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Abstract 
The positional accuracy of a GIS layer can be separated into 
absolute und relative components. Accepted standards for 
estimating horizontal accuracy in cartographic data quantify 
absolute positional accuracy only. However, relative accu- 
racy values that describe variability in spatial relationships 
of coordinate information - such as variance of area, azi- 
muth, and distance computations - can be valuable to re- 
search and decision making. This paper presents a technique 
for quantifiing absolute and relative positional accuracy csti- 
mated through error propagation from a covariance matrix 
for affine transformation parameters. This technique was de- 
veloped and tested with a spatial data set manually digitized 
from a simulated 1:24,000-scale map whose errors were re- 
stricted to those of the electrostatic plotter. A sequence of 
transformation tests was performed, usingfrom 4 to 40 con- 
trol points per test. Estimates for combined error associated 
with electrostatic plotting and manual point-mode digitizing 
were inversely related to the number of control points up to 
about 20. Semi-major axes for point certainty regions at u 
39.4 percent confidence level ranged from 1.86 to 5.45 me- 
tres 10.0775 to 0.227 mm at  map scale). 

Introduction 
Geographic information systems (GIS) are designed for man- 
aging, mapping, and analyzing numerous layers of spatial 
data (Berry, 1987). A layer of spatial data contains a topolog- 
ically organized set of coordinate pairs that represent fea- 
tures in a real-world coordinate system. 

Uses of GIS range from relatively simple tasks of spatial 
data display to more complex tasks such as the analysis of 
multi-layered data. From a resource management standpoint, 
GIS-derived results can impact operational or planning deci- 
sions, and the validity of a decision is influenced by the reli- 
ability of data from which it is derived (Smith et al., 1991). 
Thus, prudent use of GIS-supplied information demands an 
accuracy assessment of all data involved. For a review of 
some accuracy assessments for spatial data, refer to Good- 
child and Gopal (1989) and Gopal and Woodcock (1994). 

While GIs data consist of both attribute and positional 
components, this paper considers only the two-dimensional 
positional accuracy of GIs data layers. The primary purpose 
of this paper is to present a technique for estimating absolute 
and relative positional accuracy of data layers within a vec- 
tor-based GIS. 

Background 
Positional accuracy can be separated into two components: 
absolute and relative (U.S. Department of Interior, 1990). Ab- 
solute positional accuracy addresses how closely all posi- 
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tions on a map or data layer match corresponding positions 
of features they represent on the ground in a desired projec- 
tion system (i.e., frame of reference). Relative positional ac- 
curacy of a map considers how closely all the positions on a 
map or data layer represent their corresponding geometrical 
relationships on the ground. In other words, relative posi- 
tional accuracy reflects the consistency of any position on a 
map with respect to any other. While absolute positional ac- 
curacy of a map may directly influence relative accuracy, 
limited research has been performed to study this relation- 
ship. 

Standards have been developed for categorizing posi- 
tional accuracy in a map. These include the U.S. National 
Map Accuracy Standards (Thompson, 1979) and accuracy 
standards for large-scale maps published by the American 
Society for Photogrammetry and Remote Sensing (ASPRS, 
1990; for development of the ASPRS standards, see Merchant 
(1982), Vonderohe arid Chrisman (1985), and Merchant 
(1987)). These standards provide for quantification of a map's 
accuracy based on tests that compare map coordinates to 
ground coordinatcs determined from an independent check 
survey of higher accuracy. Results from these standards 
quantify absolute positional accuracy by comparison with a 
set of published root-mean-square (RMS) error limits. In addi- 
tion, the spatial distribution of point errors can be studied 
with this technique. However, limited insight is gained re- 
garding relative accuracy of geometrical relationships for rep- 
resentative features. 

In 1988 the United States Proposed Standard for Digital 
Cartographic Data was published [ACSM, 1988). This stan- 
dard was developed to promote efficient coordination be- 
tween agencies and to avoid data duplication. The United 
States recently accepted this standard as the national spatial 
database transfer standard, designated as the Federal Infor- 
mation Processing Standard 173 (FIPS 173) (Moellering, 1993). 
The four methods that the standard lists for obtaining "meas- 
ures of positional accuracy" are the following: deductive es- 
timate, internal evidence, comparison to source, and inde- 
pendent source of higher accuracy [ACSM, 1988, pp. 
132-133). The standard does not differentiate between abso- 
lute and relative positional accuracy. Furthermore, the stan- 
dard states that reported positional accuracy of a data layer 
must "consider the quality of the final product after all trans- 
formations" (ACSM, 1988, p.132). 

Within a spatial information system, transformations to a 
rcfcrcnce system may be performed with a least-squares ad- 
justment. The method of least squares is based on the as- 
sumption that all errors which cannot be explained through 
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somc functional relationship between a set of observations 
will be random and normally distributed. A transformation 
model to a geographic reference system is an imperfect func- 
tional relationship between unknown parameters and coordi- 
nate observations. Imperfection arises from a lack of under- 
standing of all contributing factors, or because the sclected 
model is a simplification of the relationship. This imperfec- 
tion can be referred to as bias which may produce systematic 
errors. 

Accuracy (i.e., deviation of an estimate from the true 
value) can be quantified by the mean-squared error which is 
the sum of the variance and squared bias for an estimator 
(Mikhail and Gracie, 1981; Dracup, 1993). Least-squares ad- 
justments minimize the mean-squared error of a linear model 
and utilize a standard normal distribution to estimate the 
magnitude of errors that are not explained by the prediction 
model. A transformation model solved through least squares 
is a statistical relationship from which inferences about the 
precision and accuracy of the solution can be derived. This 
papcr prcscnts some uses of this statistical relationship with 
regard to positional accuracy of data within a GIs. 

Methodology 

Transformatlon Model 
The approach involves error estimates propagated from the 
variance-covariance matrix of the parameters compuled for a 
six-parameter, weighted affine transformation model. In the 
test, transformations were made from raw digitizer coordi- 
nates directly into the reference system. Parameters and 
weights were determined through the general least-squares 
adjustment technique as described by Mikhail and Gracie 
(1981). In this form, the model is non-linear and can accept 
full covariancc for both sets of coordinates. Absolute posi- 
tional accuracy is represented with certainty regions for 
transformed points, and rclativc accuracy is represented with 
co~fidence intervals for distance and azimuth values com- 
puted between transformed points. Although not performed 
in this research, confidence intervals for area can be deter- 
mined with this method and formulas presented by Grilfith 
(1989). Propagation results were validated hy comparisons to 
probabilities expected from normally distributed errors. 

A weighted least-squares adjustment minimizes the sum 
of squares of the weighted residuals. A priori weights for ob- 
servations are computed by inverting the covariance matrix 
of the observations. A transformation model in a weighted 
form is more flexible than an unweighted form, but various 
solutions for the parameters can be obtained depending on 
the selected weights. Consequently, the validity of the model 
depends on the accuracy of the computed weights. For the 
purposes of this study, the set of defined control coordinate 
observations was considered to be accurate to its least signifi- 
cant digit. This was the a priori and a posteriori estimate of 
the standard deviation for the control. The other set of coor- 
dinates, the hand-digitized set, was weighted, a priori, with 
an identity matrix. The o posteriori covariance matrix for 
this set of observations was computed to be equivalent to an 
identity matrix times the variance of unit weight after con- 
vergence. In this way, the variance of unit weight became 
practically equivalent to one and always passed the chi- 
square test. 

Passing the chi-square test with a sufficiently large Sam- 
ple suggests that the residuals times their associated weights 
are normally distributed. Knowing this, regions ol  cerlaii~ly 
can be propagated for the transformed points using a bivari- 
ate normal distribution. In addition, confidence intervals for 
quantities-such as distance, azimuth, angle, or arca-com- 
puted from these points can be eslinlated through error prop- 
agation and the t distribution (Mikhail and Gracic, 1981). 

Test Data 
Plotting and Digitizing Error 
In order to test the transformation and error propagation pro- 
grams, a grid of 144 points (ticks) with projected polyconic 
coordinates were generated using A R C / I ~ ~ O .  The points cov- 
ered a 7.5-minute latitude and longitude range, typical of a 
UsGs quadrangle map, and were plotted at a scale of 1 : 
24,000. The ticks had a spacing of 4.8 cm. The polyconic- 
projected ticks were plotted on paper with a IIewlett-Packard 
7600 Scrics clcctrostatic plotter using a line width of 11400 
inch (0.0635 mm). 'The ticks were then digitized without rep- 
ctition using a Calcomp 9100 digitizer having a resolution of 
50 lines per mm and an accuracy of + 0.254 mm (Calcomp, 
1985). Thc digitizer is not backlit and the tablet plane was 
tilted about 20 degrees from vertical. 

Digitized points were transformed using the weighted af- 
fine procedure, 11 separate times, into a metric polyconic 
system using 4, 6, 8, 10, 14, 17 ,  21 ,  25, 30, 35, and 40 com- 
mon control points that were distributed symmetrically and 
mostly at the perimeter. Up Lo 1 1 2  of the remaining points 
were utilized as check points. Thus, all data sets had 112 
check points except the sets havirlg 35 and 40 control points 
which had 109 and 104 check points, respectively. 

Polyconic coordinates projected by the ~RCIhlfo software 
were computed to the 0.00001-m dccimal place, so a vari- 
ance of 10-l0 m-as used for the control coordinates. Vari- 
ance for each digitizer coordinate was set to onc and multi- 
plied by the variance of unit weight after convergence. 

Error Propagation 
Point error ellipses, and standard deviations for distances 
and azimuths, were determined by the general law of propa- 
gation of variances and covariances lor the nonlinear case 
(Mikhail and Gracie, 1981). This method utilizes the Jacobian 
matrix for the affi~le equations, JCj, the covariance matrix of 
the affine parameters, C,, and the variances for the unknown 
coordinates to compute a covariance matrix for the trans- 
formed coordinates. The varianccs of unknown coordinates 
are appended to the covariance matrix of affine parameters to 
form C,,', and the covariance matrix of transformed coordi- 
nates, C,,, is computed as follows: 

Error ellipses for transformed check points were gener- 
ated at the 0.394, 0.500, 0.865, 0.900, and 0.998 probability 
levels using a bivariate normal distributiori will1 iwo degrees 
of freedom (Mikhail and Gracie, 1981). Thcsc propagated er- 
ror ellipses car1 be referred to as certainty regions at corre- 
sponding confidencc lcvcl percentages (Figure 1). To validate 
these computed certainty regions, expected confidence levels 

99.8% Confidence 

Figure 1. Estimates of absolute positional accuracy 
through propagated certainty regions. 
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Figure 2. Statistics for transformed check points: propa- 
gated semi-major axes for the 39.4 and 99.8 percent 
confidence regions, root-mean-square error, and maxi- 
mum absolute errors for the transformed X and Y coordi- 
nates. 

were compared to the percentage of check points that fell 
within their associated transformed point's error ellipse at 
corresponding levels of confidence. 

Standard deviations were propagated for distances and 
azimuths between transformed check points. All possible 
distances were computed between check points, which pro- 
vided up to 6216 check distances ranging from 2.21 km to 
18.45 km. One-sigma (68 percent) and two-sigma (95 per- 
cent) confidence intervals based on the t distribution were 
computed for each transformed distance and azimuth. The 
percentage of ~ontrol  distances and azimuths that fell within 
these confidence intervals was determined. 

Results and Discussion 
A posteriori standard deviations for digitizer coordinates that 
were estimated from the weighted least-squares adjustments 

2 1 
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Figure 3. Propagated maximum and minimum standard 
deviations for distances computed between transformed 
check points. 

ranged from 0.0716 mm for 25 control points to 0.1755 mm 
for four control ooints. Standard deviations estimated from 
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30, 35, and 40 &ntrol points were 0.0767 mm, 0.0770 mm, 
and 0.0772 mm, respectively. These estimates are about 4 to 
9 times the resolution of the digitizer, which is consistent 
with digitizing error estimates reported in the literature (Bur- 
roughs, 1986; Bolstad et al., 1990). 

Figure 2 illustrates that the size of point error ellipses 
for transformed points are inversely related to the number of 
control points. It also shows that semi-major axes for propa- 
gated error ellipses are more conservative estimates for accu- 
racy than is the RMS error. In addition, the maximum 
absolute error for check points is contained within the 99.8 
percent certainty region, which is not true for RMS errors. 

Pro~agated standard deviations for distances and azi- 
muths &eVsummarized in Figures 3 and 4, respectively. 
These figures illustrate that computed quantities become 
more precise (inverse of standard deviation), and propagated 
errors for these quantities become more consistent between 
observations as the number of control observations increases 
up to about 20. Thus, over the range of control tested, com- 
puted quantities are more reliable with increasing control up 
to about 20 points. Beyond this number of control points, 
precision does not consistently increase. 

Validation of certainty regions and confidence intervals 
is presented in Figures 5 and 6. The percentagcs of check 
points falling within certainty regions approaches a mini- 
mum when about 20 control points are used for the transfor- 
mation (Figure 5). Although the percentage of check points 
falling within the certainty regions is slightly higher than 
that expected due to normally distributed errors, using more 
than 20 control points does not appear to consistently 
change the percentages. Propagated confidence intervals for 
distances computed between transformed points show simi- 
lar validation results (Figure 6). These data suggest that the 
propagated errors are realistic with respect to statistical the- 
ory but slightly conservative. 

Jessip (1991) suggests that ten control points are suffi- 
cient to model global systematic errors using an unweighted 
affine transformation, and an additional 20 points should be 
used to assess accuracy. Further research is necessary to 
compare the effects of various weighting schemes on propa- 
gation results. In this study, unknown coordinate observa- 
tions were equally weighted and no covariance was imposed 

Number of Control Points 

Figure 4. Propagated maximum and minimum standard 
deviations for azimuths computed between transformed 
check points. 
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Figure 5. Percentage of check points falling within propa- 
gated certainty regions for the transformed points. 

between observations. Aside from studying effects of covari- 
ance on propagation results, it is possible to perform robust 
modifications to weights if a blunder is detected. Robustly 
modified weights act to counterbalance residuals and ensure 
that no observation has too great an influence on the solu- 
tion. Subsequent observation weights or, conversely, residu- 
als could serve as an error distribution map for a data layer. 
However, blunder detection requires a sufficiently large sam- 
ple of observations. 

The method of quantifying relative accuracy in this pa- 
per is similar to the method applied by the Federal Geodetic 
Control Committee for distance accuracy standards of hori- 
zontal control networks (FGCC, 1984). FGCC standards state 
that "a distance accuracy, l:a, is computed Erom a minimally 
constrained, correctly weighted, least-squares adjustment by 
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Figure 6. Percentage of check distances falling within 
confidence intervals propagated for distances computed 
between transformed check points. 
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Figure 7. Relative accuracy estimates for the transformed 
points computed as propagated standard deviation over 
distance, based on the check distances. 

where a is the distance accuracy denominator, s is the prop- 
agated standard deviation of distance between survey points 
obtained from the least-squares adjustment, and d is the dis- 
tance between survey points." 

The least-squares adjustments performed for this re- 
search may be considered correctly weighted, but the con- 
cept of minimal constraint does not apply in this context. 
Figure 7 illustrates relative accuracy computed for the range 
of distances between transformed check points with respect 
to the number of control points used in each adjustment. For 
example, in the case of four control points, the shortest dis- 
tance had a precision of 1/200 while the largest had a preci- 
sion of 1/2100. Overall, shorter distances had relatively 
larger propagated standard deviations than longer distances. 

When performing a mapping project, it may be necessary 
to discern the shortest line that can be defined to a specific 
level of precision. Relative accuracy supplies an answer to 
this question. For instance, lines shorter than 2 km on the 
map digitized for this study do not meet 1:1000 precision re- 
quirements, regardless of the number of control points used. 

The foregoing methodology for accuracy testing is de- 
signed to be an integral part of the transformation process. 
The technique is also applicable as a test of accuracy for a 
data layer that has an existing [a prior17 set of geographic co- 
ordinates. The control for such a case would be an inde- 
pendent survey of higher accuracy [e.g., an accurate GPS 
survey). In this case, the transformation could improve the 
accuracy of the data layer by correcting for existing system- 
atic distortion. If the absolute accuracy of the a priori coordi- 
nates is to be determined, error ellipse parameters are not 
appropriate for accuracy estimation because they concern 
transformed coordinates. For this situation the computed af- 
fine parameters such as the x and y translation terms can 
give some insight as to the accuracy of the a priori coordi- 
nates. 

Conclusion 
Geographic information systems are powerful tools for ana- 
lyzing spatial relationships for a multitude of applications. 
Consistently testing positional accuracy of data layers in a 
GIS ensures the reliability of locational information which 
helps to validate decisions. This paper discussed the use of a 
weighted least-squares transformation of a GIS data layer and 
extracting statistical quantities relevant to positional accu- 
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racy through error propagation. The  transformation may be  
performed a s  a part of data layer creation o r  as an accuracy 
assessment. 

This  research was performed to exemplify and test the  
methodology when applying t he  affine model; however, the 
method can  b e  applied to  other models as  well. The  affine 
model  is  not  necessarily the best for all  cases, hut  i t  i s  easy 
to  understand, widely used, and has been shown to reduce 
global systematic errors from various data sources. 

Results suggest that, as  t he  number of control points ap-  
proaches 20, propagated levels of certainty approach the  lev- 
els expected from normally distributed errors. Transforming 
wi th  fewer than 20 points underestimates the accuracy of the  
data a n d  reduces blunder detection capabilities. Additional 
research is warranted to validate these results and apply  the 
method o n  real-world data. 

Overall, this technique represents a consistent way to  
compare the  absolute and  relative positional accuracy of data 
layers within a vector-based GIS. The  concept could be con- 
sidered as a n  extension t o  current m a p  accuracy testing tech- 
niques because i t  follows a n  established methodology, that of 
the Federal Geodetic Control Committee in estimating rela- 
tive accuracy of geodetic control networks. 
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