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Abstract

For thematic maps made from remole sensing at the resolu-
tion of polvgons. there are frequently more data available
than the single elass assigned to the polygon. One way of us-
ing these additional data is to provide secondary labels in
maps. A key qm*shon concerns the reliability of these data.
The optimistic view is that the distribution of classes at the
pixel level is representative of the polygon, while the pessi-
mistic view is that classifications are noisy and thus unrelia-
ble at this level of detail. Secondary labels for a vegetation
map of the Plumas National Forest mirror the errors in the
original vegetation map. indicating caution in the use of sec-
ondary labels. Results from the analvsis of three decision
rules indicate that class-conditional thresholds perform bet-
ter than either of the approaches based on a single thresh-
old. The behavior of individual classes varies significantly as
a function of a single threshold, but overall accuracy is gen-
erally stable. For fumm work, standards for accuracy of sec-
rmﬂ'urv labels in maps need to be established.

Introduction

Satellite remolte sensing is now roulinely used lo make vege-
tation maps for resource management purposes (see, for ex-
ample, Congalton et al. (1993) and Woodcock et al. (1994a)).
Iederal agencies, such as the U.S. Forest Service, Bureau of
Land Management, and National Park Service, use these
maps to assist in management of many resources, including
timber, wildlife, and water. Frequently, the same map is
used for many applications. One example is our recent work
with the U.S. Forest Service in California. We have been
making vegetation maps, where the initial concern was tim-
ber inventory. These same maps are now being used for a
wide variety of applications, including wildlife habitat stud-
ies. Given that the same map is often used in many ways,
there is growing interest in providing as much information as
possible to potential users of the maps, as different users [fre-
quently have varying information requirements. One ap-
proach to this problem is to provide secondary vegetation
labels [or map polygons. This approach would provide infor-
mation about the presence of vegetation types not indicated
in the original vegetation map. While these “secondary” veg-
etation types explicitly are not the dominant vegetation type,
their presence in the map could prove useful to some of the
many map users. The purpose of this paper is lo begin to ex
plore the possibility of providing secondary vegetation la-
bels. The approach adopted is to evaluate different methods
of providing secondary labels and their accuracy.

An example [rom our work with the U,S, Forest Service
helps |llu.ﬁlmtc the varying information needs of different
map users. rom our vegelalion maps, il is possible Lo esti-
mate the location and areal extent of the vegetation tvpe
hardwood. However, for a wildlife habitat study, a more per-
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finent question might concern the location and extent of
hardwood trees. The dilference here is that hardwood trees
could occur in other vegetation types. whereas the current
maps only showed areas where hardwood trees are domi-
nant. Thus, it would be useful to be able to identify locations
of other vegetation types thal contain significant components
of hardwood trees.

Recent experience indicates that vegetation maps for re-
source management are made typically using Landsat T™ or
SPOT imagery, and are generally intended for use at a scale
of 1:24,000. This scale dictates polygons with a minimum
size of approximately 2 hectares, which explicitly implies
polygons comprised of groups of pixels. For our mapping
projects, we have been using the most frequently occurring
vegetation tyvpe within a polygon to provide the label to be
used in the vegetation map. The vegetation types have been
assigned lo |mi1\'|clu(|| pixels by l,m[_rlr:}'uqj unsupervised
classification. However, there are still considerable data
available beyvond the most frequently occurring class for each
polvgon. Two related questions remain:

What methods can be used to provide secondary labels?
What are the accuracies associated with these dilferent
methods?

Underlving the analvsis presented in this paper is the
idea that the accuracy of maps made from remote sensing in-
creases as the class labels from individual pixels are aggre-
galed to polygons. The primary label for a4 polygon is, in
essence, an aggregation which stochastically smooths the er-
rors occurring at the level of individual pixels. Secondary la-
bels shift the level of aggregation closer to the individual
pixels, and thus are likely to be inherently less accurate than
primary labels. One of the key issues confronting the use of
secondary labels will be whether or not they can be provided
with sufficient accuracy to be useful.

There has been little explicit attention to the problem of
secondary labels in vegetation maps, but considerable past
research is relevant to this issuc. Stenback and Congalton
(1990) evalualed the ability to delect forest understory using
Landsat T™ data. In the context of the present study, their
work constitutes an evaluation of the ability to detect ane
particular kind of secondary label (understory) within one
vegetation type (conifer forest). There has been considerable
allention devoled Lo the idea thal remotely sensed measure-
ments can be considered mixes of vegetation types. The
problems caused by “mixed™ pixels for image classification
arc well known and long lamented. One approach has been
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TABLE 1. THIS TABLE SHOWS THE HIERARCHICAL VEGETATION CLASSIFICATION
SCHEME FOR THE PLUMAS NATIONAL FOREST. IN THIS STUDY OF SECONDARY
LaBELS, ONLY THE FIVE GENERAL LAND-CoveR CLASSES ARE CONSIDERED.

General Land Cover Classes Additional Specificalions

waler

barren/grass

brush species associations
hardwood species associalions
coniler species associations

tree size
lree cover

to use spectral mixing models to try to recover the various
proportions of dilferent surface malerials (Nalepka and Hyde,
1972; Li and Strahler, 1985: Adams et al., 1986: Roberts et
al., 1993). While these mixture models are usually applied to
pixels rather than to polygons, the underlying model for the
nature of landscapes and remotely sensed measurements is
similar. While not considered in this study. spectral mixing
models may prove a viable alternative for providing second-
ary vegetation labels. Additionally, the use of neural net-
works for vegetation mapping has provided indications of
the mixed nature of remotely sensed measurements (Moody
et al., 1995),

Data

The dataset used in this analysis comes from a vegetation
mapping project being conducted for the U.S. Forest Service
in the Sierra Nevada ol California. The vegelalion maps are
hierarchical, providing varying levels of detail within five
general land-cover types (see Table 1). Landsat Thematic
Mapper imagery and digital terrain data are the primary in-
puts to the mapping process. The maps are being produced
for use at a scale of 1:24,000, and have a minimum polygon
size of approximalely 2 heclares (22 ™ pixels) (Woodcock et
al., 19494a). The final maps come from the combination of the
resulls from two independent steps. One of these steps is im-
age segmentation, which is used to define the polygons. The
image segmentation algorithm uses multiple passes and re-
gion growing (Woodcock and Harward, 1992). The inputs to
the segmentation process are both spectral and texture bands
(Woodcock et al., 1994a) The second step is an unsupervised
pixel-level classification, which is used to assign pixels to
the general land-cover classes (Franklin et al., 1986). The re-
sults of these steps are combined by assigning a land-cover
class to each polygon based on the pixel-level classification.
Al this time, a simple plurality rule is used to assign land-
cover labels. The key point for this paper is that each poly-
gon contains many pixels (at least 22) and there is a distribu-
tion of land-cover classes within each polygon.

The map used in this analysis covers the Plumas Na-
tional Forest. The ground reference data were collected in
the field at the time of the accuracy assessment ol the map
(Woodcock ef al., 1994b). ‘The methods used to assess map
accuracy are based on fuzzy sets, as described by Gopal and
Woodeock (1994). For the accuracy assessment, 165 sites
rundomly selecled within the five land-cover classes were
visited in the field, and ratings were given regarding the ap-
propriateness of each possible map label. In addition to the
data required for the map accuracy assessment, data relevant
to secondary map labels were collected. These data are in
the form of ratings of the appropriateness of each of the five
general land-cover classes as a secondary label using the rat-
ing scale given in Table 2. This accuracy assessmenl ap-
proach is based on polygons rather than pixels out of prac-
tical necessity. In naturally vegelaled landscapes it is
typically impossible to identify precisely the location of indi-
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vidual pixels in order to assess their accuracy. Polygons are
more readily identifiable features, and thus better suited for
accuracy assessment,

The use of a linguistic scale in the accuracy assessment
follows the approach of Gopal and Woodcock (1994), and is
unusual in the sense that it requires a rating for cach possi-
ble label in the map. Thus, the dataset for the analysis pre-
sented in this paper includes the following for each of 165
polygons visited in the field: (1) pixel counts lor each of the
five land-cover classes, and (2) ground reference data in the
form of ratings of the appropriateness of each land-cover
class as a secondary label in a vegetation map.

Methods and Results

To evaluate the potential for providing secondary labels for
maps, a method of evaluating the accuracy of secondary la-
bels is needed. Secondary labels in maps differ in two pri-
mary respects from the labels provided in more Iraditional
maps: (1) there is no requirement that each polygon receive a
secondary label, and (2) there is no explicit limif to the num-
ber of secondary labels a polygon might receive. Thus, the
assessment of accuracy of secondary labels has to differ
somewhat from traditional methods (Congalton, 1991), The
method used in this paper is based on evaluating the pres-
ence or absence of each possible secondary label for each
site. Because there are five land-cover types in the map, with
one assigned as the primary label, there are four possible
secondary labels for each site. Both errors of omission and
commission are counted as incorrect, while the appropriate
inclusion or exclusion of classes are both counted as correct
(Figure 1). Given the data described above, classes given a
rating of 0,1, or 2 are counted as correct if they are given as
secondary labels, and incorrect if they are omitted. Classes
given a rating of 3 are considered neutral and not counted as
either right or wrong regardless of whether or not they are
given as a secondary label. In essence, the rating of 3 is the
borderline case. Classes with a rating of 4 are incorrect if in-
cluded as secondary labels, and correct if not included.

In this paper, three decision rules for assigning second-
ary labels are evaluated. The simplest approach involves us-
ing a single threshold for all classes. In this approach, for
each polygon all classes with proportions exceeding this sin-
gle threshold are assigned as secondary labels. One question
concerns how Lo establish the value for this threshold. In
most mapping applications, the only available alternative is
to select this global threshold on the basis of the intuition

TABLE 2.  THIS TABLE SHOws THE LINGUISTIC RATING SCALE USED IN THE
CoLLECTION OF FIELD DATA FOR ANALYSIS OF SECONDARY LABELS.

Rating Levels for

Secondary Labels Rating Description

0 should have been the primary map label: il il
is not the primary label, it should appear as a
secondary label

1 definitely should appear as a secondary label:
it would be a problem to omit this class as a
secondary label

2 desirable as a secondary label; less problem-
atic if it didn’t appear in the map

3 present, but borderline concerning its appro-
priateness in the map; probably not a problem
to find it in the map, but its omission would
also not be a problem

4 clearly inappropriate as a secondary label; ils
appearance in the map would definitely be a
problem.
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Figure 1. This figure illustrates the accuracy assessment

scheme. Expert ratings of 0, 1, and 2 are combined, and
3 is neutral. The x-axis is the proportion of the pixels in a
polygon in a particular class. In this example, the propor-
tion threshold of 0.2 is used.

TaBLe 3. THis TaBLE SHows THE ACCURACY FOR THE THREE METHODS TESTED.

THE Seconn Corumn Is THE PERCENT IMPROVEMENT OVER THE FiRST METHOD.

THE THIRD CoLumn |s THE PERCENT OF THE ERROR REMAINING AFTER THE FIRST
METHOD EXPLAINED BY THE SEconD anDp THIRD METHODS.

and experience of the people making the map. If the thresh-
old is too low, many secondary labels will be assigned, and
the most likely problems would be excessive errors of com-
mission. Conversely, il the threshold is too high, the ex-
pected problem would he excessive errors of omission.

The first approach tested in this paper is a single thresh-
old based on an educated guess—which was 20 percent of
the pixels in a polygon. This means that if the proportion of

Percent
Overall Improve- Error
Decision Rules Accuracy ment Explained
1. Educated Guess 80.4 N/A N/A
2. Best Single Threshold 81.5 1.1 6.4
3. Class Specific Thresholds 85.2 4.8 24.5

pixels in a class is less than 20 percent and it received an
expert rating of 0, 1, or 2, then it is an error of omission. If it
has greater than or equal to 20 percent and received an expert
rating of 4, then it is an error of commission. The accuracy
for this single threshold is 80.4 percent (Table 3). This result
is used as a baseline for comparison for the other decision
rules.

The second approach tested is the use of a single thresh-
old which is determined through analysis of the accuracy as-
sessment data, In this approach, the results from applying
various thresholds are evaluated, with the threshold produc-
ing the highesl accuracy being selected. This approach is bi-
ased, because the same data used to calibrate the decision
rule are used to evaluate its quality. However, it is more ob-
jective than the first approach, which is simply an educated
guess. Figure 2 shows the accuracy of secondary labels as a
function of thresholds for 5 percent intervals in the range of
zero to 50 percent. There is little fluctuation in this graph,
although a decline is clearly evident for large thresholds. The
highest accuracy (Table 3) occurs at a threshold of 5 percent,
although it is anly slightly larger than the accuracy for the
initial guess of 20 percent.

The third approach tested uses class-specific thresholds.
Again, the accuracy data are used to determine the optimum
threshold for each class, which are given in Table 4. Using
this approach, accuracy jumps to 85 percent. This method is
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Figure 2. This graph shows accuracy as a function of various thresholds.

0.3 0.4 0.5

PE&RS April 1996

395




guaranteed to result in a higher answer, but the wide range
of thresholds selected for each class is surprising.

The key to understanding the selection of 5 percent as
the optimum single threshold and the reason the class spe-
cific thresholds are an improvement is to examine the behav-
ior of the individual classes. Figure 3 shows the accuracy for
each class separately as a function of thresholds. The shape
ol the curve for brush most closely resembles the expected
form. At very low thresholds, many polygons would receive
a secondary label of hrush, resulling in many errors of com-
mission. As the threshold increases, accuracy rises as the er-
rors of commission decrease. However, eventually as the
threshold increases, only a few polygons receive brush as a
secondary label, and errors of omission increase and accu-
racy falls. Figure 4a illustrates the change in the distribution
of errors between omission and commission for brush. One
important note is the rule used for each threshold, in which
the pixel-level proportion observed in a polygon exceeds the
threshold. This rule is particularly important to remember
when interpreting the results for a threshold of zero. In this
case, only polvgons that have pixels of the class in question
would receive a secondary label, Notice from Figure 4a for
the brush class, [or example, that almost 20 percent of the er-
rors for the zero threshold are errors of omission. This result
implies that there are polygons with zero brush pixels that
should have been assigned a secondary label of brush.

The behavior of the conifer class as illustrated in Figure
3 diverges significantly from the expected form. Accuracy in-
creases as Lhe threshold is reduced, with the highest accura-
cies occurring with a threshold of either zero or 5 percent.
Two laclors influence the shape of this curve for the conifer
class. First. in the original vegetation map, there are many
errors of omission for the conifer class (Woodcock et al.,
1994b). There are many polygons in both the hardwood and
brush classes that would have been better mapped as the
conifer class. Given thal situation, there are many of the
sample sites where conifer received a rating of 0 as a second-
ary label. Thus, when a strict, or high threshold is used
which gives very few polygons a secondary label of conifer,

TagLe 4. This TABLE SHOWS THE THRESHOLDS AND AGCURACIES FOR EACH
CLass rorR THE MeTHOD Using CLass-ConpimionaL THRESHOLDS.

Class Optimum threshold Accuracy
brush 10% 75.7%
barren 10% 79.8%
hardwood 35% 92.4%
conifer 0 or 5% 61.2%
water 10% 100%

accuracy for the conifer class is very low. Second, the origi-
nal class definitions are skewed to reflect one of the primary
purposes of this particular vegetation map, which is timber
inventory. Only 10 percent cover of conifer trees is required
for a polygon to be included in the conifer class. So il lukes
very small amounts of conifer trees for the conifer class to be
a desirable secondary label. This situation helps explain why
the accuracy of the conifer class as a secondary label contin-
ues to rise as the threshold is decreased. The trend lor coni-
fer accuracy to increase as thresholds are decreased appears
to be the primary reason that the oplimum single threshold
is pushed back to 5 percent.

The distribution of errors between omission and com-
mission for the conifer class is interesting (Figure 4b). The
small proportion ol commission errors at low thresholds is
another indication that the conifer class is under-represented
in the pixel-level classification. Also, the high magnitude of
errors at the zero threshold, which are predominantly errors
of omission, indicates the impossible nature of tryving to pro-
vide accurate secondary labels of conifer using this dataset,

The situation for the hardwood class is quite different.
One of the findings of the accuracy assessment of the Plumas
vegetation map (Woodcock et al., 1994h) was that the hard-
wood class was unreliable, and included many errors of
commission. This trend is carried over into the secondary la-
bels, where errors of commission are large for small thresh-
olds (Figure 4c).

The behavior of waler and barren are less informative.

Accuracy

0.0 0.1

thresholds.

0.2

Proportion Thresholds

Figure 3. This graphs shows accuracy for each class as a function of various
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Barren behaves much the same as brush, which conforms
closest to the expected behavior. The accuracy of water rises
directly from zero to 100 percent as the threshold changes
from zero to 10 percent. This result indicates high accuracy
in the pixel-level classification for water, and is the reason a
figure showing the breakdown of the omission and commis-
sion error is omitted.

Discussion
One issue thal emerges from this analysis concerns how Lo
interpret the magnitudes of the accuracies. Because the meth-
ods are clearly different from traditional map accuracy as-
sessment, the results should not be directly compared. It
must be remembered when interpreting the results in this pa-
per that the appropriate omission of a secondary label is as
important as the appropriate inclusion of a secondary label.
Thus, as the number of choices for secondary labels in-
creases, one would expect the accuracy to increase. Some fu-
ture method thal takes this effect into account would be
desirable. One possibility might be a modification of the
kappa slatistic (Cohien, 1960).

Another question concerns the degree of accuracy that
can be expected of secondary map labels. The idea of pro-
viding secondary labels in maps is based on the assumption
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that there is a relationship between the cover proportions on
the ground, and the distribution of classes al the pixel level
for each polygon. At one extreme would be the assumption
that they match perfectly, in which case the proportions of
classes in a polygon become a reliable estimate of the pro-
portions of land covers in a polygon. A more skeptical view
is that pixel-level classifications are frequently noisy, and. as
a result, these relationships are unreliable. The key question
then becomes, where along this continuum do pixel-level
classifications exist? The results presented in this paper
clearly indicate that there is error in the image classilica-
tions. The most obvious cvidence are the errors of omission
for classes al the zero thresholds, which indicate that there
are no pixels in polvgons for classes for which secondary la-
bels would be desirable. While some smoothing of pixel-
level error occurs in assigning secondary labels, they cannot
be expected to be as accurate as the primary map. But what
accuracies are high enough to warrant including the second-
ary labels in a map? That question remains to be answered.
For example, it is not clear whether accuracies in the range
of 80 to 85 percent as found in this study are sufficient to
warrant ”ll‘}ir use in a Illl':lp.

A related question concerns the significance of the im-
provements in accuracy associated with the ditferent deci-
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Figure 5. This graph is an example of a bi-variate deci-
sion rule. The numbers in the graph are expert ratings for
the brush class as a sccondary label for sites mapped
as conifer in the primary map. The line shows an exam-
ple of a decision rule.

sion rules. In Table 3, the accuracies for the different
methods are given three ways. First, there is the overall ac-
curacy. Second is the improvement relative to the first ap-
proach, or an educated guess at a single threshold. The last
way accuracy is presented is as a percentage of the error in
the first method explained by the second and third ap-
proaches. This last column helps illustrate the significance of
different levels of improvement. For example, a 5 percent
improvement in a classification that is 90 percent accurate
may be more significant than a 5 percent improvement in a
classification that is 70 percent accurale, as a grealer propor-
tion of the error in the classification has been resolved. The
small improvement of the approach using a best single
threshold over the educated guess is surprising. Given the
method of determining the best single threshold, its accuracy
is guaranteed to be greater than or equal to the cducated
guess threshold. The insensitivity of the results across a wide
range of thresholds indicated by Figure 2 is one of the more
inleresting results of the analysis. The small changes for dif-
ferent single thresholds are particularly surprising given the
large dilferences in the behavior of the individual classes
shown in Figure 3. One way to understand this result is Lo
remember that the points in Figure 2 are in essence the
weighted means of the individual classes as shown in Figure
3. Given this perspective and the large increase associated
with the use of class specific thresholds, one recommenda-
tion that emerges from this study is the importance of using
class specific: thresholds in mapping projects.

The analysis in this paper also clearly illustrates thal the
errors in the secondary labels are highly related to the errors
in the primary map. This result should not be surprising, as
they are both based on the same pixel-level classification.
For example, one of the main findings of the assessment of
the primary map was frequent errors of omission for the con
ifer class (Woodcock et al., 1994b). Similarly, using any of
the decision rules tried in this analysis, there are many er-
rors of omission [or conifer as a secondary label (see Figures
3 and 4b). Thus, it may be unrealistic to expect secondary la-
bels to provide the correct primary label for polygons where
the primary label is incorrect.
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The three approaches tested in this paper only represent
a subset of the approaches possible. A fourth approach
would be to use class conditional rules. A bivariate example
of class conditional rules is shown in Figure 5. In this exam-
ple, each site in the accuracy assessment that was labeled
conifer in the primary map is plotted as a function of the
percentage ol pixels in the polygon classitied as brush and
conifer. The numbers in the graph are the expert ratings for
brush as a secondary label, and the line represents a bivari-
ate decision boundary for assignment of brush as a second-
ary label given that the polygon was assigned the label of
conifer in the primary map. The idea here is that the propor-
tion of hrush pixels in a polygon needed to include brush as
a secondary label could easily be dillerent depending on the
composition of the other pixels in the polygon. Calibrating
this kind of approach requires considerably more data than
were available for the Plumas dataset. For example, in Figure
5, note that many of the polygons sampled have low propor-
tions of brush pixels and, as a result, are not much help.
This problem could be minimized by controlling the selec-
tion of sample sites so that they are more evenly distributed
through the range of combinations covered in this graph.
This sample selection process would bias the accuracy as-
sessment, which could be easily solved through the use of
weights. The benefits of this approach could be large, and it
is an approach that merits attention in future studies.

One question not addressed in this paper is the influ-
ence of the methods used to define the polygons in the map.
As previously mentioned, the method used here is image
segmentation, which is based on the original spectral data
and a texture channel. The image segmentation is performed
independently of the pixel classification. Different methods
of polygon definition might significantly influence the resulls
with respect to secondary labels. Other possible methods of
polygon definition include hand delineation and methods
based on smoothing pixel-level classifications. Also. much of
the current GIS analysis generates many sets of polygons
which could be used. The underlving question with respect
to polygon definition concerns the homogeneity of vegetation
cover within polygons. The use of polygons implies generali-
zation, in which patches of vegetation too small to constitute
an entire polygon must be merged with a neighboring area. If
alternative polygon-definition methods perform this generali-
zation differently, the results of attempts to provide second-
ary vegetation labels would be influenced. This topic war-
rants consideration in future work.

This paper addresses only a subset of possible types of
secondary labels that might be assigned in a map. Specili-
cally, this paper focusses on providing additional nominal,
or categorical, labels for polygons. Other possibilities might
include estimates of the area covered by various vegelation
categories.

Conclusions

Secondary labels in vegetation maps hold the promise of
providing map users with additional information, helping
make the maps useful for a wider range of applications. Sec-
ondary labels have diflerenl properties from the original pri-
mary map and thus require different methods for accuracy
assessmenl. In the approach used here, all possible second-
ary labels are assessed, with errors of omission and commis-
sion weighted equally. Of the three methods tested for as-
signing secondary labels in vegetation maps, class condi-
tional thresholds were the most accurate. There was little
difference in accuracy for a single threshold based on an ed-
ucated guess and an optimum single threshold despite the
widely varying behavior of different vegetation classes as a
function of thresholds. Errors in the secondary labels mirror
the errors in the original map, as they are both based on the
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same pixel-level classification. Clearly, there is noise in the
pixel-level classification, which causes problems in polvgon-
based secondary labels. The question of accuracy standards
for secondary labels has not been addressed in the literature,
and needs further attention prior to regular adoption.
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Multitemporal Analysis
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The Pecora 12 proceedings provides professionals with the technical articles individuals involved in
the field of satellite remote sensing most require. The papers disauss cunrent policies and issues that
influence the practical use of this technology. The twelfth Pecora Symposium was held
August 1993 in Sioux Falls, South Dakota.

Plenary Session | - The Need for Land Information

Technical Sessions | and Il - Progress in Producing Land Information

Terrain Data and Applications; Land Use/L.and Cover - Issues in Large Area Analysis
Using AVHRR and Ancillary Data; Soils and Geology; Remote Sensing of the Biosphere/
Hydrosphere Interface; Land Use and Land Cover Assessment; Land Use/Land Cover - Forest
and Range Resources; Soils and Geology; Land Remote Sensing Using AVHRR Data

Plenary Session 2 - Current Technologies for Providing Land Information

Technical Sessions Il and IV - Technologies for Producing Land Information
Data Archive and Access; Analysis Techniques; Sensors for Land Remote Sensing from

Space; Environmental Remote Sensing; Dataset Development; Accuracy Assessment and

Validation Issues; Environmental Modeling, GIS, and Space-Based Remote Sensing;

Plenary Session 3 - Promoting Progress in Development of Land Information
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