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Abstract 
For thematic maps rnade from remote sensing at  the resolu- 
tion of polygons, there are frequently more data available 
than the single class assigned to the polygon. One way of us- 
ing these additional data is to provide secondary labels in 
maps. A key question concerns the reliability of these data. 
The optimistic view is that the distribution of classes at the 
pixel level is representative of the polygon, while the pessi- 
mistic view is that classifications are noisy and thus unrelia- 
ble at this level of detail. Secondary labels for a vegetation 
map of the Plumas National Forest mirror the errors in the 
original vegetation map, indicating cazltion in the use of sec- 
ondary labels. Results from the analysis of three decision 
rules indicate that class-conditional thresholds perform het- 
ter than either of the approaches based on a single thresh- 
old. The behavior of individual classes varies significantly as 
o function of n single threshold, but overall accuracy is gerz- 
erally stable. For future work, standards for accuracy of sec- 
ondary labels in maps need to be established. 

Introduction 
Satellite remote sensing is now routinely used to make vege- 
tation maps for resource management purposes (see, for ex- 
ample, Congalton et al. (1993) and Woodcock et al. (1994a)). 
Federal agencies, such as the U.S. Forest Service, Bureau of 
Land Management, and National Park Servicc, use these 
maps to assist in management of many resources, including 
timber, wildlife, and water. Frequently, the same map is 
used for many applications. One example is our recent work 
with the U.S. Foresl Service in California. We have been 
making vegetation maps, where the initial concern was tim- 
ber inventory. These same maps are now being used for a 
wide variety of applications, including wildlife habitat stud- 
ies. Given that the same map is often used in many ways, 
there is growing interest in providing as much information as 
pnssible to pntential users of the maps, as different users fre- 
quently have varying information requirements. One ap- 
proach to this problem is to provide secondary vegetation 
labels for map polygons. This approach would provide infor- 
mation about the presence of vegetation types not indicated 
in the original vegetation map. While these "secondary" veg- 
etation types explicitly are not the dominant vegetation type, 
their presence in the map could prove useful to some of Lhe 
many map users. The purpose of this paper is to begin to ex- 
plore the possibility of providing secondary vegetation la- 
bels. The approach adopted is to evaluate different methods 
of providing secondary labels and their accuracy. 

An example from our work wilh the U.S. Forest Service 
helps illustrate the varying information needs of different 
map users. From our vegetatiori maps, it is possible to esti- 
mate the location and areal extent of the vegetation type 
hardwood. However, for a wildlife habitat study, a more per- 
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tinent question might concern the location and extent of 
hardwood trees. The difference here is that hardwood trees 
could occur in other vegetation types, whereas the current 
maps only showed areas where hardwood trees are domi- 
nant. Thus, it would be useful to be able to identify locations 
of other vegetation types that contain significant components 
of hardwood trees. 

Recent experience indicates that vegetation maps for re- 
source management are made typically using Landsat TM or 
SPOT imagery, and are generally intended for use at a scale 
of 1:24,000. This scale dictates polygons with a minimum 
size of approximately 2 hectares, which explicitly implies 
polygons comprised of groups of pixels. For our mapping 
projects, we have been using the most frequently occurring 
vegetation type within a polygon to provide the label to be 
used in the vegetation map. The vegetation types havc becn 
assigned to individual pixels by employing unsupervised 
classification. Howcver, there are still considerable data 
available beyond the most frequently occurring class for each 
polygon. Two related questions remain: 

What methods can be used Lo provide seco~ldary labels? 

What are the accuracies associated will1 these different 
methods? 

Underlying the analysis presented in this paper is the 
idea that the accuracy of maps made from remote sensing in- 
creases as the class labels from individual pixels are aggre- 
gated to polygons. The primary label for a polygon is, in 
csscnce, an aggregation which stochastically smooths the er- 
rors occurring at the level of individual pixels. Secondary la- 
bels shift the level of aggregation closer to the individual 
pixels, and thus are likely to be inherently less accurate than 
primary labels. One of the key issues confronting the use of 
secondary labels will be whether or not they can be provided 
with sufficient accuracy to be useful. 

There has been little explicit attention to the problem of 
secondary labels in vegetation maps, but considerable past 
research is relevant to this issue. Stenback and Congalton 
(1990) evaluated the ability to detect forest understory using 
Landsat TM data. In thc context of the present study, their 
work constitutes an evaluation of the ability to detect one 
particular kind of secondary label (understory) within one 
vegetation type (conifer forest). There has been considerable 
atlention devoted to the idea that remotely sensed measure- 
ments can be considered mixes of vegetation types. Thc 
problems caused by "mixed" pixels for image classification 
arc well known and long lamentcd. One approach has been 
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TABLE 1. THIS TABLE SHOWS THE HIERARCHICAL VEGETATION CLASSIFICATION vidual pixels in order to assess their accuracy. Polygons are 
SCHEME FOR THE PLUMAS NATIONAL FOREST. I N  THIS STUDY OF SECONDARY more readily identifiable featmes, and thlls better suited for 
LABELS, ONLY THE FIVE GENERAL LANDCOVER CLASSES ARE CONSIDERED. accuracy assessment. 

General Land Cover Classes Additional Specifications The use of a linguistic scale in the accuracy assessment 
follows the approach of Gopal and Woodcock (1994), and is 

water unusual in the sense that it requires a rating for each possi- 
barrenlgrass ble label in the map. Thus, the dataset for the analysis pre- 
brush species associations sented in this paper includes the following for each of 165 
hardwood species associalions polygons visited in the field: (1) pixel counts for each of the 
conifer species associations five land-cover classes, and (2) ground reference data in the 

tree size form of ratings of the appropriateness of each land-cover 
tree cover class as a secondary label in a vegetation map. 

Methods and Results 
to use spectral mixing models to try to recover the various T~ evaluate the potential for providing secondary labels for 
proportions of different surIace materials (Nalepka and Hyde, maps, a method of evaluating the accuracy of secondary la- 
1972; Li and Strahler, 1985; Adams et al., 1986; Roberts et bels is secondary labels in maps differ in two p+ 
al., 1993). while these mixture models are usually applied to m a y  respects from the labels provided in more traditional 
pixels rather than ~ o l ~ g o n s ,  the underlying model for the maps: (1) there is no requirement that each polygon receive a 
nature of landscapes and remotely sensed measurements is seconday label, and (2) there is no explicit limit to the num- 
similar. While not considered in this study, spectral mixing ber of secondary labels a polygon might receive. ~ h ~ ~ ,  the 
models may prove a viable alternative for providing second- assessment of accuracy of secondary labels has to differ 
ary vegetation labels. Additionally, the use of neural net- somewhat from traditional methods (Congalton, 1991). The 
works for vegetation mapping has provided indications of method used in this paper is based on evaluating the pres- 
the mixed nature of remotely sensed measurements (Moody ence 0, absence of each possible secondary label for each 
et al., 1995). site. Because there are five land-cover types in the map, with 

one assigned as the primary label, there are four possible 
Data secondary labels for each site. Both errors of omission and 
The dataset used in this analysis comes from a vegetation commission are counted as incorrect, while the appropriate 
mapping project being conducted for the U.S. Forest Service inclusion or exclusion of classes are both counted as correct 
in the Sierra Nevada of California. The vegetation maps are (Figure 1). Given the data described above, classes given a 
hierarchical, providing varying levels of detail within five rating of 0,1, or 2 are counted as correct if they are given as 
general land-cover types (see Table 1). Landsat Thematic secondary labels, and incorrect if they are omitted. Classes 
Mapper imagery and digital terrain data are the primary in- given a rating of 3 are considered neutral and not counted as 
puts to the mapping process. The maps are being produced either right or wrong regardless of whether or not they are 
for use at a scale of 1:24,000, and have a minimum polygon given as a secondary label. In essence, the rating of 3 is the 
size of approximately 2 hectares (22 TM pixels) (Woodcock et borderline case. Classes with a rating of 4 are incorrect if in- 
al., 1994a). The final maps come from the combination of the cluded as secondary labels, and correct if not included. 
results from two independent steps. One of these steps is im- In this paper, three decision rules for assigning second- 
age segmontation, which is used to define the polygons. The ary labels are evaluated. The simplest approach involves us- 
image segmentation algorithm uses multiple passes and re- ing a single threshold for all classes. In this approach, for 
gion growing (Woodcock and Harward, 1992). The inputs to each polygon all classes with proportions exceeding this sin- 
the segmentation process are both spectral and texture bands gle threshold are assigned as secondary labels. One question 
(Woodcock et al., 1994a) The second step is an unsupervised concerns how to establish the value for this threshold. In 
pixel-level classification, which is used to assign pixels to most mapping applications, the only available alternative is 
the general land-cover classes (Franklin el al., 1986). The re- to select this global threshold on the basis of the intuition 
sults of these steps are combined by assigning a land-cover 
class to each polygon based on the pixel-level classification. 
At this time, a simple plurality rule is used to assign land- TABLE 2. THIS TABLE SHOWS THE LINGUISTIC RATING SCALE USED I N  ME 
cover labels. The key point for this paper is that each poly- COLLECTION OF FIELD DATA FOR ANALYSIS OF SECONDARY LABELS. 
gon contains many pixels [at least 22) and there is a distribu- 
tion of land-cover classes within each polygon. Rating Levels for 

Secondary Labels The map used in this analysis covers the Plumas Na- Rating Description 

tional Forest. The ground reference data were collected in o should have been the primary map label; if it 
the field at the time of the accuracy assessment of the map is not the primary label, it should appear as a 
(Woodcock et al., 1994b). The methods used to assess map secondary label 
accuracy are based on fuzzy sets, as described by Gopal and I defhitely should appear as a secondary label; 
Woodcock (1994). For the accuracy assessment, 165 sites it would be a problem to omit this class as a 
randomly selected within the five land-cover classes were secondary label 
visited in the field, and ratings were given regarding the ap- 2 desirable as a secondary label; less problem- 
propriateness of each possible map label. In addition to the atic if it didn't appear in the map 
data required for the map accuracy assessment, data relevant 
to secondary map labels were collected. These data are in 3 present, but borderline concerning its appro- 

priateness in the map; probably not a problem the form of ratings of the appropriateness of each of the five to find it in the map, but its omission would general land-cover classes as a secondary label using the rat- also not be a problem 
ing scale given in Table 2. This accuracy assessment ap- 
proach is based on polygons rather than pixels out of prac- clearly inappropriate as a secondary label; its 

appearance in the map would definitely be a tical necessity. In n-aturally vegetated landscapes it is problem. 
twicallv im~ossible to identifv preciselv the location of indi- -. " A . - 
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Figure 1. This figure illustrates the accuracy assessment 
scheme. Expert ratings of 0,  1, and 2 are combined, and 
3 is neutral. The x-axis is the proportion of the prxels in a 
polygon in a particular class. In this example, the propor- 
tion threshold of 0.2 is used. 

and experience of the people making the map. If the thresh- 
old is too low, many secondary labels will be assigned, and 
the most likely problems would be excessive errors of com- 
mission. Conversely, if the threshold is too high, the ex- 
pected problem would be excessive errors of omission. 

The first approach tested in this paper is a single thresh- 
old based on an educated guess-which was 20 percent of 
the pixels in a polygon. This means that if the proportion of 

TABLE 3. THIS TABLE SHOWS THE ACCURACY FOR THE THREE METHODS TESTED. 
THE SECOND COLUMN IS THE PERCENT ~MPROVEMENT OVER THE FIRST METHOD. 
THE THIRD COLUMN IS THE PERCEM OF THE ERROR REMAINING AFTER THE FIRST 

METHOD EXPLAINED BY THE SECOND AND THIRD METHODS. 

Percent 

Decision Rules 
Overall Improve- Error 

Accuracy ment Explained 

1. Educated Guess 80.4 N/A N/A 
2. Best Single Threshold 81.5 1 .I 6.4 
3. Class Specific Thresholds 85.2 4.8 24.5 

pixels in a class is less than 20 percent and it received an 
expert rating of 0, I, or 2, then it is an error of omission. If it 
has greater than or equal to 20 percent and received an expert 
rating of 4, then it is an error of commission. The accuracy 
for this single threshold is 80.4 percent (Table 3). This result 
is used as a baseline for comparison for the other decision 
rules. 

The second approach tested is the use of a single thresh- 
old which is determined through analysis of the accuracy as- 
sessment data. In this approach, the results from applying 
various thresholds are evaluated, with the threshold produc- 
ing the highest accuracy being selected. This approach is bi- 
ased, because the same data used to calibrate the decision 
rule are used to evaluate its quality. However, it is more ob- 
jective than the first approach, which is simply an educated 
guess. Figure 2 shows the accuracy of secondary labels as a 
function of thresholds for 5 percent intervals in the range of 
zero to 50 percent. There is little fluctuation in this graph, 
although a decline is clearly evident for large thresholds. The 
highest accuracy (Table 3) occurs at a threshold of 5 percent, 
although it is only slightly larger than the accuracy for the 
initial guess of 20 percent. 

The third approach tested uses class-specific thresholds. 
Again, the accuracy data are used to determine the optimum 
threshold for each class, which are given in Table 4. Using 
this approach, accuracy jumps to 85 percent. This method is 
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Figure 2. This graph shows accuracy as a function of various thresholds. 



guaranteed to result in a higher answer, but the wide range 
of thresholds selected for each class is surprising. 

The key to understanding the selection of 5 percent as 
the optimum single threshold and the reason the class spe- 
cific thresholds are an improvement is to examine the behav- 
ior of the individual classes. Figure 3 shows the accuracy for 
each class separately as a function of thresholds. The shape 
of the curve for brush most closely resembles the expected 
form. At very low thresholds, many polygons would receive 
a secondary label of brush, resulting in many errors of com- 
mission. As the threshold increases, accuracy rises as the er- 
rors of commission decrease. However, eventually as the 
threshold increases, only a few polygons receive brush as a 
secondary label, and errors of omission increase and accu- 
racy falls. Figure 4a illustrates the change in the distribution 
of errors between omission and commission for brush. One 
important note is the rule used for each threshold, in which 
the pixel-level proportion observed in a polygon exceeds the 
threshold. This rule is particularly important to remember 
when interpreting the results for a threshold of zero. In this 
case, only polygons that have pixels of the class in question 
would receive a secondary label. Notice from Figure 4a for 
the brush class, for example, that almost 20 percent of the er- 
rors for the zero threshold are errors of omission. This result 
implies that there are polygons with zero brush pixels that 
should have been assigned a secondary label of brush. 

The behavior of the conifer class as illustrated in Figure 
3 diverges significantly from the expected form. Accuracy in- 
creases as the threshold is reduced, with the highest accura- 
cies occurring with a threshold of either zero or 5 percent. 
Two factors influence the shape of this curve for the conifer 
class. First, in the original vegetation map, there are many 
errors of omission for the conifer class (Woodcock et al., 
1994b). There are many polygons in both the hardwood and 
brush classes that would have been better mapped as the 
conifer class. Given that situation, there are many of the 
sample sites where conifer received a rating of 0 as a second- 
ary label. Thus, when a strict, or high threshold is used 
which gives very few polygons a secondary label of conifer, 

TABLE 4. THIS TABLE SHOWS THE THRESHOLDS AND ACCURACIES FOR EACH 
CLASS FOR THE METHOD USING CLASS-CONDITIONAL THRESHOLDS. 

Class Optimum threshold Accuracy 

brush 10% 75.7% 
barren 10% 79.8% 
hardwood 35% 92.4% 
conifer U or 5% 61.2% 
water 10% 100% 

accuracy for the conifer class is very low. Second, the origi- 
nal class definitions are skewed to reflect one of the primary 
purposes of this particular vegetation map, which is timber 
inventory. Only 10 percent cover of conifer trees is required 
for a polygon to be included in the conifer class. So it takes 
very small amounts of conifer trees for the conifer class to be 
a desirable secondary label. This situation helps explain why 
the accuracy of the conifer class as a secondary label contin- 
ues to rise as the threshold is decreased. The trend for coni- 
fer accuracy to increase as thresholds are decreased appears 
to be the primary reason that the optimum single threshold 
is pushed back to 5 percent. 

The distribution of errors between omission and com- 
mission for the conifer class is interesting (Figure 4b). The 
small proportion of commission errors at low thresholds is 
another indication that the conifer class is under-represented 
in the pixel-level classification. Also, the high magnitude of 
errors at the zero threshold, which are predominantly errors 
of omission, indicates the impossible nature of trying to pro- 
vide accurate secondary labels of conifer using this dataset. 

The situation for the hardwood class is quite different. 
One of the findings of the accuracy assessment of the Plumas 
vegetation map (Woodcock ef al., 1994b) was that the hard- 
wood class was unreliable, and included many errors of 
commission. This trend is carried over into the secondary la- 
bels, where errors of commission are large for small thresh- 
olds (Figure 4c). 

The behavior of water and barren are less informative. 
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Figure 3. This graphs shows accuracy for each class as a function of various 
thresholds. 
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Figure 4. These graphs show the distribution of errors between omission and commission a s  a function of thresholds. 

Barren bchaves much the samc as brush, which conforms 
closest to the expected behavior. The accuracy of water rises 
directly from zero to 100 percent as the threshold changes 
from zero to 10 percent. This result indicates high accuracy 
in the pixel-level classification for water, and is the reason a 
figure showing the breakdown of the olnission and commis- 
sion error is omitted. 

Discussion 
One issue that emerges from this analysis concerns how to 
intcrpret the magnitudcs of thc accuracies. Because the meth- 
ods are clearly different from traditional map accuracy as- 
sessment, the results should not be dircctly comparcd. It 
must be remembered when interpreting the results in [his pa- 
per that the appropriate omission of a secondary label is as 
important as the appropriate inclusion of a secondary label. 
Thus, as the nu111ber of choices for secondary labels in- 
creases, one would expect the accuracy to increase. Some fu- 
ture method that takes this effect into account would be 
desirable. One possibility might be a modification of the 
kappa statistic (Cullen, 1960). 

Another question conccrns thc degree of accuracy that 
can be expected of secondary map labels. The idea of pro- 
viding secondary labels in maps is based on the assumption 

that there is a relationship between the cover proportions on 
the ground, and the distribution of classes at the pixel leveI 
for each polygon. At onc extreme would be the assumption 
that they match perfectly, in which case the proportions of 
classes in a polygon become a reliable estimate of the pro- 
portions of land covers in a polygon. A more skeptical view 
is that pixel-level classifications are frequently noisy, and, as 
a result, these relationships are unreliable. 'The key question 
then becomes, where along this continuum do pixel-level 
classifications exist? The results presented in this paper 
clearly indicate that there is error in the image classifica- 
tions. The most obvious cvidence arc the errors of omission 
for classes at the zero thresholds, which indicate that there 
are no pixels in polygons for classes for which secondary la- 
bels would be desirable. While some smoothing of pixel- 
level error occurs in assigning secondary labels, they cannot 
be expected to be as accurate as the primary map. Hut what 
accuracies are high enough to warrant including the second- 
ary labels in a map? l'hat question remains to be answered. 
For example, it is not clear whether accuracies in the range 
of A0 to 85 percent as found in this study are sufficient to 
warrant their use in a map. 

A related qucstion concerns thc significancc of thc im- 
provements in accuracy associated with the different deci- 
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The three approaches tested in this paper only represent 
a subset of the approaches possible. A fourth approach 
would be to use class conditional rules. A bivariate example 
of class conditional rules is shown in Figure 5. In this exam- 
ple, each site in the accuracy assessment that was labeled 
conifer in tho primary map is plotted as a function of the 
percentage of pixels in the polygon classified as brush and 
conifer. The numbers in the graph are the expert ratings for 
brush as a secondary label, and the line represents a bivari- 
ate decision boundary for assignment of brush as a second- 
ary label given that the polygon was assigned the label of 
conifer in the primary map. The idea here is that the propor- 
tion of brush pixels in a polygon needed to include brush as 
a secondary label could easily be different depending on the 
composition of the other pixels in the polygon. Calibrating 
this kind of approach requires considerably more data than 
were available for the Plumas dataset. For example, in Figure 
5, note that many of the polygons sampled have low propor- 
tions of brush pixels and, as a result, are not much help. 
This problem could be minimized by controlling the selec- 
tion of sample sites so that they are more evenly distributed 
through the range of combinations covered in this graph. 
This sample selection process would bias the accuracy as- 
sessment, which could be easily solved through the use of 
weights. The benefits of this approach could be large, and it 
is an approach that merits attention in future studies. 

One question not addressed in this paper is the influ- 
ence of the methods used to define the polygons in the map. 

I I - 
- 
- 

3 - 
h 3  

3 - 
2 - 

As previously mentioned, the method used here is image 

sion rules. In Table 3,  the accuracies for the different segmentation, which is based on the original spectral data 

methods are given three ways. ~ i ~ ~ t ,  there is the overall ac- m d  a texture channel. The image segmentation is ~ e r f o m e d  
curacy. Second is the improvement relative to the first ap- independently of the pixel classification. Different methods 

preach, or an educated guess at a single threshold. The last polygon definition might the 
way accuracy is presented is as a percentage of the error in with respect to secondary labels. Other possible methods of 

the first method explained by the second and third ap- polygon definition include hand delineation and methods 

preaches. This last helps illustrate the signiAcance of based on smoothing pixel-level classifications. Also, much of 

different levels of improvement. For example, a 5 percent the 'Is generates many sets of polygons 
improvement in a classification that is 90 percent accurate which could he used. The underlying question with respect 
may be more significant than a 5 percent improvement in a to polygon definition concerns the of vegetation 

classification that is '70 percent accurate, as a greater propor- within polygons. The use of polygons generali- 
tion of the error in the classification has been resolved, The zation, in which patches of vegetation too small to constitute 

small improvement of the approach using a best single an entire polygon must be merged with a neighboring area. If 
alternative polygon-definition methods perform this generali- 

Over the educated guess is Given the 
zation differently, the results of attempts to provide second- method of determining the best single threshold, its accuracy 

is guaranteed to be greater than or equal to the educated ary vegetation labels would be influenced. This topic war- 
guess threshold. The insensitivity of the results across a wide rants consideration in future work. 
range of thresholds indicated by Figure 2 is one of the more This paper addresses only a subset of possible types of 

interesting results of the analysis. The small changes for dif- labels that might be assigned in a map4 
cally, this paper focusses on providing additional nominal, 

ferent sing1e arc particularly given the or categorical, labels for polygons. Other possibilities might 
large differences in the behavior of the individual classes 
shown in Figure 3. One way to understand this result is to include estimates of the area covered by various vegetation 
remember that the points in Figure 2 are in essence the categories. 

weighted means of the individual classes as shown in Figure 
3. Given this perspective and the large increase associated C O ~ C ~ U S ~ O ~ S  
with the use of class specific thresholds, one recommenda- Secondary labels in vegetation maps hold the promise of 
tion that emerges from this study is the importance of using providing map users with additional information, helping 
class specific thresholds in mapping projects. make the maps useful for a wider range of applications. Sec- 

The analysis in this paper also clearly illustrates that the ondary labels have different properties from the original pri- 
errors in the secondary labels are highly related to the errors mary map and thus require different methods for accuracy 
in the primary map. This result should not be surprising, as assessmenl. In lhe approach used here, all possible second- 
they are both based on the same pixel-level classification. ary labels arc assessed, with errors of omission and cornmis- 
For example, one of the main findings of the assessment of sion weighted equally. Of the three methods tested for as- 
the primary map was frequent errors of omission for the con- signing secondary labels in vegetation maps, class condi- 
ifer class [Woodcock et al., 1994b). Similarly, using any of tional thresholds were the most accurate. There was little 
the decision rules tried in this analysis, there arc many er- difference in accuracy for a single threshold based on an ed- 
rors of omission for conirer as a secondary label (see Figures ucated guess and an optimum single threshold despite the 
3 and 4b). Thus, it may be unrealistic to expect secondary la- widely varying behavior of different vegetation classes as a 
bels to provide the correct primary label for polygons where function of thresholds. Errors in the secondary labels mirror 
the primary label is incorrect. the errors in the original map, as they are both based on the 
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F~gure 5. This graph a an example of a bi-uariate deci- 
sion rule. The numbers in the graph are expert ratings for 
the brush class as  a secondary label for sites mapped 
as conifer in the primary map. The line shows an exam- 
ple of a decision rule. 



same pixel-level classification. Clearly, there is noise in the 
pixel-level classification, which causes problems in polygon- 
based secondary labels. The question of accuracy standards 
for secondary labels has not been addressed in the literature, 
and needs further attention prior to regular adoption. 
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