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Abstract 
The kappa coeJficient of agreement is frequently used to 
summarize the results of an accuracy assessment used to 
evaluate land-use or land-cover classifications obtained by 
remote sensing. The standard estimator of the kappo coeffi- 
cient along with the standard error of this estimator require 
a sampling model that is approximated by simple random 
sampling. Formulas are presented for estimating the kappa 
coefficient and its variance for stratified random sampling. 
Empirical results demonstrate that these estimators have lit- 
tle bias, and confidence intervals pegorm well, often even at 
relatively small sample sizes. 

Introduction 
Accuracy assessment of land-use or land-cover classifications 
obtained by satellite remote sensing is necessary to evaluate 
the quality of maps developed from remotely sensed data. A 
typical strategy for accuracy assessment is to use a statisti- 
cally sound sampling design to select a sample of locations 
(pixels) in the study region, and to determine if the land-use 
or land-cover classification assigned to that pixel matches the 
true classification of the ground location represented by that 
pixel. The reference classification, whether obtained on the 
basis of ground visit or photointerpretation, is assumed to be 
correct. The sample data are often summarized in an error 
matrix, which is then subjected to various statistical analyses 
(Congalton et al., 1983). The kappa coefficient of agreement 
(KAPPA) (Cohen, 1960) is one parameter frequently used in 
these analyses of error matrices (here "parameter" is used in 
the statistical sense of a number describing a characteristic of 
the population). Congalton et 01. (1983) and Roser$ield and 
Fitzpatrick-Lins (1986) provide additional details on applica- 
tions of KAPPA in remote sensing. 

To estimate KAPPA from the sample data, Bishop et al. 
(1975, p. 396) and Agresti (1989, p. 366) present formulas for 
the maximum-likelihood estimator, KHAT, of KAPPA, and the 
standard error of KHAT. These formulas were derived under 
the assumption of multinomial sampling, which is approxi- 
mately satisfied by simple random sampling. The effect of 
using these formulas when the sampling design is not simple 
random has received little attention (Congalton, 1991). Steh- 
man (1992) found that the usual formula for estimating 
KAPPA had negligible bias when the sampling design was 
systematic or systematic unaligned, but the estimator of the 
variance of KHAT was biased. Other sampling designs have - - 
not been studied. 

- 
Stratified sampling (Cochran, 1977, Chap. 5) is a poten- 

tially useful design for accuracy assessment. In particular, if 
strata are conslructed on the basis of the categories of the re- 
motely sensed image, stratified sampling permits control over 
the number of sample observations in each map category. 
This guarantees that a minimum sample size can be selected 
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in each stratum or category. Because the stratified design 
does not satisfy the multinomial sampling model, neither the 
standard formula for KHAT nor the formula for the standard 
error of KHAT is appropriate. 

In this article, an estimator (denoted KS) of KAPPA is de- 
rived for use with stratified sampling. In addition, the vari- 
ance and a sample-based variance estimator of K s  are derived 
under stratified random sampling. KS is appropriate for sys- 
tematic sampling within strata, a design which might be 
used if stratification is by geographic region rather than by 
map category. However, the variance and variance estimator 
derived in this article are not appropriate for a stratified sys- 
tematic design. The variance formulas depend on a large 
sample approximation, so empirical results are presented to 
confirm the validity of the estimators proposed, and to evalu- 
ate properties of these estimators at small sample sizes. 

Description of Estimators 
Suppose a remote sensing image of N pixels is classified into 
q categories. Given a census of all N pixels and the true clas- 
sification of each pixel, the population error matrix is 

A census is, of course, impractical, so sampling is necessary 
to obtain an estimate of KAPPA. For a stratified sampling de- 
sign, in which the strata are the map classes of the image, 
the row totals, N,, are known, but the column totals, M are 
unknown. All entries, N,,, within the error matrix are die 
unknown. 

From the population error matrix, the parameter of inter- 
est is (Bishop et al., 1975, p. 395) 

1 
Image 2 

(Stratum) i 
q 

Col. Tot. 

where p,, = N,IN, p,, = N,IN, and p,, = M,IN. Because it is 
a parameter of the population, KAPPA is unchanged by the 
choico of sampling design. If the q rows of the population er- 
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ror matrix are used as strata, W P A  may be written in the ience in writing the formula for the estimated variance, de- 
following forms, algebraically equivalent to Equation 1, cor- 9 9 

responding to the population stratification: fine D = C kh, and 2 = C N,M,. For each stratum h of 
d=1 h=1 

- -  - .  
KAPPA = 

the sample error matrix, calculate 

In stratified random sampling, a simple random sample 
of pixels is selected in each stratum. The stratum sample and 
sizes, n,,, are specified in advance of the sample collection by 
the investigator, and each stratum is sampled independently qh = (uf, - nhii$)l(nh - 1). 
of the other strata. Ground visits or photointerpretation are Then the estimated variance of Ks is 
used to determine if the sampled pixel is classified correctly 

or not. The results for a sample of n = n, pixels are or- 
h-1 

ganized into a sample error matrix, 

The row totals (n,) are fixed by the stratified design, but the 
nh,'s depend on the observed sample. 

The details of the derivation of the stratified sampling 
estimator of KAPPA and the variance of this estimator are de- 
ferred to the Appendix. The general approach follows from 
Result 5.5.1 of S&ndal et al., (1992) in which the population 
quantities N,, and M, in Equation 3 are replaced by stan- 
dard, unbiased, stratified random sampling estimators of 
these population totals. The estimator of KAPPA for stratified 
sampling is 

1 
Image 2 

q 

Nh where &,, = - n , ,  is an unbiased estimator of N,,. The no- 
nb 

tation is somewhat awkward here in that M~ estimates a col- 
umn total, not a row total. For any column j = 1 ,..., q, an 

Reference 
1 2 . . . 4 

n1, n12 . . .  n14 
n2, n2, . . .  n:9 

. . . 
*q1 nsz . . .  nq4 

' N, unbiased estimator of M, is k, = & n,, (the estimated col- 

Row 
Total 

n, 
n2 

n4 

n 

- ., 
umn total requires summation over the q strata). KS is not an 
unbiased estimator of KAPPA, but it is a consistent estimator 
(Sandal et al., 1992, p. 1681, and the bias of KS is shown to 
be small in the populations examined in the subsequent em- 
pirical study. 

The variance of KS, denoted V(KS), requires knowing the 
population error matrix, and a large-sample, approximate for- 
mula, denoted AV(KS), is presented in the Appendix. Note 
that V(KS) is the parameter of interest, and that AV(KS) is a 
population quantity that will approximate V(KS) for large 
samples. The important practical problem of estimating V(KS) 
from the sample data is addressed as follows. For conven- 

where fh = nhlNh is the sampling fraction in stratum h. For 
strata in  which nh is small relative to Nlr, the finite popula- 
tion correction factor (1 - fh) may be ignored. A confidence 
interval for KAPPA is constructed using KS t- z, V$(KS), 
where z, is the percentile from a standard normal distribu- 
tion appropriate for the desired confidence probability. 

Empirical Results 
A simulation study was conducted to evaluate how closely 
AV(KS) approximates V(KS), to evaluate bias of KS and 
V(KS), and to explore the properties of these estimators for 
small sample sizes. The 11 populations investigated were se- 
lected to represent a variety of population error matrices (Ta- 
ble 1). Four of these matrices P AIRPORT^, BLOCK, DIAGONAL, 
and MASSLAND) were studied by Stehman (1992), three were 
artificial populations constructed for this study (STKAT~, 
STRATI, and STRAT8), and four were constructed by expand- 
ing published sample error matrices (BLIGHT, Table 2 in Ro- 
senfield and Fitzpatrick-Lins (1986); OLDGROWTH, Table 3 in 
Congalton et al. (1993); STANDCON, Table 3 in Fiorella and 
Ripple (1993); and GREEN, Table 1 in Green et a]. (1993)). 
The latter four population error matrices were created by 
multiplying every entry of the sample error matrix by a con- 
stant. The constructed population error matrix thus has the 
same KAPPA, the same proportions for each entry within the 
error matrix (i.e., nh,ln of the original sample error matrix is 
equal to N,,,IN of the constructed population matrix), and the 
same row and column marginal proportions as the sample 
error matrix from which it was constructed. Population error 
matrices created in this manner should resemble those en- 
countered in real applications. Several sample sizes were ex- 
amined for each uo~ulation. Under equal allocation of 
samples to strata: tGe smallest samplesize evaluated was 10 
per stratum, and the largest was 75 per stratum. 

The simulation results were based on 10,000 replications 
of the stratified random sampling design for each sample size 
and population error matrix. For each sample, Ks and 9 (Ks) 
were calculated. The simulated expected value of KS was 
computed by 

where Ks, is KS for sample i. Bias of KS was estimated by 
E[Ks)-KAPPA. The simulated expected value of (KS) was 
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TABLE 1. POPULATION ERROR MATRICES (ORDERED BY NUMBER OF 
CLASSIFICATION CATEGORIES AND KAPPA). THE COLUMNS REPRESENT ME 

REFERENCE CLASSIFICATION, AND THE ROWS REPRESENT THE IMAGE 
~LASSIFICAT~ON. 

OLDGROWTH (KAPPA=0.6389) 
1 2 Nh N J N  

1 4560 705 5265 0.392 
2 1685 6495 8180 0.608 

DIAGONAL (KAPPA=0.6539) 
1 2 3 Nh N,JN 

MI, 7290 3420 1290 

MASSLAND (KAPPA= 0.4785) 
1 2 3 4 

1 5999 2169 1764 152 
2 637 1877 488 2 7 
3 1753 752 8429 271 
4 109 220 751 854 

Mh 8498 5018 11430 1304 

GREEN (KAPPA=0.6533) 
1 2 3 4 

and the simulated variance of KS was 

BLIGHT (KAPPA=0.7544) 
1 2 3 4 5 N ,  NhIN 

1 4440 0 30 30 30 4530 0.469 
2 30 1500 180 0 0 1710 0.177 
3 240 450 1170 180 0 2040 0.211 
4 60 90 210 750 30 1140 0.118 
5 0 0 30 30 180 240 0.025 

MI, 4770 2040 1620 990 240 9660 

STANDCON (KAPPA=0.7184) 
1 2 3 4 5 Nh NhIN 

1 1700 200 100 0 0 2000 0.167 
2 300 1300 400 0 0 2000 0.167 
3 0 100 1900 0 0 2000 0.167 
4 0 0 100 900 1000 2000 0.167 
5 0 0 0 400 3600 4000 0.333 

M,, 2000 1600 2500 1300 4600 12000 

AV(KS) was obtained directly from the population error ma- 
trix using Appendix Equation A17. The relative error of 
AV(KS) was calculated as [AV(KS) - V(KS)]/~(KS), and the 
relative bias of ~ ( K s )  was calculated as (E[~(KS)]  - V(KS))/ 
V(KS). 

For the 11 population error matrices investigated in the 
simulation study, the bias of KS was negligible even at the 
smallest sample sizes (Table 2). The maximum absolute bias 
observed was 0.002. The relative error of AV(KS) was gener- 
ally between 1 percent and 2 percent for most sample sizes 
and populations, and the-maximum relative error was 3.8 
percent. Relative bias of V(KS) was also usually small, gener- 
ally falling between 1 percent and 2 percent. The maximum 
relative bias was 3.4 percent. Because the relative error of 
AV(KS) and the relative bias of $(Ks] were small even when 
nh was as small as 1 0  or 15, the large-sample requirement of 
the derivation of the asymptotic variance and variance esti- 
mator appeared to be approximately satisfied for sample 
sizes as low as n, = 10. 

Confidence interval properties were related to sample 
size, reflecting the additional requirement of confidence in- 
tervals for an approximate normal distribution of KS. As ex- 
pected, observed coverage usually improved as the sample 
size increased. But even at the smallest sample sizes, ob- 
served coverage was not poor for all populations. Coverage 
was poorest for STRAT4 and STRATE, but observed coverage 
was 91.5 percent or better for the smallest sample sizes eval- 
uated for a11 other populations (nominal coverage of 95 per- 
cent). For nh = 25, observed coverage was 90.0 percent in 
STRAT3, 92.9 percent in OLDGROWTH, 91.5 percent in STRAT4, 
and 92.3 percent in STRATE, but it was between 94  percent 
and 95 percent in the remaining populations. For n, = 50 or 
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TABLE 2. PROPERTIES OF KS AND V(KS) in Simulation study. Results are Based on 10,000 REPLICATIONS OF S T R A ~ R ~  RANDOM SAMPLING USING EQUAL 
ALLOCATION WlTH Nh OBSERVAT~ONS PER STRATUM. RELATIVE ERROR OF AV(KS) IS [AV(KS)-V(KS)]/V(KS), AND RELATIVE BIAS OF V(KS) is {E[v(KS)] - V(KS)}~(KS). 

Estimated Relativc Relative Observed 
Bias Error of Bias of Coverage (%I 

Population KAPPA n b  of KS v'im AVIKS) ~TIKS) (Nominal 95%) 

OLDGROWTH 

BLOCK 

DIAGONAL 

MASSLAND 

GREEN 

STRAT4 

BLIGHT 

STANDCON 

n, = 75, observed coverage was between 93.6 percent and 95 
percent for an populations except STRAT3 (92.6 percent at n,, 
= 50). 

To illustrate the effect of ignoring the stratified design, 
simulation results (Table 3) are also presented for KIUT and 
~(KHAT) ,  the estimated variance of KHAT (Hudson and Rarnm 
1987). Recall that stratified random sampling Goes not satisfy 
the sampling model under which KHAT and V(KHAT) were 
derived. For the 11 populations studied, bias of KHAT was 
generally within what might be considered tolerable limits in 
practice, as the absolute bias exceeded 0.04 in only three 
populations   ST RAT^, STRAT4, and BLIGHT). The observed cov- 
?rage of confidence intervals constructed using KHAT and 
V(KHAT) was close to the nominal 95 percent in seven popu- 
lations, but for the other four populations coverage was poor, 
and became poorer as sample size increased. In these four 
populations, the bias of KHAT remained the same as sample 

size increased, but ~ (KHAT)  decreased with increasing sam- 
ple size. Therelore, observed coverage decreased because the 
intervals were often too narrow to compensate for the bias of 
KHAT so that the interval did not cover the true KAPPA. From 
just these 11 populations, it is difficult to ascertain when it  
is safe to use the simpler formulas KHAT and ~~(KHAT) .  ~f pro- 
portional allocation is employed, or equal allocation is used 
and the strata all have approximately the same N,, KHAT is 
likely to be nearly unbiased, but it is unclear if ~T(KHAT) will 
result in adequate confidence intervals for KAPPA. KHAT is 
not a consistent estimator of KAPPA for the stratsed design, 
so using KHAT when the design is stratified must also be dis- 
couraged on this theoretical basis. 

The results shown in Table 2 provide some guidance on 
sample size selection if the objective of accuracy assessment 
is to estimate KAPPA. A sample size of at least 25 pixels per 
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TABLE 3. PROPERTIES OF SIMPLE RANDOM SAMPLING ESTIMATORS WHEN 
APPLIED TO A STRATIFIED RANDOM DESIGN. RESULTS ARE BASED ON 10,000 

REPLICATIONS OF STRATIFIED RANDOM SAMPLING USING EQUAL ALLOCATION WITH 
n, OBSERVATIONS PER STRATUM. VARIANCE OF KHAT USED I N  CONSTRUCTING 
CONFIDENCE ~NTERVALS WAS ESTIMATED USING THE FORMULA PRESENTED IN 

HUDSON AND RAMM (1987). 

Observed 
Estimated Coverage 

Bias of KHAT (Nominal 95%) 

Population KAPPA 25 50 75 25 50 75 

OLDGROWTH 
BLOCK 
DIAGONAL 
AIRPORT1 
STRATI 
MASSLAND 
GWEN 
STRAT4 
BLIGHT 
STANDCON 
STRATI 

stratum is needed to guarantee good coverage properties of 
confidence intervals, although observed coverage of confi- 
dence intervals was adequate for smaller sample sizes in 
some populations. Excellent coverage properties may be ex- 
pected for sample sizes of 50 or higher per stratum. An in- 
crease in sample size from 25 to 50 pixels per stratum 
resulted in an average reduction in standard deviation of 
0.019 for the ten populations studied, while an increase in 
sample size from 50 to 75 pixels per stratum resulted in an 
average standard deviation decrease of only 0.009. Because 
confidence interval properties were not much better at n, = 
75 compared to n, = 50, increasing the sample size from 50 
to 75 does not appear to provide any meaningful advantages 
for the objective of estimating KAPPA. Other objectives of a 
sampling design for accuracy assessment may require addi- 
tional sample size considerations. 

Summary 
An estimator and variance estimator applicable for estimat- 
ing KAPPA under stratified random sampling have been de- 
rived. These formulas allow practitioners the flexibility to 
apply a stratified sampling design for accuracy assessment 
while still being able to estimate KAPPA and the variance of 
the estimator of KAPPA. Previously, estimators were only 
available for simple random samp?ing. Based on the empiri- 
cal investigation, bias of KS and V(KS) is negligible, and 
AV(KS] provides a good approximatjon to ~[Ks) .  Confidence 
intervals constructed using KS and V(KS) generally possess 
the specified nominal coverage, with the exceptions to this 
good behavior occurring at small sample sizes in some popu- 
lations. A sample size of 25 pixels per stratum is the recorn- 
mended minimum to assure adequate confidence interval 
coverage, and increasing the sample size to 50 pixels per 
stratum produces even better coverage and a meaningful re- 
duction in the standard error of the estimator of KAPPA. A 
further increase in sample size from 50 to 75 pixels per stra- 
tum does not appear warranted on the basis of this investiga- - - - 
tion. 

Acknowledgments 
This research has been supported by cooperative agreement 
CR821782 between the Environmental Protection Agency and 
SUNY-ESF. This manuscriut has not been subiected to EPA's 

viewer provided helpful suggestions, and Mary Beth Ritter 
provided technical editing assistance. 

References 
Agresti, A., 1989. Categorical Data Analysis, John Wiley and Sons, 

New York, 558 p. 
Bishop, Y.M.M., S.E. Fienberg, and P.W. Holland, 1975. Discrete 

Multivariate Analysis Theory and Practice, MIT Press, Carn- 
bridge, Massachusetts, 557 p. 

Cochran, W.G., 1977. Sampling Techniques (3rd Ed.), John Wiley 
and Sons, New York, 428 p. 

Cohen, J., 1960. A coefficient of agreement for nominal scales, Edu- 
cational and Psychological Measurement, 20:3746. 

Congalton, R.G., 1991. A review of assessing the accuracy of classifi- 
cations of remotely sensed data, Rentote Sensing of Environ- 
ment, 37:35-46. 

Congalton, R.G., R.G. Oderwald, and R.A. Mead, 1983. Assessing 
Landsat classification accuracy using discrete multivariate analy- 
sis statistical techniques, Photogrammetric Engineering &Re- 
mote Sensing, 49:1671-1678. 

Congalton, R.G., K. Green, and J. Teply, 1993. Mapping old growth 
forests on national forest and park lands in the Pacific North- 
west from remotely sensed data, Photogrammetric Engineering & 
Remote Sensing, 59:529-535. 

Fiorella, M., and W.J. Ripple, 1993. Determining successional stage 
nf temperate conifernus forests with Landsat satellite data, Pho- 
togmmmetric Engineering & Remote Sensing, 59:239-246. 

Green, E.J., W.E. Strawderman, and T.M. Airola, 1993. Assessing 
classification probabilities for thematic maps. Photogrammetric 
Engineering & Remote Sensing, 59:635-639. 

Hudson, W.D., and C.W. Ramm, 1987. Correct formulation of the 
Kappa coefficient of agreement, Photogrummetric Engineering 6. 
Remote Sensing, 53:421-422. 

Rosenfield, G.H., and K. Fitzpatrick-Lins, 1986. A coefficient of 
agreement as a measure of thematic classification accuracy, Pho- 
togrurrunetric Engineering &Remote Sensing, 52:223-227. 

Shdal ,  C.E., B. Swensson, and J. Wretman, 1992. Model-Assisted 
Survey Sampling, Springer-Verlag, New York, 694 p. 

Stehman, S.V., 1992. Comparison of systematic and random sam- 
pling for estimating the accuracy of maps generated from re- 
motely sensed data, Photogrammetric Engineering & Remote 
Sensing, 58:1343-1350. 

(Received 1 February 1994; accepted 4 August 1994; revised 10 Oc- 
tober 1994) 

Appendix 
The necessary general results for deriving the asymptotic 
variance and estimated variance of KS are summarized by 
Siirndal et al. (1992, Result 5.5.1). To aid the reader, the der- 
ivation presented is designed to follow the formulas and no- 
tation of S h d a l  et al. (1992) -as closely as possible. This 
sometimes requires writing equations in the general forms 
used by Siirndal et al. (1992), then proceeding to the special 
case and more familiar formulas of stratifled sampling. 

The first step is to write KAPPA as a function of popula- 
tion totals, to, t ,,..., t,. In particular, parameters of the popula- 
tion error matrix such as the N,,,'s and M,'s may he written as 
totals of specific indicator or "dummy" variables defined on 
each of the N pixels [see for example, Equations A4 and A7). 
We then have 

Nto - Z iyt, 
1-1 

KAPPA = f (to, f, ,..., f,) = 9 '  

NZ - z N,t, 
1-1 

peer and policy review, and does not necessarily reflect the 
views of the Agency. Ray Czaplewski and an anonymous re- where f. = D = N,, and t, = M, for j = I. 2 ,..., p. Alterna- 
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tively, in terms of notation used by S h d a l  et al. (1992), we 
N N 

UkUl 
can define the sum of the diagonal elements of the popula- AV(KS) = k-1 Z 1-1 Z [%I - %T,) -, =kTi (A121 
tion error matrix as 

9 NIX N where .rr,, is the second-order inclusion probability for the 

to = x x yo,h, = Yo.k, (A21 
design (Stirndal et al., 1992, p. 31), 

h=1 1=1 k=1 

uk = 2 aiy,,k (for k = l ,  ..., N), 
i=o 

where 

Y11,hi 

1, if pixel i of stratum h is in column h (on the diagonal) and 

0, otherwise [off the diagonal of the error matrix) 
(A31 

and Then, after taking the appropriate partial derivatives of Equa- 
tion Al,  we obtain 

1, if pixel k is on the diagonal of the error matrix 
= 0, otherwise 

(A41 
N 

- 
N  

a,, = -- 
9 N2 - C' 

N2 - C NhMh 
h-1 Similarly, definc the column totals of the population error 

matrix as 
s ~h N and 

t , = M , =  h = l  z I=l z y  ;,,,,, = x y i , f o r j = l  ,..., q, (As) 
k=1 

a, = N, N(t" - rJ1 
[N2 - q z  

for j = 1, ..., q, 
where 

1, if pixel i of stratum h is in column j 
= 0, otherwise (A61 

Y 

where C = h=l  C N,M,. For stratified random sampling (Siirndal 

et al. 1992, Result 3.7.2, p. 103), the gcncral formula (Equa- 
tion A12) for AV(KS) reduces to 1, if pixel k is in column j 

The general results of Siirndal et al. (1992), which do not re- 
quire the stratified population structure, use indicator varia- 
bles (Equations A4 and A7), while the special case stratified 
random sampling formulas are morc conveniently written us- 
ing the indicator variables defined by Equations A3 and A6. 

KAPPA is estimated by replacing the totals to, t,, ..., t, in 
Equation A1 by unbiased estimators of these totals. The gen- 
eral form of Sbndal et al. (1992) for unbiased estimation of a 

where f, = n,lN,, V, = x (uh, - ~ , , ) V ( N ~  - I), nh = uh, 
2-1 ,=1 

IN,,, and u , ~  = a&,,. u , ,  is the stratified sampling equiva- 
i=o 

lent of u, (Equation A13). AV(KS) is the standard formula for 
the variance of an estimated total under stratified random 
sampling (Cochran, 1977, Equation 5.10), with the variable 
u , ~  serving as the response variable. 

An estimator of AV(KS) is obtained from the sample er- 
ror matrix by replacing u,,, with GI,, (Sandal et al., 1992, p. 
174). That is, ul,, is estimated by 

1 

total is 2 = yk/?, where ?r, is the inclusion probability of 
k=1 

sample element k, and summation is over the n elements of 
the sample. Result 3.7.2 (Skndal et al., 1992, p. 103) estab- 
lishes the special case form for unbiased estimation of totals 
under stratified sampling. This requires rewriting the re- 
sponse variable y, to reflect the stratified structure, and not- 
ing that the inclusion probability for any element in stratum 
11 is n,lN,. We then have 

?, = D = 2 y,,,kl~i [Sarndal et ol. (1992) general form) (A81 

9 "h n 
= [N,ln,) C YO,, = & (Ni,ln,71nl,h, 

h-l ,=1 
(A91 

N(̂ ,, - N1 
ZI, = N1 (N2 - 211 for j = I,..., q, 

and 
n 

\ = I: ~ , , ~ l r ~  [S$irndal et al. (1992) general form) (A101 
k-1 9 

and 2 = Z Then from Equation A17, the estimated 
h=1 

asymptotic variance of KS is 

The subscripts in Equations A8 Nough 411 index the ele- 
ments of the sample. Substituting t, and t, into Equation A1 
leads to the estimator KS (Equation 4). 

From Equation 5.5.10 (Skndal et al., 19921, the asymp- 
totic variance of KS, based on the population error matrix, is w 



nh N 
,-I 

the contribution to c fit. is nhh + Nh 

and 

nta which is the first term in Equation 6 .  For any oif-diagonal 
= [x f i K ,  - nhBKll(nh - 11, (A221 column in stratum h, Y,,~,, = 1 for the n,, pixels in column j, 

,=1 
so that each off-diagonal column contributes 

nh 2 nh - 
to C oh, and nhl "" ' ([N' - 02 i=1 ,= 1 

(A231 stratum h, the contribution of all off-diagonal columns to 
nh 

Again, in Equations A22 and A23, the subscripts index ele- C il,, is then 
ments of the sample. 1=1 

Equations 5 and 6 provide simpler computational formu- 
las for the estimated variance by eliminating the need to cal- w ? n i . - N i n  

( N ~  - "1 1.  (A261 culate Chi for every sample pixel. To obtain Equations 5 and ~*h 
6, note that nhh pixels have y , , ,  = 1, so that in stratum h, 

" A  The contribution of all off-diaeonal columns in stratum h to 

Also, nhh pixels have y,,,, = 1 when j = h, so that in stratum 
h, 

Equations A24 and A25 represent the contribution from the 
diagonal entry of the sample error matrix in stratum h; the 

nh 

contribution to ah, is nhh [A + Nh NfiO - All 
,=I N L  - C (NZ - 1, and 

which is the second major term of Equation 6 .  Thus, ii, 
nh 1111 

(Equation 5) is I: Gh,/n,, and u2, (Equation 6) is z C f , .  
,=1 r= 1 
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