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Abstract

The kuppa coefficient of agreement is frequently used to
summarize the results of an accuracy assessment used to
evaluate land-use or lund-cover classifications obtained by
remote sensing. The standard estimalor of the kappa coeffi-
cient along with the standard error of this estimator require
a sampling model that is approximated by simple random
sampling. Formulas are presented for estimating the kappa
coefficient and its variance for stratified random sampling.
Empirical results demonstrate that these estimators have lil-
tle bias, and confidence intervals perform well, often even at
relatively small saumple sizes.

Introduction

Accuracy assessment of land-use or land-cover classifications
oblained by salellite remote sensing is necessary to evaluate
the quality of maps developed from remotely sensed data. A
Lypical strategy [or accuracy assessment is to use a statisti-
cally sound sampling design to select a sample of locations
(pixels) in the study region, and to determine if the land-use
or land-cover classification assigned to that pixel matches the
true classification of the ground location represented by thal
pixel. The reference classification, whether obtained on the
basis of ground visit or photointerpretation, is assumed to be
correct. The sample data are often summarized in an error
malrix, which is then subjected to various statistical analyses
(Congalton et al., 1983). The kappa coefficient of agreement
(KAPPA) (Cohen, 1960) is one parameter frequently used in
these analyses ol error matrices (here “parameter” is used in
the statistical sense of a number describing a characteristic of
the population). Congalton et al. (1983) and Rosenlield and
Fitzpatrick-Lins (1986) provide additional details on applica-
tions of KAPPA in remote sensing.

To estimate KAPPA [rom the sample data, Bishop et al.
(1975, p. 396) and Agresti (1989, p. 366) present formulas for
the maximum-likelihood estimator, KHAT, of KAPPA, and the
standard error of KHAT. These formulas were derived under
the assumption of mullinomial sampling, which is approxi-
mately satisfied by simple random sampling. The effect of
using these formulas when the sampling design is not simple
random has received little attention (Congalton, 1991). Steh-
man (1992) found that the usual formula for estimating
KAPPA had negligible bias when the sampling design was
systemaltic or systematic unaligned, but the estimator of the
variance of KHAT was biased. Other sampling designs have
not been studied.

Stratified sampling (Cochran, 1977, Chap. 5) is a poten-
tially useful design for accuracy assessment. In particular, if
strata are conslructed on the basis of the categories of the re-
molely sensed image, stratified sampling permits control over
the number of sample observations in each map category.
This guarantees that a minimum sample size can be selected
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13210.

PE&RS April 1996

in each stratum or category. Decause the stratified design
does not satisfy the multinomial sampling model, neither the
standard formula for KHAT nor the formula for the standard
error of KHAT is appropriate.

In this article, an estimator (denoted KS) of KAPPA is de-
rived for use with stratified sampling. In addition, the vari-
ance and a sample-based variance estimator of KS are derived
under stratified random sampling. KS is appropriate for sys-
tematic sampling within strata, a design which might be
used il stratificalion is by geographic region rather than by
map category. However, the variance and variance estimator
derived in this article are nol appropriate for a stratilied sys-
tematic design. The variance formulas depend on a large
sample approximation, so empirical results are presented (o
confirm the validity of the estimators proposed, and to evalu-
ate properties of these estimators at small sample sizes.

Description of Estimators

Suppose a remote sensing image of N pixels is classified into
q categories. Given a census of all N pixels and the true clas-
sification of each pixel, the population error matrix is

Reference Row

1 2 q Total
1 ‘er 1 J\{I 2 l'\'I| q J'\"‘1
Image 2 N, N, e N,, N,
(Stratum) : : - : :
q N, N, N, N 7
Col. Tol. M, M, i M, N

A census is, of course, impractical, so sampling is necessary
to obtain an estimate of KAPPA. I'or a stratified sampling de-
sign, in which the strata are the map classes of the image,
the row totals, N,. are known, but the column totals, M, are
unknown. All enlries, N, within the error matrix are also
unknown.

From the population error matrix, the parameter of inler-
est is (Bishop et al., 1975, p. 395)

i i
3 pi— X pp

KAPPA = * : (1)

where p,; = N,/N, p,, = N,/N, and p., = M,/N. Because il is
a parameter of the population, KAPPA is unchanged by the
choice of sampling design. If the ¢ rows of the population er-

Photogrammetric Lngineering & Remote Sensing,
Vol. 62, No. 4, April 1996, pp. 401-402.

0099-1112/96/6204-40183.00/0

© 1996 American Society for Photogrammetry
and Remote Sensing

401



ror matrix are used as strata, KAPPA may be written in the
following lorms, algebraically equivalent to Equation 1, cor-
responding to the population stratification:

£ owm - £ ()G

N/\N
KAPPA = TR, (2)
= Ny (M,
nz| (N)(N
o q
N Z N~ 2 MM,
= (3)

m—Zwm

In stratified random sampling, a simple random sample
of pixels is selected in each stratum. The stratum sample
sizes, n, are specilied in advance of the sample collection by
the investigator, and each stratum is sampled independently
ol the other strata. Ground visils or photointerprelalion are
used to determine if the sampled pixel is classified correctly

s

or not. The results for a sample of n = 2 n,, pixels are or-
li=1

ganized into a sample error matrix,

Reference Row
1 2 q I'otal
i ny, n,, sive i, n,
Image 2 1y, n,, Sib ny, n,
q n, 1 I Hier n,
n

The row totals (n,) are fixed by the stratified design, but the
n,'s depend on the observed sample.

The details of the derivation of the stralilied sampling
estimator of kArpA and the variance ol this estimator are de-
ferred to the Appendix. The general approach follows from
Result 5.5.1 of Sdrndal et al., (1992) in which the population
quantities N, and M, in Equation 3 are replaced by stan-
dard, unbiased, stratified random sampling estimators of
these population totals. The estimator of KAPPA for stratified
sampling is

il q
N Y Ny, — X N, b,
h=1 h=l
z ; (4)
Nt - X N,M,

KS§ =

- N, . . .
where N, = T“ n,, is an unbiased estimator of N,,. The no-
I

tation is somewhat awkward here in that M, estimales a col-
umn total, not a row total. For any column j = 1,....q, an

e N, :

hz‘ a n,, (the estimated col-
umn total requires summation over the g strata). KS is not an
unbiased estimator of KAPPA, but it is a consistent estimator

(Sdrndal et al., 1992, p. 168), and the bias of Ks is shown to

be small in the populations examined in the subsequent em-
pirical study.

The variance of K3, denoted V(KS), requires knowing the
population error matrix, and a large-sample, approximate for-
mula, denoted AV(KS), is presented in the Appendix. Note
that V(ks) is the parameter of interest, and that AV(ks) is a
population quantity that will approximate V(ks) for large
samples. The important practical problem of estimating V(KS)
from the sample data is addressed as follows. For conven-

unbiased estimator of M, is f\},’! =
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ience in writing the formula for the estimated variance, de-

1 7
fine D = ,Z N, and G = {E N, M,. For each stratum h of
=1 =1

the sample error matrix, calculate

| N N(D - N)
u, = n, {nhfr[‘l\‘rz = C,:l i Z ]J'lr } [5]

(N~ &y £
N,‘ N(D - N]]2

[Na: == C"]z}
D - Ny ;
+ N# ———— E n,N? (6
(NT—Cp = (6)
;an
and
V, = (v — nui)/(n, — 1). (7)
Then the estimated variance of KS is
- [f o~
V(ks) = X Ni(1 = fi)V/m,, (8)

where [, = n,/N, is the sampling fraction in stratum h. For
strata in which n, is small relative to N, the finite popula-
tion correction factor (1 — f;) may be ignored. A confidence
interval for KAPPA is constructed using KS £ z, VV(Ks),
where z_ is the percenlile [rom a standard normal distribu-
tion appropriate for the desired confidence probability.

Empirical Results
A simulation study was conducted to evaluate how closely
AV(KS) approximates V(KS), to evaluate bias of KS and
V(Ks), and to explore the properties of these estimators for
small sample sizes. The 11 populations investigated were se-
lected to represent a variely of population error malrices (Ta-
ble 1). Four of these matrices (AIRPORT1, BLOCK, DIAGONAL,
and MASSLAND) were studied by Stehman (1992), three were
artificial populations constructed for this study (STRATZ,
STRAT4, and STRATS), and four were constructed by expand-
ing published sample error matrices (BLIGHT, Table 2 in Ro-
senfield and Iitzpatrick-Lins (1986): OLDGROWTH, Table 3 in
Congalton et al. (1993); STANDCON, Table 3 in Fiorella and
Ripple (1993); and GREEN, Table 1 in Green et al, (1993)).
The latter four population error matrices were created by
multiplying every entry of the sample error matrix by a con-
stant. The constructed population error matrix thus has the
same KAPPA, the same proportions for each entry within the
error matrix (i.e., n,/n of the original sample error matrix is
cqual to N;/N of the constructed population matrix), and the
same row and column marginal proportions as the sample
error matrix from which it was constructed. Population error
matrices created in this manner should resemble those en-
countered in real applications, Several sample sizes were ex-
amined for each population. Under equal allocation of
samples to strala, the smallest sample size evaluated was 10
per stratum, and the largest was 75 per stratum.

The simulation resulls were based on 10,000 replications
of the stratified random sampling design for each sample size
and population error matrix, For each sample, KS and V (Ks)

were calculated. The simulated expected value of Ks was
computed hy

10,000

Y, Ks,/10,000, (9)

=1

E(Ks) =

where Ks, is K for sample i. Bias of KS was estimated by
E(Ks)-KaprprA. The simulated expected value of V (KS) was
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TaBLE 1. POPULATION ERROR MATRICES (ORDERED BY NUMBER OF TapLE 1. (CONTINUED)
CLassiFicaTION CATEGORIES AND KAPPA), THE COLUMNS REPRESENT THE T :
REFERENCE CLASSIFICATION, AND THE ROWS REPRESENT THE IMAGF BLIGHT (KAPPA~0.7544)
CLASSIFICATION, 1 2 3 4 a 'N’.'. '\th\l
OLDGROWTH (KAPPA=0.6389) 1 4440 0 30 30 30 4530 0.469
) 2 N, NJN 2 30 1500 180 0 0 1710 0177
4 240 450 1170 180 0 2040 0.211
4560 705 5265 0.392 4 60 90 210 750 30 1140 0.118
2 1685 6495 8180 0.608 5 0 0 30 30 180 240 0.025
M, G245 7200 14445 M, 4770 2040 1620 990 240 9660
BLOCK (KAPPA=0.4544) STANDCON (KAPPA=0.7184)
1 2 3 N, NN 1 2 3 4 5 N, NN
1 2165 565 300 3039 0475 1 1700 200 100 0 0 2000 0.167
2 678 044 108 1730 0.270 2 300 1300 400 0 0 2000 0.167
3 136 432 1063 1631 0255 4 0 100 1900 0 0 2000 0167
4 0 0 100 900 1000 2000 0.167
M, 2979 101 1480 6400 5 0 0 0 400 3600 4000 0.333
DIAGONAL (KAPPA=0.6539) M, 2000 1600 2500 1300 4600 12000
1 2 3 N, NN
- — STRATS (KAPPA=0.8524)
1 |'I$]:)[J -‘]5 1 I“j 24115 0,376 1 2 3 4 5 B 7 8 4\".1. Nh‘,f‘i\l’
2 343 1230 107 1680 0.263
3 110 457 1748 2315 0.362 1 4000 300 200 100 50 25 10 30 4715 0.339
2 5 3000 50 10 10 5 3 6 3089 0.222
M, 2403 2038 1959 6400 3 20 20 1800 30 10 10 5 51900 0.136
AIRPORT1 (KAPPA =0.6845) 4 5 10 20 500 A0 25 20) 10 (20 0.045
1 9 3 N, N,/N 3 10 25 35 45 750 58 20 15 958  0.069
— S 6 30 3 8 8 39 1021 40 20 1169 0.084
1 1750 218 140 2108 0.375 7 5 10 15 20 20 30 700 25 825 0.059
2 330 1331 152 1813 0.322 8 5 10 15 20 25 30 40 500 645 0.046
3 136 200 1368 1704 0.303
M, 4080 3378 2143 733 934 1204 838 611 13921
M, 2216 1749 1660 5625
STRATS (KAPPA=0.8053)
1 2 3 N, N,/N e
1 G840 180 180 7200 0.950 V(Ks) = (KS, — KAPPA):/10.000. (11)
2 270 3060 270 3600 0.850
3 180 180 840 1200 0.700 g 9
AV(Ks) was obtained directly from the population error ma-
M, 72890 3420 1280 12000 trix using Appendix Equation A17. The relative error of
MASSLAND (KAPPA—0.4785) AV(KS) was [::’.ll(,}llﬂ[l]('] as [AV(KS) — V[KS]IfV[KS]. and the
1 2 3 4 N, N,/N  relative bias of V(KS) was calculated as [E[V(kS)] — V(ks)}/
1 5099 2169 17064 152 10084 0.384 WKS],‘ : : ; ’ ;
2 637 1877 486 97 3027 0.115 For the 11 ]mplllallnn error matrices investigated in the
3 1753 752 8429 271 11205 0.427 simulation study, the bias of K was negligible even at the
4 109 220 751 854 1934 0.074  smallest sample sizes (Table 2). The maximum absolute bias
7 P —ry —— ——— — observed was 0.002. The relative error of AV(Ks) was gener-
h ; * ‘ § £953 ally between 1 percent and 2 percent for most sample sizes
GREEN (KAPPA=0.6533) and p()pulatinns. and thehmaximum relative error was 3.8
1 2 a 4 N, N,/N  percent, Relative bias of V(KS) was also usually small, gener-
1 pr—— 230 - 5 S e ally !‘alliu‘g b(—,'le—,'l:‘I'l 1 percenl and zipercem. T_he maximum
4 100 5100 360 500 500 e relative bias was 3.4 percent. BEiCEII.l::t-} the relative error of
3 700 800 1000 0 2500 n.250 AV(KS) and the relative bias ol V(KS) were small even when
4 0 200 0 2300 2500 0.250 n, was as small as 10 or 15, the large-sample requirement of
M, 2800 3300 1500 220D 70000 the derivation of the asympl{?tic varianc_e and variance esti-
maltor appeared o be approximately satisfied for sample
STRAT4 (KAPPA=0.7720) sizes as low as n, = 10.
1 2 3 4 N, N/N Conlidence interval properties were related to sample
1 4135 258 167 82 4642 054z Size, reflecting the additional requirement of confidence in-
2 220 2127 88 43 2478 p.ogo  lervals for an approximate normal distribution of KS. As ex-
3 27 125 953 89 1194 0.140 pected, observed coverage usually improved as the sample
4 12 27 55 149 243 0.028 size increased. But even at the smallest sample sizes, ob-
= e — — served coverage was not poor for all populations. Coverage
M, Aase kel i 364 i was poorest for STRAT4 Hll’lr‘l STRATA, }I)utjI observed r:nverage
was 91.5 percent or better for the smallest sample sizes eval-
uated for all other populations (nominal coverage of 95 per-
, " cent). For n, = 25, observed coverage was 90.0 percenl in
EIV(ks)] = 2 VI(Ks)/10,000, (10)  STRATS, 92.9 percent in OLDGROWTH, 91.5 percent in STRAT4,

and the simulated variance of KS was
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and 92.3 percent in STRATS, but it was between 94 percent
and 95 percent in the remaining populations. For n, = 50 or
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TaBLE 2. PROPERTIES DF KS AND \;‘(Ks) in Simulation Study. Resuits are Based on 10,000 REPLICATIONS OF STRATIFIED Ranvom Sampunc Usivg Equar
ALLOCATION WITH N, OBSERVATIONS PER STRATUM. RELATIVE ERROR OF AV(KS) 1S [AV(KS)—V(KS)]/V(KS), AND RELATIVE Bins oF V(Kks) is {E[V(KS)] — V(KS)}/V(Ks).

Relative

Estimated Relative ’ : Observed
Bias Lrror of H‘lﬂ.‘i of Coverage (%)
Population KAPPA 1, ol K§ VVIKS) AVIKs) V(KS) (Nominal 95%)
OLDGROWTH 0.6389 15 —0.001 0.1401 0.009 —0.005 91.5
25 0.001 0.1095 -0.011 =0.019 92.9
50 0.002 0.0772 —0.009 0.016 93.8
il 0.000 0.0631 —-0.013 0.016 94.2
BLOCK 0.4544 1 .00 0.1336 0.012 0.004 93.3
25 0.001 0.0850 -0.007 0.011 4.2
50 0.000 0.0601 -0.019 0.021 094.3
75 0.000 0.0482 0.004 0.002 94.8
DIAGONAL 0.6539 10 0.001 0.1144 —=0.003 —.009 91.6
29 0.001 0.0722 -0.007 0.009 94,1
50 0.000 0.0504 0.0049 0.008 94.7
75 =0.001 0.0409 0.007 1.u09 95.0
AIRPORT1 0.6845 15 0.000 0.0912 -0.010 0.012 9d.1
25 0.001 0.0694 0.018 0.017 94.2
50 —=0.000 0.0499 -0.027 —=0.027 94.3
75 0.000 0.0398 0.007 0.007 94.6
STRAT3 0.8053 25 0.000 0.0655 —0.022 -0.027 90.0
50 0.000 0.0456 0.005 0.000 92.6
75 0.000 0.0370 0.011 0.007 93.7
MASSLAND 0.4785 10 0.000 0.1229 0.007 0.007 92.9
25 0.002 0n.0774 0.000 0.000 04,3
50 0.000 0.0543 0.013 0.013 94.8
75 0.000 0.0444 0.005 0.006G 94.9
GREEN 0.6533 10 0.002 0.0805 0.038 0.034 94.1
25 0.000 0.0518 -0.002 =0.001 094.7
50 0.000 0.0366 =0.011 =0.011 94.6
75 0.001 0.0295 0.003 0.002 94.8
STRAT4 0.7729 10 0.002 0.0991 0.037 0.014 87.1
25 0.000 0.0641 —0.015 —0.030 91.5
50 0.000 0.0448 0.001 —0.008 93.6
75 0.000 0.0365 —0.003 =0.008 941
BLIGHT 0.7544 15 0.001 0.0554 —-0.017 —-0.024 93.1
25 0.001 0.0426 0.009 0.001 94.1
50) 0,000 0.0300 0,005 0,004 94.7
75 0.000 0.0244 0.001 —0.003 94.8
STANDCON 0.7184 15 —0.001 0.0557 0.002 —0.004 93.9
25 =0.000 n.0436 -0.024 0.026 94.0
50 0.000 0.0302 0.007 0.006 94.8
735 —0.000 0.0246 0.003 0.002 94.7
STRATS 0.8530 10 0.001 0.0533 0.023 0.006 87.0
25 0.000 0.0342 —1.004 -0.012 92.3
50 —0.000 0.0239 0.008 0.005 94.0
75 =0.000 0.0196 0.016 =0.017 44.0

n, = 75, observed coverage was between 93.6 percent and 95
percent for all populations except STRAT3 (92.6 percent at n,
= 50).

To illustrate the effect of ignoring the stratified design,
simulation results (Table 3) are also presented for KIIAT and
V(KHAT), the estimated variance of KHAT (Hudson and Ramm
1987). Recall that stratified random sampling does not satisfy
the sampling model under which kHAT and V(KHAT) were
derived. I'or the 11 populations studied, bias of KHAT was
generally within what might be considered tolerable limits in
practice, as the absolute bias exceeded 0.04 in only three
populations (STRAT3, STRAT4, and BLIGHT). The observed cov-
erage of confidence intervals constructed using KHAT and
V(KHAT) was close lo the nominal 95 percent in seven popu-
lations, but for the other four populations coverage was poor,
and became poorer as sample size increased. In these four
populations, the bias of KHAT remained the same as sample
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size increased, bult V(KHAT) decreased with increasing sam-
ple size. Therelore, observed coverage decreased because the
intervals were often too narrow to compensate for the bias of
KHAT so that the interval did nol cover the true KAPPA. From
just these 11 populations, it is difficult to ascertain when it
is safe to use the simpler formulas KHAT and V(KHAT). If pro-
portional allocation is employed, or equal allocation is used
and the strata all have approximately the same N,, KHAT is
likely 1o be nearly unbiased, but it is unclear if V(KHAT) will
result in adequate confidence intervals for KAPPA. KHAT is
not a consistent estimator of KAPPA for the stratified design,
50 using KHA'T when the design is stratified must also be dis-
couraged on this theoretical basis.

The results shown in Table 2 provide some guidance on
sample size selection if the objective of accuracy assessment
is to estimate KAPPA. A sample size of at least 25 pixels per
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TABLE 3. PROPERTIES OF SIMPLE RANDOM SAMPLING ESTIMATORS WHEN
APPLIED TO A STRATIFIED RANDOM DESIGN. RESULTS ARE Baseb on 10,000
REPLICATIONS OF STRATIFIED Ranoom Sampuing Using EQuaL AlLocaTion WITH
n,, OBsSERVATIONS PER STRATUM. Variance oF KHAT Usen in CONSTRUCTING
ConApence InTErvaLs Was Estimaten Using THE ForRMULA PRESENTED IN
Hubson anp Ravim (1987),

Observed

Estimated Coverage
Bias of KHA'T (Nominal 95%)
Population KAPPA 25 50 75 25 50 75
OLDGROWTH  0.6389 0.020  0.020 0021 93.9 928 91.0
BLOCK 0.4544 0.000 0.000 0.000 95.2 95,6 95.6
DIAGONAL 0.6539 —0.005 —-0.004 -0.005 Y38 Y49 Y57
AIRPORT1 0.6845 —-0.001 -0.001 —-0.002 92.3 95.7 95.3
STRATH 0.8053 -0.066 -0.055 -0.055 895 79.5 71.6
MASSLAND 0.4785 0.008 0.0049 0.008 94.4 94.6 94.3
GREEN 0.6533 0.000 —0.000 0.003 96.5 97.0 96.8
STRAT4 0.7729 —0.052 —-0.053 —0.053 88.1 74.7 62.8
BLIGHT 0.7544 —0.044 —0.045 —0.045 899 77.1 64.1
STANDCON 0.7184 —0.018 -0.018 —-0.018 955 93.9 92.7
STRATS 0.8530 -0.017 -0.017 -0.017 94.0 88.9 8bH.5

stratum is needed to guarantee good coverage properties of
confidence intervals, although observed coverage of confi-
dence intervals was adequate for smaller sample sizes in
some populations, Excellent coverage properties may be ex-
pected for sample sizes of 50 or higher per stratum. An in-
crease in sample size from 25 to 50 pixels per stratum
resulled in an average reduction in standard deviation of
0.019 for the ten populations studied, while an increase in
sample size [rom 50 lo 75 pixels per stralum resulted in an
average standard deviation decrease of only 0.009. Because
confidence interval properties were nol much better at n, =
75 compared to n;, = 50, increasing the sample size from 50
to 75 does not appear to provide any meaningful advantages
for the objective of estimaling KAPPA. Other objectives of a
sampling design for accuracy assessment may require addi-
tional sample size considerations.

Summary

An eslimator and variance estimator applicable for estimat-
ing KAPPA under stratified random sampling have been de-
rived. These formulas allow practitioners the [lexibility to
apply a stratified sampling design for accuracy assessment
while still being able to estimate KAPPA and the variance of
the estimator of KAPPA, Previously, estimators were only
available for simple random sampling. Based on the empiri-
cal investigation, bias of KS and V(KS) is negligible, and
AV(Ks) provides a good approximation to V(ks). Conlidence
intervals constructed using ks and V(Ks) generally possess
the specified nominal coverage, with the exceptions to this
good behavior occurring at small sample sizes in some popu-
lations. A sample size of 25 pixels per stratum is the recom-
mended minimum to assure adequate confidence interval
coverage, and increasing the sample size lo 50 pixels per
straluum |deut:es even better coverage and a memliugful re-
duction in the standard error of the estimator of KAPPA, A
further increase in sample size from 50 to 75 pixels per stra-
tum does not appear warranted on the basis of this investiga-
tion.
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Appendix

The necessary general results for deriving the asymptotic
variance and estimated variance of K§ are summarized by
Sirndal et al. (1992, Result 5.5.1). To aid the reader, the der-
ivation presented is designed to follow the formulas and no-
tation of Sirndal ef al. (1992) s closely as possible, This
sometimes requires writing equations in the general forms
used by Sirndal et al. (1992), then proceeding to the special
case and more familiar formulas of stratified sampling.

The first step is to write KAPPA as a function of popula-
tion totals, t,. t,...., t,. In particular, parameters of the popula-
tion error matrix such as the N, ’s and M,'s may be written as
totals of specific indicator or “dummy” variables defined on
each of the N pixels (see for example, Equations A4 and A7).
We then have

q
Nt, — 2 Nit,
KAPPA = f(ty, tyl)) = ——F—
NZ - Z ‘\‘rf'rl

-1

(A1)

where {, = D = 2 Ny.and t,= M, for j = 1, 2,..., gq. Alterna-

h=1
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tively, in terms of notation used by Sirndal et al. (1992), we
can define the sum of the diagonal elements of the popula-
tion error matrix as

g N N

= J\Zl }"n.;'u

(A2)

where

Vohi

)1, if pixel i of stratum h is in column h (on the diagonal)
0, otherwise (off the diagonal of the error matrix)

(A3)
and

oy L il pixel k is on the diagonal of the error matrix
20N 0, otherwise

(Ad)

Similarly, define the column totals of the population error
malrix as

a  Np N
t =M= P El_tf,f,, = ; yu for j=1...q  (AS5)
{ i 1
where
_ )1, if pixel i of stratum h is in column j
Yini: = {(l. otherwise [&6)
1, il pixel k is in column j
Yik = {n. otherwise ' A7)

The general results of Sirndal et al. (1992), which do not re-
quire the stratified population structure, use indicator varia-
bles (Equalions Ad and A7), while the special case stratified
random sampling formulas are more conveniently written us-
ing the indicator variables defined by Equations A3 and AG.
KAPPA is estimated by replacing the totals £, £,....., L, in
Equation A1 by unbiased estimators of these totals. The gen-
eral form of Sirndal et al. (1992) for unbiased estimation ol a

total is t = E v, /. where m is the inclusion probability of
k 1

sample element k, and summaltion is over the n elements of
the sample. Result 3.7.2 (Sarndal ef al., 1992, p. 103) estab-
lishes the special case form for unbiased estimation of totals
under stratified sampling. This requires rewriting the re-
sponse variable v, to reflect the stratified structure, and not-
ing that the inclusion probability for any element in stratum
h is n,/N,. We then have

"

t, = = Z v,/ m (Siarndal et al. (1992) general form)  (A8)
4 1y i
= fZI (N,/ny) Z Voui = E (N /)y, (AY)
and
I’I - ;, v,/ (Sdrndal et al. (1992) general form)  (A10)
4 nh i
= X N/n) Xy = X (N, (A11)

The subscripts in Equations A8 through A11 index the ele-
ments of the sample. Substiluting ¢, and ¢, into Equation A1
leads to the estimator KS (Equation 4).

From Equation 5.5.10 (Sdrndal et al., 1992), the asymp-
totic variance of K8, based on the population error matrix, is
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N N

AV{KS] — zl :Z [?Tu = 7717TJ} =

- i .

St (A12)

where 7, is the second-order inclusion probability for the
design (Sirndal el al., 1992, p. 31),

u, = 2 ay, (for k=1,..., N), (A13)

and

o
;= % | By B by TOXT] =105 L g,

(A14)

Then, after taking the appropriate parlial derivatives ol Equa-
tion A1, we obtain

N
Sy oM (A15)
: N: - C
NP~ rz N.I.Mr.
and
N(t
a = N.'M forj= 1., q (A16)

v — O

L

Z N,M,. For stratified random sampling (Sérndal
h=1

et al. 1992, Result 3.7.2, p. 103), the general formula (Equa-
tion A12) for AV(KS) reduces to

where C =

L)

AV(KS) = X Ni (1 = f[V,/m,

Ny

Nk
“‘lhere ﬁl e ”h‘l{ivf!‘ Vfr = E [“Ju o —{}h}.—"![Nh - 1}' .['-}fl - _E uhl

19

IN,, and uy = E” ay, . uy is the stratified sampling equiva-
I

lent of u, (Equation A13). AV(Ks) is the standard formula for
the variance of an estimated total under stratified random
sampling (Cochran, 1977, Equation 5.10), with the variable
u,; serving as the response variable,

An estimator of AV(kS) is obtained from the sample er-
ror matrix by replacing u), with @, (Sirndal et al., 1992, p.
174). That is, u,, is estimated by

i

i, = &y (A18)
where

N

a, = =, (A19)
NE—

‘{.. gl X

&, = N, 7[\'( .M] for j = 1..... q. (Az0)
(N* - CF

)

and € = rz N, M,. Then from Equation A17, the estimated
1

asymptotic variance of KS is
11

Viks) = X Nj (1 — f)V./ny,

h=1

(A21)

where
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gy

¥, = X (0,

u,):/(n, — 1)
]

= fz o, — mai)/(n, — 1),

and

= Z o,,/n,.

Again, in Equations A22 and A23, the subscripts index ele-
menls ol the sample.

Equations 5 and 6 provide simpler computational formu-
las lor the estimaled variance by eliminating the need to cal-
culate a,, for every sample pixel. To obtain Equations 5 and

(A23)

6, note that n,, pixels have y,,, = 1, so that in stratum h,
¥ N
2 Baon = Dy ———+ (A24]
= "N:-C
Also, n,, pixels have v, ,, = 1 when j = h, so that in stratum
h,
& N(i, — N
Y ay, = Nl = 1N ¥ (A25)

~ &V "IN — )

Equations A24 and A25 represent the contribution from the
diagonal entry of the sample error matrix in stratum h; the

o U N N(i, — N
conlribulion Lo E il is g [ = + N, ( = ]:l and
i=1 N#* = .6 (N* — ()2

N N

T . ] NG, - N
the contribution to E 5, is n,, [ - ol e e “.'"] 3
=1 Nt —.C (N C)

which is the first term in Equation 6. For any off-diagonal
column in stratum h, v, = 1 for the n, pixels in column j,
so that each n[‘l‘ diagonal column contributes

- N(t Nit, - N, § .
n, N, Ly 1 ) Z i, and n, |: / —] to Z i, In
(N2 — ) N+ =¢)d TS

stratum h, the contribution of all off-diagonal columns to

E i1, is then

\h‘ =
(N?

Zn\

(A26)

The contributlion of all off-diagonal columns in stratum £ to

Zu

~ \} Z n, N3
[.\ )y

which is the second major term of Equation 6. Thus. 1,

(Equation 5) is Z o/, and uj, (Equation 6) is Z i,
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