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Abstract 
Though it  has been used for marginal area estimate correc- 
tion in image classification for years, the inverse correction 
technique has been the most controversial compared with 
several other marginal area estimate correction techniques, 
such as the direct and additive methods. In the reported 
practices, the inverse correction technique provided accepta- 
ble corrections to the marginal area estimates. In statistical 
simulation comparison, however, the inverse method was 
found unstable and systematically inferior to the direct 
method. Our objective in this study was to investigate what 
has caused this controversy. Through theoretic analysis and 
discussions on the characteristics of inverse correction for 
image classification, the author concludes that (1) the inverse 
correction exists if the classifier is minimum practically ac- 
ceptable and (2) the inverse is not ill-conditioned (i.e., it is 
stable) if the classifier is reasonably acceptable. 

Introduction 
Remotely sensed data are often used for land-cover classifica- 
tion. The classification is commonly quantified by providing es- 
timates for areas or numbers of pixels for different land-cover 
classes using a marginal area estimate technique such as the di- 
rect counting technique. Due to the classillcation error, the di- 
rect counting marginal area estimates are sometimes biased or 
prone to error. These estimate methods are often found unac- 
ceptable unless they are consistent with the definition and 
measurement protocol used for reference data (Thomas, 1986; 
Burk et a]., 1988; Poso, 1988; Czaplewski and Catts, 1992). 
Therefore, it is necessary to make corredions to the area esti- 
mates based on the knowledge regarding (mis)classification of 
the remotely sensed data. Three major correction techniques 
with various moacat ions - inverse correction (Bauer et al., 
1978; Maxim et al., 1981; Prisley and Smith, 1987; Hay, 1988; 
Jupp, 1989; Hay, 1989; Czaplewski and Catts, 1990; Cza- 
plewski and Catts, 1992; Czaplewski, 1992), direct correction 
(Card, 1982; Chrisman, 1982; Maselli et al., 1990; Czaplewski 
and Catts, 1990; Czaplewski and Catts, 1992; Czaplewski, 
1992), and additive correction (Dymond, 1992) - have been 
used or proposed for marginal area estimations. 

The inverse correction, which was introduced to remote 
sensing for crop area estimations by Bauer et al. (1978), 
makes use of the inverse matrix of the forward conditional 
confusion probability matrix (for definition, see context). 
When the survey is based on the field classes and designed 
independently of image interpretation, the inverse estimate is 
a natural choice (Jupp, 1989). Although this method may fail 
because of singularity of the forward conditional confusion 
probability matrix, it has been the most widely used correc- 
tion method for area estimate. Because it is a straightforward 
algorithm and produces acceptable results for applications, 
most of the early application work on area estimate correc- 
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tion was based on the inverse correction technique (Bauer et 
al., 1978; Maxim et al., 1981; Prisley and Smith, 1987). 

Although applications of inverse correction have been 
frequently reported in remote sensing, many authors have 
been questioning the instability of the inverse correction 
method, which was induced by the singularity or near-singu- 
larity of the sample forward conditional confusion probabil- 
ity matrix. Jupp (1989) studied the relative stability of the 
inverse correction as compared with the direct correction. He 
found that the relative stability of the inverse correction for 
area estimate depended on the singular values of the sample 
forward conditional confusion probability matrix. The differ- 
ence between two estimates (direct and inverse) is a function 
of the separation or contingency between the interpreted and 
surveyed classes. Through a theoretic analysis, Jupp con- 
cluded that the direct correction method is more stable, or 
less sensitive, than the inverse correction. The instability 
caused by inverse correction becomes serious when the sin- 
gular values of a sample forward conditional confusion prob- 
ability matrix approach zero. In a recent paper by Dyrnond 
(1992), an additive correction method was proposed for area 
estimate correction. The stability of the additive method is 
better than that of the inverse method when the sample con- 
fusion matrix is singular or near singular, because it does not 
involve the inverse of the sample confusion matrix. 

In a recent numerical simulation study by Czaplewski 
and Catts (1992) (note: the inverse correction technique was 
based on the classical statistical model while the direct correc- 
tion method was based on the inverse statistical model), a se- 
ries of simulations for both direct and inverse corrections had 
been performed for a wide range of number of classes (kom 4 
to 21). The inverse correction (classical statistical model) was 
found systematically inferior to the direct correction (inverse 
statistical model). However, their results also suggest that the 
inverse correction had a better chance of getting acceptable 
area estimation for cases of a smaller number of classes. 

Why aren't the theoretic analysis (Jupp, 19891, the simu- 
lations (Czaplewski and Catts, 1992), and the practical appli- 
cations consistent with one another in the inverse correction 
situation'? Inverse correction, though it may not necessarily 
be superior to the others in every case, is still an acceptable 
area estimate correction method. The objective of this study 
was to investigate this confusion created by theoretic analy- 
sis, mathematical simulation and practical applications. 

Basic Definitions 
Let r denote the number of the classes for our consideration. 
Assume that the true population confusion matrix for a clas- 
sifier is C, and the sample confusion matrix obtained from 
the field survey data is C,5. As usual, we have the following 
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notations and definitions, where rows represent reference 
classes and columns represent classified classes: 

where P,, is the conditional probability for a pixel being clas- 
sified as in class j given the condition that it is from class i; 
P, is the marginal a priori probability for class i; p ,  is the 
sample conditional probability for a pixel being classified as 
in class j given the condition that it is from class i; and p, is 
the sample marginal a priori probability for class i. 

Inverse Correction 
The inverse correction method for marginal area estimates 
was proposed by Bauer et al. (1978) and has been advocated 
by Hay (1988; 1989). Denote 

the inverse correction for the population area estimations. 
Because 

or, in matrix form, 

If P, is used to estimate P,, then the inverse corrections 
A, can be obtained from the equations 

where N, is the unknown (true) population number of pixels 
being classified from class i to class j by the classifier; N, is 
the unknown (true) population number of pixels in class i; 
N, is the known (true) population number of pixels being 
classified into class j by the classifier; N is the known total 
number of the pixels in the population (whole scene); n ,  is 
the sample number of pixels identified being classified from 
class i to class j by field verification or other methods; n, is 
the sample number of pixels in class i; n ,  is the sample num- 
ber of pixels being classified into class j; and n is the total 
number of pixels in the sample (sample size). 

We also define 

Thus, the inverse corrections can be solved by inverting 
Ps if its inverse exists. In most application cases, P; is invert- 
ible. For instance, if a classifier satisfies the constraints dis- 
cussed in the next section, then P; is invertible. Therefore, 
the following equation holds: 

8, = (p:)-I A,. (14) 

Apparently, the possibility and stability of the solutions 
of inverse correction depend on the invertibility of the sam- 
ple forward conditional confusion probability matrix. Jupp 
(1989) correctly criticized the instability of the solutions of 
inverse correction when the singularity values of the sample 
forward confusion probability matrix approach zero. where A, is the vector of true unknown number of pixels 

(marginai areas) of the classes in the whole scene and A, is 
the vector of the numbers of pixels in each classes obtained 
from digital classification. Notice that A, is an unknown vec- 
tor whereas A, is a known vector. The goal for marginal area 
estimation correction is to obtain a reasonable marginal area 
estimate for A, based on knowledge of A, and the sample 
confusion matrix C,. 

The population forward conditional confusion probabil- 
ity matrices P, and sample forward conditional confusion 
frequency matrix P, are defined based on the population and 
sample confusion matrices C, and C, , respectively: i.e., 

Acceptable Classifiers 
It should be noted that, when the inverse correction is ap- 
plied to the remote sensing classification results, the confu- 
sion matrices are no longer arbitrary ones. Instead, the 
classifiers used for classifications are presumably "accurate" 
and "acceptable."That is, they have been tested or verified 
in some way such that the probabilities for obtaining correct 
classifications for all the classes are larger than those for get- 
ting errors. Mathematically, the minimum acceptability for a 
classifier would mean 

P,, = P r ~ b ~ , , ~ ~ . ~ , ~ ,  (Map class i l True class i) 
> 0 . 5  = 1 2 ,  r (15) 

Because the population forward conditional confusion 
probability matrix is often estimated by a sample forward 

(7) conditional probability confusion matrix, condition (15) can 
be replaced by the corresponding condition about sample 
forward conditional confusion probabilities: i.e., 

a,, = Prob (Map class i l True class i) 
> 0.5, i = 1 , 2 , ,  r (16) 

p.. = 3 ' Ni, 
p. .  = 3 

I ni. 
(8) A classifier that satisfies condition (15) can be said to be 

minimum theoretically acceptable; while condition (16) is 
satisfied, it is said to be minimum practically acceptable. If a 
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classifier is minimum practically acceptable, it can be shown 
that it has an inverse correction. In other words, condition 
(16) is a sufficient condition for invertibility required by the 
inverse correction. 

To prove the above statement, consider a minimum 
practically acceptable classifier, because 

p , = 1 - p , , < l - 0 . 5 = 0 . 5 < p , , ,  i = 1 , 2  ,... J. (17) 
iti 1sm 

the sample foward conditional confusion probability matrix 
P, for the classifier is a non-negative, strictly diagonally dom- 
inant matrix. Therefore, it is invertible (Horn and Johnson 
(19851, Theorem 6.1, p. 349) and so is PB. 

It can be observed that condition (16) is not normally ac- 
ceptable for applications. A more reasonable constraint for a 
successful classifier would be 

pi, = ProbSmp,, (Map class i I True class 1) 2 0.7, 
i = 1 2 ,  r. (18) 

Therefore, a classifier satisfying condition (18) will be 
called a "reasonably acceptable" classifier in this study. 

Stability of Inverse Correction 
Jupp (1989) has discussed the stability of inverse correction 
with respect to the singular values of the sample forward 
confusion probability matrix. Based on our definitions on ac- 
ceptable classifiers, the stability of the solutions of inverse 
corrections can be much simpler. Suppose P, is the sample 
forward conditional confusion probability matrix for a mini- 
mum acceptable classifier; therefore, it is non-negative and 
strictly diagonally dominant. Denote 

w = min p,, (>0.5) 
l*S 

One can prove that all eigenvalues of P, are contained in 
the complex disc (Minc (1988), Theorem 6.14): 

Because 

therefore, 

Our first conclusion about a minimum practically ac- 
ceptable classifier is that its sample forward conditional con- 
fusion probability matrix P, is invertible (equivalent to all its 
singular values being non-zero]. All of the eigenvalues (or 
singular values in Jupp's paper (Jupp, 1989]] of Ps have posi- 
tive real parts (Horn and Johnson (1985), Theorem 6.1.10). 
Actually, 1 is one of the eigenvalues corresponding to eigen- 
vector 1 = (1,1, ..., 1)" of P,. P,' is also invertible because P, 
and P,T have the same eigenvalues. Therefore, Equation 14 
holds. If the given classifier is a reasonably acceptable classi- 
fier (in most application cases), one would further have 

w = min pi; 2 0.7 
WV 

and 

A",,, IPS) 1 K,(P;) = KAPJ = IIP~11211P,~'112 = ----- < - 
A,,,, (PSI - 20,-1 

. (251 

The 2-norm of a matrix M is defined (Horn and Johnson, 
1985) by 

llMl12 = YAmm (W MI. (26) 

For a reasonably acceptable classifier, one would have 

In numerical analysis, a linear system with a conditional num- 
ber falling into this range would normally be considered 
very stable. 

However, if the classifier is merely minimum acceptable 
or even not acceptable, the error propagation may be out of 
control, and sometimes error propagation could be a disaster. 
It is recommended that the classifier always be checked in 
order to determine that it is reasonably acceptable before us- 
ing the inverse correction. 

Simulation Controversy 
The above discussion obviously interpreted the controversy 
between practical application results and theoretical analysis 
by Jupp (1989). The interpretation for the controversy be- 
tween the application results and the simulation results by 
Czaplewski and Catts (1992) was more subjective, because 
the P, generating procedure used by Czaplewski and Catts 
(1992) was not fully presented in the paper. However, the 
following are the possibilities that might have resulted in the 
controversial results in their simulation: 

(11 A regular transition matrix in a normal Marcovian chain may not 
necessarily represent a forward conditional confusion probability 
matrix of an image classifier. That is, if the transition matrix is 
not strictly diagonally dominant, normally it does not represent 
any acceptable classification. Only a small portion of Marcovian 
chain transition matrices can be considered as a P, for an image 
classifier. 

(2) If the generated P, had zero elements, the Bayesian method had 
been used for modifying the zero elements (Czaplewski and 
Catts, 1992). If these zero elements happened to be in the diago- 
nal positions, the smoothed matrix would be very likely ill-con- 
ditioned. In this casc, the solutions of the modified linear system 
may not present the true solution at all. There are numerous ex- 
amples about this problem in standard text books for numerical 
analysis such as the one by Golub and Loan (1989). 

[3) If the random variable generating process was based on [O 11-uni- 
form distributions for P, generating, one would have 

Prob (generate pi, 5 0.7) 
= 0.7, Prob (generate p, > 0.7) = 0.3. (28) 

If the generating of p,,'s is independent, one would further 
have 

Prob (generate all pi, > 0.7) = 0.3r . 
Or, in  another form, 

(23) 
Prob (generate a Ps tliat is not reasonably acceptable) 

= Prob (generate at least one p,, < 0.7) = 1 -0.3r (301 

Therefore, according to Jupp (1989), the solutions of the 
inverse corrections would be quite stable. This probably 
could explain why, in most reported application cases, the 
solutions of inverse corrections were stable. 

Conditional number is a common measure of error prop- 
agation rate (stability) for solving a linear system (Golub and 
Loan, 1989). The 2-norm condition number for P,T is 

Thus, if the P, generating process was not controlled by 
the reasonably acceptable condition (Equation la), the proba- 
bility of producing a reasonably acceptable P, would be only 
0.3r (where r is the number of classes). It is more likely that 
the simulated transition matrix could not be used as a f o ~ .  
ward conditional confusion probability matrix for a reasona- 
bly acceptable classifier. In Czaplewski and Catts' simulation 
[Czaplewski and Catts, 1989), r had been set to range from 4 
to 21. If r = 4, then 0.3. = 0.008; if r = 21, then 0.3. = 1.046 
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x lo-". One may observe that even if r is small, the chance corresponding population and sample forward confusion 
of getting a reasonable P, is already very small; if r is large, probability matrices for the composite classifier: 
the chance of getting a reasonable P, is almost zero! There- 
fore, if condition (18) is not adopted in generating P,, the pi!] ~ $ 1  ... 
simulation results would definitely not be in favor of inverse 
correction. This observation might also help in interpreting 
the phenomena presented in Figure 1 of Czaplewski and 
Catts' paper (Czaplewski and Catts, 1989): the smaller the r, PI.k' = 
the better the sirnulati011 results for inverse correction. . . ... ... . . (36) 

However, the discussion here is only a conjecture. We 
do think the inverse correction method needs further evalua- 
tion. And, we do hope the natural constraints for image clas- 
sifiers such as conditions (16) or (18) would be considered in 
future evaluations. 

Pl, PI2 PI, P11 P1z "' P1r 

Multiscene Corrections 
The constraints in conditions (15), (16), or (18) are consistent 
in terms of multi-scene classification assemblies. Therefore, P, = 
the marginal area estimation correction for a large region that 
consists of multiple scenes can be achieved through the cor- 
rection for individual scenes. One way to do this is assuming 
that there is a "super" composite classifier that acts on all Prl ps ... prr Pn Pa "' Prr 
scenes respectively. This composite classifier has the effect The population and sample probabilities that a pixel in that it is equaI to the local classifier whenever it is applied the given class is from scene are to a particular scene. For the composite classifier, one can 
still perform area estimation and correction for the whole re- - Wk' and L. n~~ 
gion if the sampling design is the same. Ni n, (38) 

Assume that there are m scenes in the considered re- 
gion. The population confusion matrix for scene k (k = 1, 2, The population and sample (mis)classification probabili- 

..., m) is ties for the composite classifier would be 

Then the total population confusion matrix C, is 

Let Nj;J be the total number of pixels in class i in scene 
k, and N, be the total number of pixels in class i for the 
whole region (m scenes). We will have 

where N = the total number of pixels in m scenes in the 
whole region. 

The estimate for N, can be obtained by taking the sum of 
the estimates for the individual Njk~s. The corrections for 
these estimates may also be done based on the confusion ma- 
trices of the "super" composite classifier. 

In the case of inverse correction, the inverse of the for- 
ward conditional confusion probability matrix is involved. 
The invertibility of the forward confusion probability matri- 
ces for the composite classifiers needs to be confirmed. As- 
sume PAk] and PJkl are the forward population and sample 
confusion probability matrices for scene k; P, and P, are the 

" MkJ 
P,, = Robpnp u.,,o,, (Map class, l True classi) = 2 $- P);] 

nlkl (39) 
p,, = Prob (Map classjl True classi) = k = ~  z 2 n, pi;? 

As usual, the population forward conditional confusion prob- 
ability matrix for the composite classifier is estimated by the 
sample forward conditional confusion probability matrix for 
the composite classifier. 

To guarantee the sample forward confusion probability 
matrix for the composite classificr obtained this way is in- 
vertible, some conditions need to be added to the local clas- 
sifiers. A reasonable sufficient condition would be requiring 
that all the local classifiers be minimum practically accepta- 
ble (or reasonably acceptable). 

It is easy to prove that, if all PLkJs are minimum practi- 
cally acceptable (i.e., strictly diagonally dominant), then P, is 
also minimum practically acceptable (strictly diagonally 
dominant], because 

Z p,, = , . . t H;J j * , ,  IS,%, I+,, E,sr k=1 N,, 

= Pii 

This suggests that, if all the local classifiers are accepta- 
ble, then the composite classifier is also acceptable. This 
guarantees that the inverse correction can be performed for 
the composite classifier. Similar results can be obtained if 
the classifiers are required to be reasonably acceptable. Fur- 
thermore, it indicates that the constraints for the classifiers 
in conditions (15) through (18) are "natural." 

Summary 
Through our discussion we can conclude that (1) the inverse 
correction exists if the classifier is minimum practically ac- 
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ceptable and (2) the inverse is not ill-conditioned (i.e., i t  is 
stable) if the classifier is reasonably acceptable. 

Marginal area estimate corrections have long been used 
to obtain accurate area estimates for land-cover types. Tech- 
niques used for corrections are commonly application prac- 
tice dependent. Jupp (1989) pointed out that which method 
is more "natural" depends on the circumstances of the inter- 
pretation and survey and involves the fundamentals of sur- 
vey design. 

The inverse area estimate correction has been practically 
used in  remote sensing applications for some time. Though 
large errors in classification scheme could result in  large un- 
certainties in inverse correction, for most reasonably accepta- 
ble classification schemes, inverse correction still provides 
reliable and stable area estimates. However, care should be 
taken when the accuracy of the classifier is particularly low. 

Comparison work for different correction methods is still 
needed. However, a meaningful comparison should be based 
on the fact that the inverse corrections are largely based on 
reasonably acceptable classifiers; and, at least, based on the 
minimum practically acceptable classifiers. 
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