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Abstract 
A statistical overview is presented [or estimating various 
components related to map accuracy assessment. The em- 
phasis is on estimation of the true proportions of each map 
class under several common sampling designs. A complete 
system is presented for relating alternative approaches and 
estimators using standard rules of probability theory. Covari- 
ance matrices for estimates of true class proportions are de- 
rived in the Appendices for each of the sampling designs 
discussed. 

Introduction 
The traditional approach to assessing map accuracy is based 
on the assumption that each pixel within the map has a cor- 
rect classification, but errors in classification can be made. 
Unbiased estimation of true class proportions is based on a 
subsample where the true classification is obtained by an in- 
fallible and expensive method so that both the true and map 
classifications are known. The subsample results are then ex- 
trapolated to the entire map utilizing statistical procedures 
that are discussed below. 

Tenenbein (1972) gives an early development based on a 
double sampling scheme. Card (1982) recognizes that appli- 
cations to thematic maps are privy to complete knowledge of 
the map class marginal proportions, and he suggests appro- 
priate alterations to Tenenbein's method. Grassia and Sund- 
berg (1982) present a method for calibrating sorting machines 
that can also be applied to thematic maps. While Card's 
method requires a subsample after the map is made, Grassia 
and Sundberg's approach could utilize the training data ac- 
quired to calibrate the classification algorithm. 

Bauer et al. (1978) and Hay (1988) are examples from 
the remote sensing literature that are similar to Grassia and 
Sundberg's method. Czaplewski and Catts (1992) compare 
Grassia and Sundberg's (1982) estimator and Tenenbein's 
(1972) estimator in a simulation study. While this compari- 
son is valid, it does not recognize the improvement made to 
Tenenbein's method by Card (1982) for the special circum- 
stances of thematic map accuracy assessment. Green et al. 
(1993) and Card (1982) present a Bayesian derivation of the 
producer's risk, a term used (Aronoff, 1982; Aronoff, 1985) to 
describe the conditional probability of the map class given 
the true class, say p(m I t). Prisley and Smith (1987) and 
Story and Congalton (1986) both state that the user's accu- 
racy, which is analogous to the consumer's risk and p[t I m), 
is commonly estimated by dividing the number of sample 
observations correctly classified as category X by the total 
number of category X ground samples. Story and Congalton 
(1986) state that an alternative method is to divide the num- 
ber of correctly classified samples of category X by the tolal 
number of samples classified as category X. 

This paper also looks at alternative methods for comput- 
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ing producer's and consumers risk, but the emphasis is on 
how the sampling procedure used in deriving the confusion 
matrix determines the correct alternative to use. This paper 
lays out notation and a unifying statistical theory that en- 
compasses both Card's (1982) approach and Grassia and 
Sundberg's (1982) method. Key points made are that estima- 
tors should depend on the sampling design and that known 
map marginal frequencies should be maintained by the esti- 
mators. 

Notation and Probability Formulas 
Assume there is a thematic map consisting of N pixels where 
each is assigned to 1 of K unordered classes. The information 
on the proportion assigned to class i but belonging in truth 
to class j can be summarized in a K by K table with the rows 
representing the map class and columns the true class. The 
number of entries in a cell for the population is denoted by 
N,,, and these are easily converted to proportions because we 
know the total N. Let N,, represent the row totals and N ,  
represent the column totals with N++ = N. This two-way ta- 
ble can be referred to as the confusion or error matrix (Story 
and Congalton, 1986; Prisley and Smith, 1987). Correspond- 
ing sample value entries, n,,, of the confusion matrix might 
be based on a simple random sample of size n. 

It is convenient to work in terms of two-way discrete 
distributions to derive relevant statistical formulas for map 
accuracy assessment, and some basic probability formulas 
are now given. First, we have the joint distribution p(m,f) 
whose entries are the same as the population level confusion 
matrix with each element divided by N, i.e., p(m,t) = {N, , /N .  
Now we have the marginal distributions, p(m) and p(t), 
which are K by 1 vectors containing the proportions of pixels 
in each class according to the map and in truth. 

The usual situation is that p(m) is known and p(t) is un- 
known, but an estimate of p(t) is desired. Using matrix nota- 
tion and letting 1 be a column vector of ones, we have 

and 

Then we need the standard relations on conditional distribu- 
tions: i.e., 

and 
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p(m, t )  = diag Ip(m1l *p(t l m) 

where the conditional distributions, p(m I t) and p(t I m), have 
been called the producer's and consumer's risk (Aronoff, 
1982; Aronoff, 1985). Both p(m I t) and p(t l m) can be dis- 
played as matrices with the rows representing the levels of 
m amd the colunlns representing the levels of t. Rearranging 
Equation Za, we get the producer's risk formula 

From Equation 2b, we get the consumer's risk formula 

p(tl m) = diag [p(m)] *p(m, t) . 

By applying Equation l b  to Equation 2b, we get a second 
useful formula for p(t), 

p(t) = p(t l m)' *p(ml, (44  

and likewise from Equations l a  and 2a we get 

Simple Random Sampling after the Map 
This discussion relates to the common situation where a map 
has been produced and one wishes to make estimates of p(t), 
p(t l m), p(m I t), and/or p(m,t). With simple random sampling 
(SRS), pixels are chosen from the map at random for determi- 
nation of their true class membership. The K by K matrix 
that summarizes these results with elements {n, In] is an un- 
biased estimate of p(m,t), say$(m,t). We have atready met 
compatibility Criterion 1 by recognizing that the estimate of 
p(m,t) comes directly from the sample data with SRS. The 
second compatibility criterion is not met by SRS alone, be- 
causep(m,t)*l =@(m) is not necessarily equal to the known 
p(m). The marginal distribution of@(m,t) can be corrected to 
equal the known marginal, p(m), as follows: 

Pp (m, t) = diag lp(m)l~(m)] $(m, t) 

The elements of Equation 7 are (p(m=iI*n,,/n,+J, which are 
identical to the estimates proposed by Card (1982). Now 

p(m) = p(m I t) *p(t) . (4b) with@,(m,t) being compatible-with thk known p(m), the other 
estimates follow directly from the equations given previ- 

By setting Equation 2a equal to Equation 2b and rearranging ously; e.g., from Equations lb,  3b, and 3a, we have 
terms, we can relate the producer's risk to the consumer's 
risk as p(tl m) = diag [p(m)]-I *p, (m, t) = 

p(m I t) = diag [p(m)] *p(tl m) *diag [p(t)]-1 . (5) 

Equation 5 is also known as Baye's rule, utilized by Green et 
al. (1993) and Card (1982) in their derivations of the produ- 
cer's risk. Variance approximations for these formulas under sRs and The final result given for this section is the basic for- stratified sampling can be found in Card (19821. However, in mula used by Grassia and Sundberg 11982) for estimating p(t) 
from calibration data. This is simply derived from Equation Appendix A it is shown that an approximate covariance ma- 

trix forp(t) is 4b as 

In practice, p(m I t) for application of Equation 6 could come 
from the training data that were used to calibrate the classi- 
fier that produced the map. 

Whenever it is necessary to refer to specific elements in 
a marginal, joint, or conditional distribution in this paper, it 
is done with the convention that a map class is denoted by i 
and the true class by j. Thus, p(m=i I t=J is the conditional 
probability of map class i given that the true class is j. 

Sampling and Point Estimation 
A number of ad-hoc estimators for the various components 
of thematic map accuracy assessment could be devised. In 
order to limit the list of such estimators, several criteria are 
given that an estimator should meet: 

(1) The estimator should depend on the sampling design, 
(2) The estimator should be compatible with the known map- 

class marginal distribution, and 
(3)  The estimator should yield estinrates that are compatible 

with Equations la, and lb, 2a, and 2b. 

Estimators that do not satisfy the above criteria will be called 
incompatible and should not be used without special justifi- 
cation. Criteria 2 and 3 require specifically that@(m,t)*l = 
p(m) and that the equalities in Equalions 2a and 2b hold 
when the estimates are substituted in. Criterion 1 requires 
that the randomization process used in sampling pixels for 
their true class (or map class) be considered. The implica- 
tions of this are discussed next. Maximum-likelihood estima- 
tors will satisfy the above criteria, but they are not necessarily 
the only estimators that will. 

A complete covariance matrix is necessary for placing confi- 
dence intervals on linear functions of the elements of p(t), 
e.g., p(t=)]+p(t=h). Equation 8d is used by substituting cur- 
rent estimates for p(t). 

Stratified Sampling after the Map 
After the thematic map is produced, the map class of each 
pixel is known. Therefore, it makes sense to perform sam- 
pling independently within each of the known map strata. 
This allows one to control how much effort is devoted to 
each map class and avoids the possibility that some classes 
are missed entirely, which might happen with SRS. This pro- 
cess involves drawing n,, samples from stratum i, which pro- 
duces an unbiased estimate of p(t I m) with elements (n,,/n,J 
and each row statistically independent. 

Now we simply follow the formulas, as was done for 
SRS, but recognizing that the stratified sample produces an 
unbiased estimate of p(t I m) rather that p(m,t) as with SKS. It 
is instructive to look at the result for@(m, t) under stratified 
sampling: i.e., 

p[m, t) = diag [p(m)] *p(t l m) = 

The elements of@(m,t) are the same as the constrained SRS 
estimates as Card (1982) shows. In fact, all of the point esti- 
mators are the same for simple random or stratified sampling 
due to the constraint imposed by the known p(m). Alterna- 
tive variance approximations to those of Card (1982) for - 
p(m I t) can be found in Green et al. (1993). A complete co- 
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variance matrix forfilt) is derived in Appendix B. Because no 
asymptotic approximations are used in Appendix B, this re- 
sult is preferable to previously derived variance approxima- 
tions. 

Stratified Sampling before the Map 
The discussion here relates to the use of training data for ob- 
taining improved estimates of the true proportions, p(f), from 
Equation 6. Grassia and Sundberg (1982) give variance esti- 
mates for the case where the map marginals, p(m), are un- 
known. The appropriate modifications to their covariance 
estimators are given in Appendix C, because p(m) is known 
for thematic maps. 

Training data are usually collected in advance of apply- 
ing a statistical classifier in order to provide estimates for the 
classifier's unknown paxameters. For example, the standard 
maximum-likelihood classifier requires estimates of the mean 
and covariance matrix for the spectral bands representing 
each class. The training data are obtained from pixels where 
the true cIassi£ication is known in advance. After classifying 
the map, the training data provide an estimate of p[m I t) that 
can be used with Equation 6 to estimate p(t). 

Conclusions 
A thematic map requires an associated accuracy assessment 
to be fully useful to its users. The purpose of this paper is to 
show how the sampling process affects estimation of the 
components of accuracy assessment, e.g., the producers risk, 
the consumers risk, and the map and true marginal proportions. 
It is hoped that this systematic approach wiU  aid in future ap- 
plications of map accuracy assessment. Related methods can be 
used for statistically assessing change in true class proportions 
over time (Van Deusen, 1994). 

Full covariance matrices, which were not previously 
available in the literature, are derived for estimates of the 
true map proportions p(t), and are given in the Appendices 
for each sampling scheme. The results in Appendix B for 
stratified sampling require no asymptotic approximations and 
can be corrected for bias according to a result from Cochran 
(1977). 

The final section discussed the use of training data in 
correcting for misclassification bias. This is an approach that 
has seen little use in the remote sensing literature, but 
should be widely applicable. Training data are usually ac- 
quired before a map can be made, and this approach pro- 
vides a low-cost method to obtain improved estimates of the 
true class proportions. The caveat here is that the training 
data should provide an unbiased estimate of the producer's 
risk p(m I t). If for some reason the training data are not rep- 
resentative of the entire map, the approach should be used 
with caution. However, if this were the case, then thc entire 
map should be used with caution. 
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Appendix A 
An asymptotic approximation for the covariance matrix of 
j(t)  under simple random sampling is derived. This result is 
derived as if the constraint on the map marginal, p(m1, is ir- 
relevant. Although this is true asymptotically, the effect of 
this constraint is to make the actual variance offi(t) smaller 
than it would be under SRS. Thus, the derivation here pro- 
vides a conservative estimate. 

The eIements of @(m,t) have a multinomial distribution 
with parameter vector w = V~~(p(m, t )  where VEC denotes 
stacking the columns of p(m,t) so that a is a R by 1 vector. 
In general, the variance ol an element in$(m,t) is 

and the covariance between the Lwo elements in$(m,t) is 

The entire covariance matrix of v~c(fi[rn,t)) is therefore 

diag (w) - .rr *w1 1 /n . 
We will use Equation A3 as an asymptotic approximation to 
the covariance of vac(fi,[m,t)). 

Now write$(t) as 

where J is a K by K2 matrix with row j having 1's in posi- 
tions (jK-l)+l through jK and 0's elsewhere. So row j of J 
picks off the jth column of p,(m,t) from wand sums it to get 
p(t=j?. Now the covariance matrix we seek is 

v(j(t)) = J * v ( ~  *J1 = J*diag (T) *I. - J*w*rf*I.] . [As) 
n 

After some algebraic manipulation this result can be shown 
to equal 
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The resulting Equation A6 is the same as Equation 8d and is 
used by replacing unknown values with current estimates. 

Appendix B 
The covariance matrix is derived here for$(t) under stratified 
sampling. Each row of the estimated p(t I m) matrix has an 
independent multinomial distribution with parameter vector 
p(t I m = i) under stratified sampling. Therefore, each row of 
$(t I m) has its own K by K covariance matrix, V,[$(t I m = ill. 
By well known results on multinomial covariances 

diag(p(t l m = I)) - 

p(tl m = i) *p ( t  1 rn = i)' I In,+ . (BlJ 

The appropriate formula here for$(t) is 

The fact that each row of$(t l m) is independent leads to the 
following result: 

.-. 
So the covariance matrix of $(t) under stratified sampling is 
a weighted sum of the individual covariance matrices of the 
independent rows of P(m I 1). Cochran (1977) shows that an 
unbiased estimate of multinomial variances results by divid- 
ing by 1 less than the number of sample observations to cor- 
rect for degrees of freedom. Therefore, if n,, is replaced by 
(n,, -1) in Equation B1, the overall result in Equation 0 3  is 
unbiased. Because the derivations in Appendices A and C in- 
volve asymptotic approximations, there is no point in cor- 
recting for degrees of freedom for those cases. 

Appendix C 
The covariance matrix oflj(t) is derived here closely follow- 
ing the procedures in Grassia and Sundberg (1982). The for- 
mula forlj(t) is 

This formula is useful when training data are available to 
provide an estimate of the producer's risk, p(m I t). To abbre- 
viate the notation used here, we rewrite Equation C1 as 

Following Grassia and Sundberg, approximate A-I by 

Now substitute Equation C3 into Equation C2 to get a linear- 
ized approximation to Equation C2: i.e., 

It is clear that ? is unbiased and its covariance matrix is ap- 
proximately 

Now remembering that A = p(m I t) and T = p(t), we need to 
compute V@T). 

The training data are collected from areas where the true 
class is known, and therefore each column of the estimated 
p(nl I t) has an independent multinomial distribution with pa- 
rameter vector p(m I t = I]. Therefore, each column of$(m t )  
has its own K by K covariance matrix, V,[lj(m I f = 111, which 
is derived analogously to covariance matrix V, in Appendix 
B. Now the variance we need for Equation C5 is 

Equation C8 gives the intuitively appealing result that the 
overall variance will involve a weighted sum of the vari- 
ances of the individual covariance matrices of the columns 
of p(m I t). 

Rewriting Equation C5 using the full notation gives the 
final result 

In order to apply Equation C9 in practice, all of the un- 
known values are replaced with their current estimates. 
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