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Abstract 
This study explores the propagation of error through the buf- 
fer operation in GIs. The study focuses on probability based 
raster databases, or probability surfaces, in which cell values 
show the probabilities associated with membership in difler- 
ent land-cover classes. Results indicate that there is a strong 
posjtjve relationship between error levels in source and de- 
rived layers. The strength of the relationship is affected by 
the degree to which source probabilities tend to be under- or 
over-estimated, and by the interaction between buffer size 
and spatial covariation in source probabilities. 

lntroductlon 
This study focuses on the implications of error propagation 
for GIS-based modeling applications. Error propagation refers 
to the process of error transference from source to derived 
data. This process occurs through the application of GIS oper- 
ations, which transform and merge source data with the ob- 
jective of deriving specific spatial relationships implicit 
within these data. Errors in source data are transferred by 
these operations, and are also modified such that source and 
derived data may have different error characteristics. Both 
amplification and suppression of error levels can occur 
through the application of conventional GIs operations. 

Error propagation modeling refers to the attempt to emu- 
late the processes of source error modification and transfer- 
ence, with the goal of estimating the error characteristics of 
derived data products. Error propagation functions are math- 
ematical and computational techniques designed to propa- 
gate error through specific GIs operations. Each GIs operation 
requires a unique error propagation function (Lanter and Ver- 
egin, 1992). Automated error propagation systems must be 
capable of determining the appropriate error propagation 
function to employ, and be able to concatenate these func- 
tions to mirror the flow of data through a given sequence of 
GIS operations. Some prototype systems have been developed 
in recent years (e.g., Heuvelink et al., 1989; Lanter and Vere- 
gin, 1990; Carver, 1991). However, these systems are limited 
to selected subsets of GIS operations and often employ error 
propagation functions that are applicable only in the con- 
trolled conditions found inside the laboratory. 

This study concentrates on the propagation of error 
through the buffer operation. This operation involves the de- 
lineation of a geometric zone of specified width around a set 
of features on the source layer. It is commonly employed in 
GIS-based modeling applications involving site selection, suita- 
bility analysis, and environmental assessment. Despite its 
widespread use, relatively little is known about error propaga- 
tion for this operation. Moreover, the mechanisms of error 
propagation for the this operation are quite complex, due to 
interaction between spatial and aspatial error components. 
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Error propagation for the buffer operation is also affected 
by characteristics of the data model. For the vector model, a 
buffer is a geometric feature defined in terms of distance 
from a set of features on the source layer. Thus, error propa- 
gation is most appropriately modeled in terms of locational 
error in the source features. For the raster model, in contrast, 
the buffer zone comprises all cells within a specified dis- 
tance of a set of "feature cells" on the source layer. Here, er- 
ror propagation is most appropriately modeled in terms of 
thematic error, i.e., errors of omission and commission asso- 
ciated with the feature cells. 

Veregin (1994) examines error propagation through the 
buffer operation for conventional raster databases. The pres- 
ent study extends this work into the realm of probability 
based raster databases, or probability surfaces, in which cell 
values indicate the probability of membership in different 
land-cover classes. Probability surfaces have been proposed 
as a means of incorporating information on mixed-cell class 
composition into GIS databases (e.g., Goodchild et al., 1992). 
Use of these surfaces in GIs-based modeling applications may 
yield greater precision in model results by accounting for the 
continuous nature of landscape variation (e.g., Burrough et 
al., 1992). Despite the potential usefulness of this approach, 
it has not been widely adopted due to a lack of standard GIS 
tools for manipulation of probability surfaces. 

This study examines the quality of data products derived 
through the use of probability surfaces in GIS-based analysis 
procedures. The study focuses specifically on the factors that 
affect the quality of data derived through the application of a 
probability based analog of the conventional buffer opera- 
tion. A brief explanation of probability surfaces and how buf- 
fers can be derived for such surfaces is described. The 
mechanics of error propagation through the buffer operation 
for conventional raster databases and probability surfaces is 
then discussed. The hypotheses to be tested are outlined and 
the methodology employed in the study is then detailed. Fi- 
nally, results are presented and discussed. 

Results suggest that error propagation for probability sur- 
faces has much in common with error propagation for conven- 
tional raster databases. In both cases, source and buffer errors 
are positively correlated, with a decline in the rate of error 
propagation as buffer size increases. For both probability sur- 
faces and conventional databases, error propagation is affected 
by spatial covariation. In contrast to conventional databases, 
however, levels of buffer error for probability surfaces tend to 
be larger than levels of source error. This suggests that error 
propagation may have significant effects on the results of GIs- 
based analysis procedures for probability surfaces. 
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Probability Surfaces 
Rationale 
Traditional classification methods used to derive raster land- 
cover data assume that each cell contains only one class. 
However, this assumption is often not borne out by empiri- 
cal observation and is known to be unrealistic for geographi- 
cal phenomena that exhibit gradual transitions between 
classes or contain mixtures of classes that become apparent 
at different spatial scales. For such phenomena, pure cells 
containing only one class are rare, and it is more common to 
find cells that contain a mixture of classes. The assumption 
of pure cells is a limitation that can lead to imprecision in 
the results of GIs-based analysis procedures, especially in ar- 
eas of high spatial heterogeneity. This suggests that there is a 
need for alternate data models that account for the continu- 
ous nature of landscape variation (Burrough et al., 1992; 
Goodchild et al., 1992). 

Information about mixed-cell class composition can be 
encoded in GIS databases using a variety of different data 
models. Perhaps the most flexible of these is the probability 
surface model, in which a vector of probability values is en- 
coded for each cell. Let the variable p,, represent the proba- 
bility that cell i belongs to land cover class c. Given m cover 
classes, a probability vector of the form [p,,, P , ~ ,  . . ., p,J ex- 
ists for each of the n cells in the layer. Individual elements 
of the vector reflect the probability of observing a particular 
class and may be referred to as class probabilities (Goodchild 
et al., 1992). 

The probability surface model is a generalization of the 
conventional raster data model rather than a radical depar- 
ture from it. In conventional raster databases depicting land- 
cover classes, each cell i is coded with a nominal value q, 
(with a value of 1 through m) that serves to identify the most 
probable of m cover classes. The conventional model can 
easily be recast in the context of a probability surface model, 
in which the probability vector for any cell contains m-1 el- 
ements with values of zero, and a single element with a 
value of one corresponding to the most probable class. The 
nominal value for cell i, q,, is simply the index value of the 
most probable class. That is, 

Thus, the conventional raster model can be viewed as a 
transformation of the more general probability surface model, 
in which the elements of the probability vector for a cell de- 
h e d  in the closed interval [0,1] are mapped to the set (0,lI. 
This transformation process imparts a reduction in the level 
of taxonomic resolution and, hence, a potential loss of detail 
in model output. 

Derivation 
Land-cover information is a basic requirement of many GIs- 
based modeling applications, and remote sensing is often 
used as a source of this information. However, while numer- 
ous classification methods have been developed to derive 
land-cover information from remotely sensed data, few of 
these methods preserve information about mixed-cell class 
composition. Rather, these methods typically assume that 
only the dominant land-cover class is of interest, despite 
widespread agreement that the notion of pure cells is often 
unrealistic. 

Some classification methods do preserve information 
about mixed-cell class composition. Indeed, many classifica- 
tion procedures calculate a measure of the strength of mem- 
bership for all cover classes prior to assignment of class 
values to cells (Fisher, 1994). For example, discriminant 
analysis yields probability estimates defining cell member- 
ship in a set of m classes. Maximum-likelihood classifiers 

likewise compute the probability that each cell belongs to 
each of a set of m classes, in order to then determine which 
class has the highest probability. Probability-like measures 
can even be derived for classification procedures based on 
distances defined in spectral space (Fisher, 1994). 

Fuzzy set theory (first articulated by Zadeh (1965)) pro- 
vides another model for mixed cells. In contrast to conven- 
tional set theory, fuzzy set theory allows for a variable 
degree of membership in a set. The degree of membership is 
defined by a membership value, which is normally expressed 
as a value in the closed interval [0,1]. Values closer to 1 in- 
dicate a higher degree of membership. Classification algo- 
rithms based on fuzzy set theory can be used to obtain an 
m-dimensional vector of membership values for each cell, 
where each element of the vector indicates membership in a 
particular cover class. 

Despite their apparent similarities, there are important 
differences between this model and the probability-based 
model described earlier. In fuzzy set theory, there is no for- 
mal requirement that the membership values for any obser- 
vation sum to one, as in the case of probability-based models 
(Robinson and Thongs, 1985). In fuzzy set theory, member- 
ship values define possibility rather than probability. It is 
generally held that possibility is based on a broader interpre- 
tation of uncertainty than probability. Certainly, the two the- 
ories address a different kind of uncertainty and handle it in 
quite different ways. 

Despite these differences, the operational distinction be- 
tween membership values and probabilities is itself rather 
fuzzy. For example, some algorithms for fuzzy classification, 
including the well-known fuzzy c-means algorithm (Bezdek 
et al., 1984), have a probabilistic interpretation, as they force 
the membership values for any observation to sum to one. 
Moreover, numerous studies have shown that membership 
values derived from fuzzy classifiers are correlated with cov- 
erage areas (or proportions) for different classes within 
mixed cells (Fisher and Pathirana, 1990; Veregin and Sul- 
tana, 1992; Foody, 1994). Thus, membership values yield 
useful predictions of the probability of observing a particular 
class within a cell. 

Undoubtedly, many proponents of fuzzy set theory 
would be disinclined to argue for a convergence in interpre- 
tations of membership values and probabilities. However, it 
is not the intention of this study to argue that the two are 
synonymous. Rather, the starting point for the study is an as- 
sumed ability to derive information on class composition at 
sub-cell spatial scales and to encode this information in a 
raster database. The subtle differences between the possibi- 
listic and probabilistic interpretations of this information, 
while an important topic in its own right, is necessarily 
somewhat tangential to the objectives of the study. 

The Buffer Operation 
As in the case of conventional raster databases, the buffer 
operation is applied to probability surfaces to derive infor- 
mation on proximal relationships, i.e., relationships associ- 
ated with proximity or distance. For conventional raster 
databases, a buffer is defined as the set of cells within a 
specified distance (the "buffer size") of a set of "feature 
cells." Feature cells are the cells on the source layer that cor- 
respond to the cover class (or classes) of interest (e.g., water 
or wetlands). Cell values on the source layer indicate mem- 
bership in the set of feature cells. Typically, values of 1 and 
0 indicate membership and non-membership, respectively. 
The value for a given cell i on the derived buffer layer is ob- 
tained by examining the values of all cells on the source 
layer for which the distance to cell i is less than or equal to 
the buffer size. If any of these cells has a value of 1, then the 
value for cell i on the buffer layer is also equal to 1. If no 
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cell with a value of 1 is found within the distance neighbor- 
hood, cell i on the buffer layer is assigned a value of 0. 

For probability surfaces, cell values on the derived buf- 
fer layer are likewise defined in terms of proximity to the 
cover class of interest. However, in this case cell values on 
the source and buffer layers are defined as the closed inter- 
val [0,1] rather than as elemcnts of the set (0,lI. The value of 
a given buffer cell reflects the probability that the cell is 
within the buffer distance of the class of interest. For proba- 
bility surfaces, the buffer operation is in essence a logical 
union operation. For any cell i, the probability that the cell 
is within the buffer distance of the class of interest is equal 
to the union of the probabilities of all cells for which the 
distance to cell i is less than or equal to the buffer size. Each 
cell with a non-zero probability within the distance neigh- 
borhood of cell i adds to the buffer probability of the cell, 
because each of these cells increases the probability that cell 
i is within the buffer distance of the class of interest. 

Implementation of the union operation depends on the 
degree of indepcndence assumed to exist in cell probabili- 
ties. At one extreme, the contribution of any cell can be seen 
as independent of any other cell. This assumption is valid if 
the process that generated the probability surface operates in- 
dependently at each location (e.g., a random value between 0 
and 1 is generated independently for cach cell). Under this 
assumption, the buffer layer can be derived as follows: 

In this equation, b,, is the buffer probability for cell i for 
class c, p,, is the source probability value for cell j for class 
c, d, is the Euclidean distance between cells i and j, and b is 
the Luffer size. This equation is the same as that used to 
compute reliability for accumulation of independent evi- 
dence (Tikunov, 1986). 

When autocorrelation is present, Equation 2 is inappro- 
priate, because the probability value at any location will not 
be independent of the value at neighboring locations. In or- 
der to account for autocorrelation, the contribution of indi- 
vidual cell probabilities must be reduced. It is proposed that, 
under the assumption of positive autocorrelation, buffer 
probabilities be derived using the following equation: 

The equation specifies that the buffer probability for cell i be 
equal to the maximum probability of the set of cells within 
the buffer distance of cell i. The equation discounts the con- 
tribution of neighboring cells undgr the assumption of posi- 
tive autocorrelation. 

Equations 2 and 3 represent extremes of a continuum. 
Other definitions of buffer probability can be defined be- 
tween these two extremes. Equation 2 makcs the most liberal 
allowance for autocorrelation by assuming that each cell con- 
tributes independently to the combined probability. Equation 
3 uses the most conservative interpretation of autocorrela- 
tion, as it discounts the contribution of all cells other than 
the cell within the maximum probability within the buffer 
zone. As noted above, the buffer operation may be viewed as 
a logical union operation; Equation 3 parallels the way in 
which the logical union operation is typically performed for 
fuzzy membership data (Leung, 1988). 

Either of the two equations can be used Lo produce a 
buffer for conventional raster data, given a recasting of the 
conventional raster data model into a probability surface 
model as described earlier. Note also that, whether one uses 
Equation 2 or Equation 3,  the buffer can be defined for any 
class c. 

Figure 1 shows examples of buffers produced by the two 

equations. The original probability surface is shown in Fig- 
ure la.  (The source of this surface is described below.) Fig- 
ures l b  and l c  show the buffer probability surfaces based on 
a buffer size of two cells (60 m). Note that Equation 2 pro- 
duces a smoother probability surface than does Equation 3. 
Indeed, even for fairly small buffer sizes, Equation 2 often 
saturates the buffer probability surface with values close to 1. 

Error Propagation for the Buffer Operation 
Conventional Databases 
As noted earlier, the issue of error propagation for the buffer 
operation has not received a great deal of attention in the GIs 
literature (but see Veregin (1994)). Error propagation research 
in the context of probability surfaces is rarer still. Most error 
propagation research has focused on conventional categorical 
or numerical raster and vector data layers (e.g., Newcomer 
and Szajgin, 1984; Burrough, 1986; Heuvelink et ol., 1989; 
Veregin, 1989; Wesseling and Heuvelink, 1991). 

Veregin (1994) examines error propagation for the buffer 
operation in the context of co~iventional raster databases, in 
which cells are coded with values of 0 or 1 to indicate mem- 
bership in a set of feature cells around which the buffer is to 
be generated. The accuracy of the derived buffer layer is 
found to be dependent on the following factors: 

Source PCC is the probability that cells in the source layer are 
correctly classified as either feature or non-feature cells. A 
positive relationship exists between source accuracy and buf- 
fer accuracv. indicatine that thc hieher the accuracv of the 
source data: the more accurate theiuffer layer. 
Buffer size is the width of the buffer. A positive relationship 
exists between buffer size and accuracy. The buffer layer 
tends to be more accurate when buffer size is large. The ef- 
fects of buffer size depend on two competing forces, the first 
being the tendency for thematic error to grow in direct pro- 
portion to the width of the buffer, and the second being the 
tendency for saturation to occur for large buffer sizes. 
Feature probability 1s the proportion of cells in the source 
layer that are defined as feature cells. In general, a higher 
probability implies a higher buffer accuracy, due to the en- 
hanced tendency for saturation to occur, even for small buffer 
sizes. 
Feature geometry is the degree to which feature cells tend to 
cluster in space. An inverse relationship exists between fea- 
ture geometry and buffer accuracy. The less clustered the fea- 
ture cells, the more accurate the buffer layer. This is due to 
the propensity for dispersed feature cells io  produce a greater 
number of buffer cells, which in turn is associated with in an 
enhanced propensity for saturation. 
Error distribution is the demee to which misclassified cells " 
tend to cluster in space. A positive relationship exists be- 
tween the error distribution and buffer accuracy. The less 
clustered the ~nisclassified cells, the less accurate the buffer 
layer. Clustering of misclassified cells tends to minimize the 
number of misclassified buffer cells that will be produced for 
a given buffer size. 

Probability Surfaces 
For probability surfaces, the amount of error propagated to 
the buffer layer depends on the amount of error present in 
source layer probability values. The relationship is affected 
by the direction (or sign) of the source errors. Over- and un- 
der-estimation of source probabilities have different effects 
on the degree of buffer error. These effects are mitigated by 
the interaction between buffer size and spatial covariation in 
source errors. 

The discussion that follows focuses on the computation 
of buffer probabilities as given in Equation 3.  This equation 
provides the most conscrvative estimate of buffer probabili- 
ties, and therefore serves to define the lower bound of propa- 
gated error for the buffer operation. 
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The effects of source error on the buffer layer depend on 
the degree to which errors occur at local maxima on the 
source layer. A local maximum is defined as a cell with a lo- 
cally high probability, such that this probability is radiated 
over space when the buffer layer is constructed. A given cell 
i is defined as a local maximum (x,, = 1) if,  for any cell j on 
the layer, cell i has the largest probability value of all of the 
cells for which the distance to cell j is less than or equal to 
the buffer size. That is, 

1 ifp,, = max(p,), V k I d , ~  b, j=1,2 ,..., n 
(4) 

I 

(C) (d l  
F~gure 1. (a) Probability surface for water and wetlands for an area centered on Kent, Ohio. (b) Buffer for probability 
surface in (a) using Equation 2 and based on a buffer size of two cells (60 m). (c) Buffer for probabil~ty surface in 
(a) uslng Equatlon 3 and based on a buffer size of two cells (60 m). (d) Local maxima for probabillty surface in (a). 
See text for explanation of equations. 

Local non-maxima refer to those cells for which x,, = 0. Pig- 
ure I d  shows the local maxima for the probability surface in 
Figure la. 

The identification of local maxima provides an alternate 
definition of the buffer layer as the layer derived through the 
superimposition of the buffer zones surrounding each local 
maximum. The probability values of each local maximum 
are radiated horizontally over space to a distance defined by 
the buffer size. For a given cell on the buffer layer, the prob- 
ability is then defined as the largest of the probability values 

radiated to that cell. Figure 2 providcs a schematic represen- 
tation of the computation of buffer probabilities in this man- 
ner, based on a profile drawn through a hypothetical 
probability surface. 

Errors at local maxima have a significant impact on buf- 
fer layer accuracy. The concept is similar to the blanket of 
error defining the difference between unclassed and classed 
attribute values in choropleth maps (Jenks and Caspall, 
1971). The amount of error in buffer probabilities depends 
on the degree to which local maxima are over- or under-esti- 
mated. For a given cell i, assume that the source probability 
value, p,,, is an estimate of the true probability value, p:,. 
The error, e,,, can be defined by the difference 

e;c  = Pic - PI:  (5) 

Over-estimation of a probability value means that e,, > 0, 
while under-estimation implies that e,, < 0. When a local 
maximum is over-estimated, the over-estimated component 
e,, is radiated over space around the local maximum to a dis- 
tance defined by the buffer size (Figure 3a). The component 
is added to the probability of every cell for which the over- 
estimated local maximum has the largest probability of all 
probability values radiated to that cell. The total volume of 

April 1996 PE&RS 



P~oflle of probability 
g 0 . 4  surface with hexght of each 

E 0.2 cell equal to magn~tude of 
a 

0.0 probablllty value. 

Local 
Local max'mum 

maximum 
maximum 

rl 

P j maxlmn and buffer zone 
g 0 . 4  

g 0.2 

0.0 
buffer slze of 5 cells. - 

Buffer slze = 5 cells 

Figure 2. Profile through hypothetical actual probab~lity surface illustrating den- 
vation of buffer probabilities based on Equation 3. See text for explanation of 
equation. 

error is equal to the product of e,, and the number of cells 
that have this characteristic. Thus, an increase in buffer size 
implies that more cells on the buffer layer will contain the 
over-estimated probability values, resulting in a greater vol- 
ume of error. 

Under-estimation of local maxima has essentially the 
same effect, except in cases in which the under-estimation 
causes a cell to lose its status as a local maximum (Figure 
3b). In this case, buffer error is likely to be somewhat less 
than for the same degree of over-estimation. 

For a local non-maximum, over-estimation of source 
probabilities is again more significant than under-estimation. 
Over-estimation can cause a cell to become a local maxi- 
mum, which results in propagation of the over-estimated 
component (Figure 3c). In contrast, under-estimation for lo- 
cal non-maxima has no impact on buffer error [Figure 3d), 
because the probability value is already lower than another 
nearby cell. 

The effects of over- and under-estimation of source prob- 
abilities are mitigated by buffer size. There are two compet- 
ing forces at work. On the one hand, error is propagated to 
greater distances as buffer size increases. For larger buffers, 
error is propagated to a larger number of cells, resulting in a 
greater volume of error in the buffer layer. On the other 
hand, errors associated with a local maximum cannot be 
propagated indefinitely over space. The buffer layer tends to 
become saturated as buffer size increases, because large buf- 
fers have a tendency to overlap. As saturation begins to uc- 
cur, error no longer accumulates independently from each 
local maximum. Rather, error propagated from one local 
maximum tends to be swamped by error propagated from an- 
other. Thus, as buffer size increases past some threshold, the 
rate of error propagation begins to decline. The ultimate cap 
on propagated error is determined by the size of the grid. 
When the buffer exceeds the boundaries of the grid, error 
propagation rates become flat. 

These general observations are affected by spatial covar- 

iation in probability values. Spatial covariation has an im- 
pact on the degree of over- and under-estimation and the 
propensity for saturation to occur. These effects may be miti- 
gated by covariation in errors, because errors affect the spa- 
tial distribution of probabilities on the buffer layer. 

Analysis 
Hypotheses 
Based on the above considerations, the following hypotheses 
may be advanced with regard to error propagation for the 
buffer operation in the context of probability surfaces: 

There should be a positive relationship between the amount 
of error in source probability values and the amount of error 
in derived buffer probabilities. 
The amount of error in the buffer layer should depend on 
buffer size. The rate of error propagation should initially in- 
crease with buffer size as error is propagated to an ever larger 
number of cells. As saturation begins to occur, the rate of er- 
ror propagation should begin to decline. 
&or indices that differentiate between over- and under-esti- 
mation [e.g., bias or mean error) should yield more consistent 
predictions of buffer error than indices that do not differenti- 
ate between these two types of error [e.g., root-mean-squared 
error or RMSE). This is because over- and under-estimation 
tend to have different effects on buffer error. 
Over-estimation of probabilities should have a greater effect 
on buffer errors than under-estimation. As described above, 
under-estimation has little effect on buffer error in many 
cases. 
Effects associated with spatial covariation in probabilities 
should also exert an impact on buffer error. 

Methods 
In this study, a simulation-based procedure is used to exam- 
ine error propagation effects for the buffer operation. The 
procedure is based on a comparison of the error characteris- 
tics of multiple realizations of "actual" and "estimated" 
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Figure 3. Profile through hypothetical probability surface, illustrating effects of over- and under-estimation of probabilities for buf- 
fer derivation (to be compared with actual distribution in Figure 2). (a) Overestimation of local maximum causes over-estimated 
component to be radiated to neighboring cells. (b) Under-estimation of local maximum causes under-estimation of buffer proba- 
bilities for some neighboring cells. (c) Over-estimation of local non-maximum can cause error to be propagated if cell becomes 
local maximum. (d) Under-estimation of local non-maximum has no effect on propagated error. 
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Figure 4. Graphic representation of methodology used in study. 

source and buffer layers. For the purposes of this study, the 
following definitions are used: 

The estimated source layer refers to the set of cell probabili- 
ties for a particular cover class, as derived from some 
classification procedure. This is the layer that would nor- 
mally be available to a GIS user. The estimated source layer is 
assumed to be an imperfect estimator of the actual source 
layer. 
The actual source layer is the theoretical (but operationally 
unobservable) error-bee counterpart of the estimated source 
layer. In this study, actual source layers are derived through 
a transformation of the corresponding estimated source layer, 
subject to certain conditions (as described below). 
The estimated and actual buffer layers are the layers derived 
by applying Equation 3 to the estimated and actual source 
layers, respectively. 

Data for the simulation procedure were obtained from a 
120-row by 160-column subset of a Landsat Thematic Map- 
per scene for Kent, Ohio. The fuzzy c-means classifier was 
applied to these data to obtain probabilities for six land- 
cover classes. The original FORTRAN version of the c-means 
classifier can be found in Bezdek et al. (1984). For this 
study, the classifier was translated into C. 

A schematic representation of the steps involved in  the 
procedure is given in Figure 4. These steps are described in 
detail below. 

Step 1. Obtain probability values, P , ~ ,  for some class, c, for all 
cells in the estimated layer. As noted above, the esti- 
mated layer is derived using a classification procedure, 
and is assumed to be an imperfect representation of the 
actual layer. 

Step 2. Compute y (the semi-variance) for the estimated layer at 
a spatial lag of one cell (approximately 30m). Large val- 
ues of y indicate that adjacent cells tend to have differ- 
ent probability values (high spatial covariation), while 
small values of y indicate that adjacent cells tend to 
have similar values (low spatial covariation). 

Step 3. Compute a "target" value of y for the actual layer. The 
target level is computed by selecting a random number 
between 0.0 and 0.03 from a uniform distribution. 
(These extreme values are equidistant from the mean y 
value of 0.015 observed for the six land-cover classes.) 

Step 4. Derive the actual layer for comparison with the esti- 

mated layer. The probability values for the actual layer, 
p:,, are initially set to equal those on the estimated 
layer. Values are then modified to achieve the target 
value of y. The procedure is an iterative one in which a 
cell is selected randomly and its probability then redefi- 
ned by adding or subtracting a random scalar. Only if 
this change brings the layer closer to the target level of 
y is the change preserved. The procedure continues un- 
til the target level of y is achieved. The procedure is 
similar to the "swapping" algorithm described by Vere- 
gin (1994). 

Step 5. Apply the buffer operator (Equation 3) to the actual 
layer to derive the actual buffer layer, and to the esti- 
mated layer to obtain the estimated buffer layer. Buffer 
sizes range from 300 m to 1500 m. Larger buffer sizes 
tend to cause saturation of buffer sizes, due to the rela- 
tivelv small size of the studv area. 

Step 6. compute source and buffer error. Source error is de- 
fined in terms of the differences between estimated and 
actual probability values, as defined in Equation 5. Buf- 
fer error is defined in an analogous manner. 

Step 7. Compute the value of y for source error. 
Step 8. Compute the error indices. In this study, two standard 

indices are used. The bias index is sensitive to the di- 
rection of error, while the RMSE (root-mean-squared er- 
ror) index is not. 

1 
Bias = - 2 etC n i-1 

This sequence of steps is performed repeatedly for differ- 
ent combinations of buffer sizes, target y levels, and cover 
classes. Each combination produces a record in  a dataset that 
is later analyzed statistically. The present study employs five 
different buffer sizes (ranging from 300 m to 1500 m in in- 
crements of 300 m), ten different target y levels (selected ran- 
domly from a uniform distribution with a range of 0.0 to 
0.03), and six different classes (i.e., the classes derived from 
the fuzzy c-means classifier). The result is a database with 
300 observations. Each observation contains values for each 
of the following variables: 
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Cover class: class derived from fuzzy c-means classifier, 
Buffer size: width of buffer (in metres), 
Source RMSE: RMSE value for actual and estimated source lay- 
ers, 
Source bias: bias value for actual and estimated source layers, 
Buffer RMm. RMSE value for actual and estimated buffer lay- 
ers, 
Buffer bias: bias value for actual and estimated buffer layers, 
Estimated y: semi-variance for estimated source layer at spa- 
tial lag of one cell, 
Actual y :  semi-variance for aclual source layer at spatial lag 
of one cell, and 
Error y :  semi-variance for source error layer at spatial lap, of 
one cell. 

Results 
Results of correlation and regression analysis applied to the 
derived dataset are summarized below. 

In general, there are strong and significant correlations be- 
tween source and buffer errors across classes and buffer sizes 
(Table 1). As expected, these correlations are positive, indi- 
cating that buffer error tends to increase with an increase in 
source error. 
As expected, stronger correlations are evident for the bias in- 
dex than for the RMSE index (Table 1). Correlation results for 
RMSE are less consistent than those for bias. Occasional nega- 
tive relationsbps for source and buffer RMSES (c.g., for class 
A for buffer sizes over 600 m) occur because R M ~ E  [in con- 
trast to bias) fails to differentiate between over- and under-es- 
timation of class probabilities. 
Regression lines for buffer error on source error have slopes 
greater than one, indicating that the degree of buffer error is 
larger than the degree of source error, and that this difference 
tends to be magnified as source error increases (Figures 5a 
and 5b). 
Positive bias in the source layer (indicating over-estimation of 

probabilities) produces positive bias in the buffer layer. Nega- 
tive bias in the source layer (indicating under-estimation of 
probabilities) produces negative bias in the buffer layer. As 
expected, over-estimation of source probabilities has a greater 
impact on buffer error. Given the same level of positive and 
negative bias in the source, the level of positive bias in the 
buffer (associated with positive bias in the source) tends to 
be greater than the level of negative bias in the buffer (associ- 
ated with negative bias in the source). 
Relationships between source and buffer error are affected by 
covariation in source and error probabilities. Covariation 
(measured in terms of y] contributes significantly to the ex- 
planatory power of regression models of buffer error on 
source error assessed over all cover classes simultaneously. 
Regression models incorporating y  computed for the actual 
layer are presented in Tables 2 and 3. Table 2 presents the 
linear regression results for the RMSE index for all cover clas- 
ses combined. One equation is given for each buffer size from 
300 to 1500 m. The regression equations define the RMSE for 
the buffer layer as a Gc t ion  of &e RMSE of the source layer 
and the level of covariation in the actual source layer proba- 
bilities. Table 3 presents the linear regression results for the 
bias index for all cover classes combined. The regression 
equations define the bias for the buffer layer as a function of 
bias in the source layer and the level of covariation in the ac- 
tual source layer probabilities. For both the RMSE and bias in- 
dices, there is a negative relationship between buffer error 
and y. This appears to be due to the fact that low values of y 
are associated with a tendency to over-estimate probability 
values. As described above, over-estimation has a more signif- 
icant impact on buffer error than under-estimation, which is 
associated with high values of y. 
Relationships between source and buffer error are also af- 
fected by buffer size. For the RMSE index, the amount of buf- 
fer error tends to decline uniformly as buffer size increases, 
for any source RMSE level (Figure 6a). For the bias index, the 
effect of buffer size depends on the level of source bias. If 

TABLE 1. CORRELATION COEFFICIENTS (PEARSON PROOUCT-MOMENT) BEMIEEN SOURCE AND BUFFER ERROR. COEFFICIENT VALUES ARE GIVEN mR BOTH ERROR 
~ N D I C E S  (RMSE AND BIAS) FOR ALL SIX COVER CLASSES (LABELED A THROUGH F) FOR VARIOUS BUFFER SIZES (300 THROUGH 1500 M). VALUES IN PARENTHESES 

FOLLOWING CORRELATION COEFFICIENTS ARE PVALUES ~NDICATING C O E ~ C ~ E N T  SIGNIFICANCE (LOWER PVALUES INDICATE HIGHER LEVELS OF SIGNIFICANCE). 

Buffer Size 

Class Index 

A RMQE 
Bias 

B RMSE 
Bias 

C RMSE 
Bias 

n RMSE 
Bias 

E RMSE 
Bias 

F RMSE 
Bias 

TABLE 2. LINEAR REGRESSION RESULTS FOR RMSE INDM FOR ALL COVER CLASSES COMBINED. ONE EQUATION IS GIVEN FOR EACH BUFFER SIZE FROM 300 TO 1500 
M. VALUES I N  PARENTHESES BELOW REGRESSION COEFFICIENTS ARE PVALUES I N D ~ C A T I N G  COEFFICIENT SIGNIFICANCE. VALUES I N  PARENTHESES BELOW R2 COEFFICIENTS 

ARE P-VALUES lNDlCATlNG OVERALL SIGNIFICANCE OF REGRESSION EQUATION. 

Buffer size Regression equation RZ 

300 Buffer RMSE = 0.072 + 1.996 Source RMSE - 4.619 Actual y  0.719 
(<0.001) (<O.OOl) (<0.001) 

600 Buffer RMSE = 0.224 + 0.803 Source RMSE - 12.110 Actual y 0.879 
(<0.001) (<0.001) (<0.001) 

900 Buffer RMSE = 0.217 + 0.608 Source RMSE - 12.41 Actual y 0.874 
(0.010) (<0.001) (<0.001) 

1200 Buffer RMSE = 0.191 + 0.593 Source RMSE - 11.86 Actual y  0.855 
(0.015) (<0.001) (<0.001) 

1500 Buffer RMSE = 0.169 + 0.592 Source RMSE - 11.12 Actual y  0.836 
(0.017) (<0.001) (<0.001) 
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Figure 5. Relationships between buffer and source error 
over all cover classes for various buffer sizes. (a) R M ~ E  
index. (b) Bias index. 

source bias is relabvely high, buffer error tends to decline 
uniformly as buffer size increases. If source bias is low, buf- 
fer error initially rises and then declines as the saturation ef- 
fect described above begins to exert an effect (Figure 6b). 
Levels of buffer error measured over all cover classes arid 
buffer sizes can be predicted reliably based on various char- 
acteristics of the source data. Table 4 gives the linear regres- 
sion results for the RMSE and bias indices. One equation is 
given for each index, computed over all buffer sizes and 
cover classes. Buffer RMSE is predicted in terms of the RMSE 
of the source layer, buffer size, and the level of covariation in 
actual source layer probabilities. (The level of covariation in 
the estimated or error layer can also be used, but at the ex- 
pense of some explanatory power.) For the bias index, buffer 
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Figure 6. Relationships between buffer error and buffer 
size over all cover classes for various levels of source er- 
ror. (a) Relationship between buffer RMSE and buffer size. 
(b) Relationship between buffer bias and buffer size. 

size is insignificant, and bias is predicted from source bias 
and the level of covariation alone. (Buffer size is likely to be 
significant in situations in which a wider range of buffer 
sizes is employed.) Polynomial regression models fail to pro- 
vide significantly more explanatory power than do linear 
models. 

Conclusions 
Error propagation for the buffer operation in the context of 
probability surfaces ha s  much in common with error propa- 

Buffer size Remession equation 

Buffer bias = 0.264 + 7.684 Source bias - 15.66 Actual y 
(<0.001) (<0.001) 

Buffer bias = 0.293 + 3.499 Source bias - 17.450 Actual y 
(<0.001) (<0.001) 

Buffer bias = 0.264 + 2.586 Source bias - 15.45 Actual y 
(0.003) (<0.001) 

Buffer bias = 0.237 + 2.208 Source bias - 13.65 Actual y 
(0.013) (<0.001) 

Buffer bias = 0.216 + 1.980 Source bias - 12.37 Actual y 
(0.033) (<0.001) 
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TABLE 4. LINEAR REGRESSION RESULTS FOR RMSE AND BIAS INOICES. ONE EQUATION IS GIVEN FOR EACH INDEX, AND IS COMPUTED FOR ALL BUFFER SIZES A N 0  

COVER CLASSES COMBINED. 
- - 

Regression equation R2 

Buffer RMSE = 0.267 + 0.918 Source RMSE - 1.03X10-4 Buffer size - 10.420 Actual y 0.828 
(<O.OOl) (<0.001) [<0.001) [<0.001) 

Buffer bias = 0.255 + 3.591 Source bias - 14.920 Actual y 0.890 
[<O.OOl) (<O.OOl) 

gation for conventional raster data. In both cases, source and 
buffer errors are positiveIy correlated, with a decline in the 
rate of error propagation as  buffer size increases. For both 
probability based and conventional data, error propagation is 
affected by spatial covariation. 

In contrast to conventional raster data, however, levels 
of buffer error for probability surfaces tend to be  larger than 
levels of source error. The simulation results reported in this 
study suggest that the level of error in  a derived buffer layer 
can easily be several times larger than the level of error in 
the source layer from which the buffer was derived. The buf- 
fer operation can cause source errors to  become magnified 
under certain conditions, including 

a tendency to over-estimate source probabilities (resulting in 
the propagation of the over-estimated component, especially 
at local maxima); 
the presence of high levels of spatial covariation in source 
probability values (resulting in the tendency to over-estimate 
source probability values); and 
use of small buffer sizes [resulting in a high error accumula- 
tion rate, due to a minimal degree of buffer zone overlapping 
and saturation). 

These results suggest that decisions based on  probabilistic 
interpretations of class membership can be significantly im- 
pacted by errors in source data. The reliability of buffers de- 
rived from probability based data should be interpreted in 
the light of these observations. 
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