(Kappa has heen calculated by adding an additional coluimn to Table 2 for "Other" to make it symmetrical. This column sums to zero.) 

TABLE 5. EVALUATION OF GLOBAL IMAGE CLASSIFICATION (IMAGE 3). (VALUES IN EACH CELL ARE THE MEAN NUMBER OF PIXELS OVER ALL NINE INTERPRETERS.) 

Truth (Mask) 

Category 1 2 3 4 5 6 Total  

I 1  
11 

t 2 
e 
r 3 
P 
r 4 
e 
t 5 
e 
d 6 
Other 
Totals 

% Correct 

k = (0.5328 - 0.1678)/(1- 0.1678) = 0.4386 
k' = (0.5328- 1/7)/(1- 1/71 = 0.4549 

(Kappa has been calculated by adding an additional column to Table 3 for "Other" to make i t  symmetrical. This column sums to  zero.) 
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Figure 8. (a) Half fuzzy width versus difference in mean 
polygon intensity. (b) Half fuzzy width versus difference in 
mean radius. 
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tant. Chrisman and Lester (1991) have noted that both boun- 
dary and category error should be considered in error mod- 
els. While this paper is concerned with the quantification of 
boundary error, it is recognized that regions of similar tex- 
ture occupy the interiors of the boundaries, and that boun- 
daries are an expression of the perceived existence of two 
regions of different texture. In cases where two texture pat- 
terns are similar in appearance and hence highly confused, 
many additional and spurious boundaries may be identified 
by the intepreter, and the resulting confusion in the classifi- 
cation of these regions will increase the off-diagonal ele- 
ments for these categories. The analysis developed in the 
following section does not explicitly deal with such cases 
and is, therefore, not all-inclusive. However, the strength of 
the fuzzy-width boundary models developed in this paper 
suggests that this approach can lead to significant gains in 
understanding of local error and hence improve map-lo-map 
compatability (see also Aubert et d. (1994) and Edwards 
(1994)). 

Local Boundary Error 
In the second part of the analysis, the relationships between 
the measured fuzzy widths and simple combinations of the 
texture parameters were examined. Figure 8 shows the abso- 
lute value of the difference in mean intensity between the 
two polygons of each twain plotted against the measured 
fuzzy width. There is no apparent relationship between the 
two (rZ less than 0.1 for both diagrams). 

I.: 
r" 6 -  

Following his ,  an attempt was made to identify the fac- 
tors which contribute to the visual discrimination process. 
Given the assumption that the two classes of factors which 
contribute are the texture variability and the texture differ- 
ences, this analysis led to a number of new observations. 
The variability of the texture was clearly not well character- 
ized by the variance around the mean intensity. Rather, the 
variability was recast as the minimum region size which 
characterizes the full range of the texture pattern. The larger 
this region size, the higher the "variability scale" of the tex- 
ture. This idea of variability scale was measured, in terms of 
the image parameters, by defining a threshold value of three 
standard deviations, and determining the minimum number 
of objects ("trees") required to "fill out" the Gaussian distri- 
butions in intensity, separation, and radius to this threshold. 
Note that this is not a measure directly related to individual 
pixels. The minimum number of objects ( N )  needed for any 
one of these distributions is given by the requirement that 
the error around the known mean be inferior to a threshold 
value: i.e., 

. D - 
- 

which, when rewritten, gives 

4 - ' " 1 ' " 1 " ' 1 '  
0 1 2 3 4 5 6 7  

After some experimentation, a a,,, threshold of 10 per- 
cent of the mean peak intensity and 20 percent of the mean 
radius was adopted. The two numbers are then multiplied 
together to obtain the number of individual "trees" needed 
to characterize the pattern (because the two distributions are 
constructed independently). Following this, the mean area 
occupied by each object (i.e., the square of the mean separa- 
tion between objects) provides the additional scaling factor 
allowing the texture pattern's "characteristic area" to be de- 
termined: i.e., 

The square root of this characteristic area is, hence, a 
measure of the expected displacement uncertainty related to 
the variability of the texture pattern. However, there is an 
added complication. In order to determine the contribution 
to the fuzzy width of this parameter, the variability of both 
textures of the twain must be combined in some way. Sirn- 
ply adding the two variabilities explained some of the fuzzy 
widths but left others completely out of the expected range. 

Careful visual inspection suggested that the variability of 
a very bright texture dominates the boundary displacement 
error if  the second texture is faint, no matter how variable 
the latter. By weighting the square root of the characteristic 
area by the mean peak intensity of the texture, 

where V is the variability measure for the boundary, i and j 
are the different categories of the twain, and p, and y are the 
mean intensities for each category, a relatively strong rela- 
tionship with measured fuzzy width was obtained. This ap- 
proach is similar to Caelli's first phase of texture segmenta- 
tion, where regions containing structure are given preference 
over regions containing little structure (Caelli, 1985). 

The third aspect of the analysis consisted of properly 
characterizing the functional relationship between texture 
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difference and boundary uncertainty. Which texture differ- 
ences contribute to the uncertainty? Again, although a corre- 
lation between the difference in mean peak intensity and 
fuzzy width, or between the difference in mean radius and 
fuzzy width, can be obtained, the dispersion is high. Adding 
the derived relationships only worsens the fit. 

The solution here is to determine the predicted uncer- 
tainty for each feature difference independently and then se- 
lect the smallest. The philosophy behind this is intuitively 
reasonable. When discriminating between two textures, if the 
intensity difference is large, even if there is only a moderate 
difference in radii, the intensity difference is likely to domi- 
nate our perception. The difference in radii does not contrib- 
ute significantly to our ability to discriminate. Such multi- 
channel effects have been noted before Uulesz et al., 1973) 
and, indeed, there is some evidence that human visual proc- 
essing may be based on such procedures (Bergen, 1991). 

The analysis consisted, therefore, of adjusting a set of 
scaling parameters for each feature difference (plus the varia- 
bility) between the two textures so as to minimize the least 
squared error of the linear fit to the relationship between var- 
iability, feature difference, and measured fuzzy width (Figure 
10): i.e. 

where the 6 indicates the absolute value of the difference be- 
tween the feature values on each side of the boundary. It was 
found that the only feature differences which contribute sig- 
ni6cantly to the texture discrimination were the difference in 
mean peak intensity and the difference in mean radius. The 
differences in the standard deviations, and in the spacing, 
were also examined but were found not to contribute to the 
fuzzy width of any of the boundaries. Hence, the final model 
used to predict the fuzzy width was the following: 

The values adopted for the scaling factors were g, = 20, 
g, = 4, and gv = 0.2, based on the analysis of Image #1 
alone. These values were later multiplied by an additional 
scaling factor of 1.16 in order to give a better prediction 
when Image #2 was included in the analysis. From Figure 9, 
it can be seen that the model succeeds very well at charac- 
terizing the measured fuzzy widths of the boundaries. Thc rZ 
for Image #1 alone is 0.95, although this degrades considera- 
bly when Image #2 is considered in the analysis (0.6). In Fig- 
ure lo,  the values for Image #3 are included (as crosses), as 
well as the context affected values from the f i s t  two images. 
It is worth noting that, although the model was developed 
for Image #1, it was not significantly modified when applied 
to the other two images, aside from the global scaling factor 
discussed above. The model has been shown to work, there- 
fore, for more than one set of textures and more than one 
spatial configuration of textures. 

It should also be noted that an additional context effect 
was discovered when analyzing Image #2. Mask #2 contains 
many more simple, straight boundaries between polygons 
than does Mask #1. It was observed that even highly variable 
textures could be discriminated with small errors when the 
boundary was a simple, straight edge. This may be related to 
the human eye's ability to pick out faint linear features in 
noisy data, or to extend linear sequences of data (Werthei- 
mer, 1958). In almost all such cases, the measured fuzzy 
width was systematically smaller than the value predicted 
based on texture discrimination and texture variability. Note 
also that most of the textures are highly variable and hence 

are strongly affected by local context. We have not identified 
all contextual influences, and context may become even 
more important when the analysis is adapted to real aerial 
photos, where individual interpreter expertise is likely to be 
more important. 

There is no pretense that this is the best model for 
boundary uncertainty estimation, but, rather, one that is de- 
monstrably valid and relatively simple. It should be noted 
that, aside from the local context effects which were re- 
moved from the analysis, the overall boundary errors were 
relatively low (Figure 7). Even so, boundary error contributes 
about 10 percent to 15 percent to the classification errors 
found in the first slage of the analysis. The so-called "local 
context effects," which were removed from the analysis, also 
contribute errors of this order of magnitude to the total clas- 
sification error. The remainder of the error is therefore due to 
attribute classification error. The analysis techniques devel- 
oped and presented here allow one to determine some meas- 
ure of compatability. Hence, the "fuzzy map" shown in 
Figure 6b (based on the texture variability estimates), once 
modified to account for the addition of discrimination error, 

- 
- 
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Measured Half Fuzzy Width (pixels) 

Figure 9. Predicted half fuzzy width versus measured half 
fuzzy w~dth, based on the use of Equation 10 applied to 
the category pairs of Images tl  and #2, after category 
pairs affected by local context have been removed from 
the sample. 

- 

0 2 4 6 8 10 

Measured H a l  Fuzzy Width (pixels) 

Figure 10. Predicted half fuzzy width versus measured 
half fuzzy width, for all images and categoty pairs. The 
solid circles are as in Figure 9, the empty circles are the 
context affected category pairs from Images #1 and #2, 
while the crosses are category paws from Image #3. 
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may be used to determine the consistency of a new interpre- 
tation of the same image. Procedures for carrying out this 
kind of analysis have been developed elsewhere (Aubert et 
al., 1994; Edwards, 1994). 

Discussion and Conclusions 
The experiment described has allowed us to develop a 
model which predicts the relative uncertainty associated 
with photointerpreted boundary placement for a textured im- 
age containing forest-like differences in texture. The success 
of the model indicates that the underlying hypothesis, that 
boundary uncertainty is related primarily to the properties of 
the texture patterns on either side and not to the properties 
of a single polygon, is valid. We introduced the term "twain" 
to describe a pair of polygons and their common boundary 
segment, which we adopt as our most local unit of analysis. 

It was also found that much of the effect of local context 
on boundary error can be characterized by looking at texture 
variability within a given polygon, in isolation from the re- 
maining polygons. Indeed, each polygon can be represented 
as a central core or nucleus which is relatively stable, and an 
outer boundary which delimits the region of maximum like- 
lihood. Polygon validity in the "holes" between these outer 
boundaries must be considered questionable - these are in 
fact the regions of the map where the effects of local context 
appear to play a dominant role. In some sense, this map is a 
more valid "ground truth" than the actual ground truth, be- 
cause it consists of the perceivable textured regions. In a 
more complete treatment, this map would need to be further 
modulated in order to account for texture discrimination. 
This would allow for correct treatment of Category #6. It is 
also noted that this approach does not explicitly address the 
question of inclusions or of different levels of aggregation in 
the discrimination of textures. However, these are likely to 
affect polygon interiors just as much as they affect bounda- 
ries, and hence may be considered to be a separate (although 
related) problem. 

Additional local context effects were also found. Simple 
straight edges appear to be easier to discriminate than more 
complex boundaries and affect the interpreter boundary er- 
ror. Other effects were noticed but were not explicitly in- 
cluded in the study. These include a wider local context 
where the presence of a similar texture in the neighborhood 
may affect an interpreters ability to "see" a given texture. 
Over half the boundaries studied were affected by local con- 
text effects of some sort, indicating that these effects are ex- 
tremely important. More work needs to be done to character- 
ize the effects of local context on boundary interpretahility. 

The specific details of the boundary error model were 
not intuitively obvious, but do appear to be intuitively rea- 
sonable after the fact. The model combines two components, 
one dealing with texture variability and the other dealing 
with feature differences between two polygons. The variabil- 
ity term sums two measures of "total pattern uniformity," 
one for each polygon of the twain, weighted by the mean in- 
tensity of each polygon's texture pattern. The feature differ- 
ence component consists, in this simple model, of the 
maximum feature discriminator taken from the set of possi- 
ble discriminators, scaled appropriately so as to minimize 
the least squares error of the fuzzy width predictor. The 
model was successful on three different images (with two 
sets of textures and two spatial arrangements). The model 
adopted bears some similarity to the perceptual grouping 
principles proposed by the Gestalt school of psychologists 
(Wertheimer, 1958), which have been reappropriated within 
texture segmentation work in recent years (Reed and Wechs- 
ler, 1990), and hence at least parallels existing work in hu- 
man and computer vision fields. 

The measures used to characterize both the texture vari- 

ability and the texture discrimination could be estimated di- 
rectly from remotely sensed images. These measures charac- 
terize the textures locally and they do so in terms of struc- 
tural features, a repeatable "texture element" and a statistical 
pattern of such elements. It could be argued that tools such 
as the semi-variogram or autocorrelation measures could 
have been used to characterize the textures. These latter are 
global statistics, howaver, while the goal of this work was to 
develop locally valid analysis techniques. 

These findings are significant for a number of applica- 
tions. They suggest that one can infer at least relative dis- 
placement error (and possibly absolute errors, given suitable 
calibration) based on image characteristics during the pho- 
tointerpretation process. Furthermore, it may be possible to 
obtain parameters for interpreter bias which will help com- 
pare maps produced by different interpreters (or by the same 
interpreter at different epochs). Finally, a relatively straight- 
forward method has been found and tested to evaluate and 
map the presence of some of the local context effects which 
may affect the photointepretation process. Although the full 
benefits resulting from this work must await completion of 
the second and third phases, the approach appears to be use- 
ful. The texture characteristics used in this study, including 
the "characteristic area," the mean peak intensity, the mean 
radius, the mean spacing, the variance of the peak intensity, 
the variance of the radius, and the variance of the spacing 
are all capable of being estimated from a real image and 
hence are suggestive of other ways of analyzing texture in 
the context of forestry, especially for use with very high res- 
olution airborne digital data. 

Further work must concentrate on three areas. First, this 
analysis was carried out using image templates or masks of 
known characteristics, both spatial and in terms of "attrib- 
utes." In the real forest, there is no such "ground truth." 
Hence, these results must be generalized in two ways: first, 
the photointerpretations must be examined with respect to 
each other only, rather than with respect to the mask. Sec- 
ond, the textures must be characterized in terms of estimates 
derived from the image using appropriate image analysis 
techniques. In order to generalize the work in this way, the 
problem of pattern scale and hierarchy or inclusions must 
also be addressed. Indeed, different interpreters worked at 
different levels of detail in the artificial images studied here. 
Furthermore, the problem of the effect of local context on 
boundary uncertainty must be studied in more detail. This 
problem is linked to the problem of scale. 

The second area where more work must be done is to 
transfer the model developed here to the case of real forest 
data. Although the details will likely be quite different, the 
overall approach should be similar. For example, the charac- 
teristic areas were weighted by the mean intensity in our 
model. In the case of an aerial color photo, the relevant 
weighting parameter may not be mean intensity alone but in- 
clude some coIor-related parameter. Also, feature differences 
based on color, background, and shape criteria may also 
need to be developed. Furthermore, the discrimination of 
mixed textures (textures with more than one primitive) will 
have to be addressed. Finally, a model for stereo discrimina- 
tion may also be developed. 

Third, unambiguous methods for producing the kind of 
fuzzy map described above [which represents the real con- 
tent of the map) need to be developed and tested. Compata- 
bility tests aimed at evaluating where a new interpretation 
agrees with the existing maps and where it disagrees need to 
be developed. This will allow the use of forest maps within 
GIs without the database coherence problems which pres- 
ently play havoc in the map update process. 

Finally, it should be recognized that, although this work 
has been focused specifically on the problems of forest map- 
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ping and photointerpretation of forest stands, the main ideas 
touching the evaluation of local context, the measurement of 
boundary error, the relationship between boundary error and 
texture features, and the production of fuzzy content maps 
are probably applicable to almost any domain where pho- 
iointepretation is used. Hence, the mapping of soils, coast- 
lines, crops, watcr courses, water sediments, geological 
features, snowfields, etc., may all benefit from this kind of 
error analysis. The interpretation of noisy imagery such as 
radar i s  also likely to profit, as is, indeed, the interpretation 
of the results of more automated image analysis techniques 
such as are widely used in remote sensing. And any domain 
which requires the long term coherence of a spatial database 
based on an error-prone information extraction process may 
benefit from this work. 
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