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Abstract 
Per-pixel classification algorithms are poorly equipped to 
monitor urban land use i n  images acquired by  the current 
generation of high spatial resolution satellite sensors. This is 
because urban areas commonly comprise a complex spatial 
assemblage of spectrally distinct land-cover types. In this 
study, a technique is  described that attempts to derive infor- 
mation on urban land use in two stages. The first involves 
classification of the image into broad land-cover types. In the 
second stage, referred to as spatial reclassification, the clas- 
sified pixels are grouped into discrete land-use categories on 
the basis of both the frequency and the spatial arrangement 
of the land-cover labels within a square kernel. The applica- 
tion of this technique, known as SPARK ( ~ ~ ~ t i a l  Reclassifica- 
tion  erne el), is demonstrated using a SPOT-1 HRV 
m ultispectral image of southeast London, England. Prelimi- 
nary results indicate that SPARK can be used to distinguish 
quite subtle differences of land use in urban areas. 

Introduction 
While satellite sensor technology has been used with some 
success to monitor land use in images o f  agricultural areas, 
much less satisfactory results are generally reported for ur- 
ban scenes (Forster, 1985; Toll, 1985; Barnsley et al., 1989; 
Sadler and Barnsley, 1990). Initially, this disparity was at- 
tributed to the relatively coarse spatial resolution of early 
Earth-resources sensors, such as the Landsat Multispectral 
Scanning System (MSS) (Jackson et al., 1980; Forster, 1980). 
By averaging the spectral response of buildings, roads, trees, 
grass and other component elements of urban scenes within 
their large instantaneous field-of-view (IFOV), these sensors 
tended to produce broad, composite signals for urban areas. 
Consequently, it was often difficult to distinguish between 
different categories of urban land use in the resultant images. 
Moreover, the "blocky" appearance of these images inhibited 
accurate delineation of the urban-rural boundary. 

Unfortunately, the use of higher resolution data from the 
current generation of satellite sensors has not always yielded 
the improvements anticipated (Toll, 1985; Forster, 1985; 
Martin et al., 1988). Indeed, some studies report a reduction 

Remote Sensing Unit, Department of Geography, University 
College London, 16, Bedford Way, London WClH OAP, 
United Kingdom. 

M.J. Barnsley is presently with the Department of Geography, 
University of Wales Swansea, Singleton Park, Swansea SA2 
8PP, United Kingdom. 

S.L. Barr is presently with the Department of Geography, 
University of Manchester, Mansfield Cooper Building, Oxford 
Road, Manchester MI3 9PL, United Kingdom. 

PE&RS August lYYG 

in the accuracy with which different urban land uses can be 
distinguished in such images, relative to that obtained using 
coarser resolution data (Haack et al., 1987; Martin et al., 
1988). This apparently paradoxical phenomenon has been as- 
cribed to the problem of "scene noise" (Gastellu-Etchegorry, 
1990; Gong and Howarth, 1990). In other words, as the spatial 
resolution of the sensor increases, individual scene elements 
(e.g., buildings, roads, and open spaces) begin to dominate 
the detected response of each pixel; therefore, the spectral 
response of urban areas as a whole becomes more varied, 
making consistent classification of land use problematic 
(Gastellu-Etchegorry, 1990). 

Although it is tempting to set this problem in the con- 
text of inadequate or inappropriate sensor spatial resolution, 
it is perhaps more accurately expressed in terms of the limi- 
tations of commonly used information extraction techniques; 
in particular, standard, per-pixel, multispectral classification 
algorithms. The fundamental problem involved in producing 
accurate land-use maps of towns and cities from remotely 
sensed images is that urban areas comprise a complex spatial 
assemblage of land-cover types, each of which may have dif- 
ferent spectral reflectance characteristics (Wharton, 1982a; 
Wharton, 1982b; Gong and Howarth, 1990; Barnsley et al., 
1991; Eyton, 1993). Unfortunately, per-pixel classification al- 
gorithms are poorly equipped to deal with this type of 
spatial variability, because they assign each pixel to one of 
the candidate classes solely on the basis of its spectral reflec- 
tance properties (Woodcock and Strahler, 1987; Barnsley et 
al., 1991; Barnsley and Barr, 1992). The location of the pixel 
within the image and the relationship between its spectral 
response and that of its neighbors are not taken into account. 
A further problem for supervised, per-pixel classification is 
that it is extremely difficult to define suitable training sets 
for many categories of urban land use, due to the variation in 
the spectral response of their component land-cover types 
(Forster, 1985; Gong and Howarth, 1990; Barnsley et al., 
1991). Thus, the training statistics may exhibit both a multi- 
modal distribution and a large standard deviation in each 
spectral waveband (Sadler et al., 1991). The implication of 
the former is that the training statistics for urban areas vio- 
late one of the basic assumptions of the widely used maxi- 
mum-likelihood decision rule, namely, that the pixel values 
follow a multivariate normal distribution. The effect of the 
latter is often to produce a pronounced overlap between ur- 
ban and non-urban land-use categories in the multispectral 
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Figure 1. Simulated 3- by 3-pixel windows showing the 
possible distributions of land cover types for two urban 
land-use categories. 

feature space. This may be further compounded by the fact 
that the mean spectral response for the urban classes will 
differ from those of the non-urban classes in  a somewhat ar- 
bitrary and unpredictable manner, depending on the location 
of the training areas (Barnsley et al., 1991; Sadler et al., 
1991). 

Various attempts have been made to overcome these 
problems, including 

The use of pre-classification image transformations and fea- 
ture-extraction techniques, such as median filters (Atkinson 
et al., 1985; Sadler et al., 1991) and various measures of im- 
age texture (Haralick, 1979; Baraldi and Parmiggiani, 1990; 
Franklin and Peddle, 1990; Gong and Howarth, 1990; Sadler 
et al., 1991); 
The incorporation of spatially referenced, ancillary data into 
the classification procedure (Forster, 1984; Sadler and Barns- 
ley, 1990; Ehlers et al., 1991; SadIer et al., 1991); 
The use of enhanced classification algorithms, ranging kom 
contextual classifiers (Gurney, 1981; Gurney and Townshend, 
1983; Gong and Howarth, 1992), through knowledge-based 
expert systems (Mehldau and Schowengerdt, 1990; Moller- 
Jensen, 1990), to artificial neural networks (Hepner et al., 
1990; Kanellopoulos et al., 1992; Civco, 1993; Dryer, 1993); 
and 
The application of post-classification spatial processing, rang- 
ing from simple majority filters to spatial (or contextual) re- 
classification procedures (Thomas, 1980; Wharton, 1982a; 
Wharton, 1982b; Gurney and Townshend, 1983; Gong and 
Howarth, 1990; Whitehouse, 1990; Guo and Moore, 1991; 
Gong and Howarth, 1992; Wang and Civco, 1992a; Wang and 
Civco, '1992b; Eyton, 1993). 

However, not all of these techniques directly address the 
problem of inferring land use from a complex spatial mixture 
of spectrally distinct land-cover types. For example, pre-clas- 
sification spatial filtering attempts to circumvent the problem 
by suppressing some of the spatial variability within the im- 
age. This is achieved only at the expense of a reduction in 
the effective spatial resolution of the data set. It also pro- 
duces somewhat arbitrary mean vectors for urban land use 
categories by aggregating the detected spectral responses of 
their component land-cover types. 

Of the other techniques, spatial (or contextual) reclassifi- 
cation represents a comparatively simple way to examine the 
spatial variation in land cover in remotely sensed images, 
and is easy to implement in most image processing systems. 
Spatial reclassification techniques divide the classification 
process into two stages: the first involves a standard, per- 
pixel classification of the scene; the second involves some 
form of post-classification spatial processing of these data. 

Use of this procedure to infer urban land use from the spa- 
tial arrangement of land cover was first suggested by Whar- 
ton (1982a; 1982b). The assumption underlying this approach 
is that individual categories of land use have characteristic 
spatial mixtures of spectrally distinct land cover types that 
enable their recognition in high spatial resolution images 
(Wharton, 1982a; Wharton, 1982b; Barnsley and Barr, 1992). 
For example, residential districts might be characterized by 
the intermixing of roofs, roads, and gardens. 

Spatial reclassification can be performed in  one of two 
ways. The k s t ,  referred to as kernel-based spatial reclassifi- 
cation (Gurney and Townshend, 1983; Barnsley and Barr, 
1992), involves passing a simple convolution kernel across 
the land-cover image. In the second, referred to as object- 
based spatial reclassification (Gurney and Townshend, 1983), 
discrete "objects" (i.e., groups of adjacent pixels with the 
same class label) are identified within the initial image seg- 
mentation: information on the size, shape, and spatial ar- 
rangement of these objects is subsequently used to determine 
the nature of the land use in different parts of the image 
(Barr, 1992; Barr and Barnsley, 1993; Barnsley et al., 1993). 
In this paper, we describe a kernel-based procedure, referred 
to as SPARK ( ~ ~ ~ t i a l  ~eclassification   ern el). SPARK examines 
both the frequency and the spatial arrangement of class 
(land-cover) labels within a square kernel. This technique is 
tested using a subscene extracted from a SPOT-1 HRV multi- 
spectral image of south-east London, England. 

SPARK: A SPAtial Reclassification Kernel 

Background 
The work by Wharton (1982a; 1982b) provides an early ex- 
ample of kernel-based spatial re-classification, in which the 
initial low-level segmentation of the image is performed us- 
ing a standard, unsupervised classification algorithm. The 
frequency of different land-cover types within each n- by n- 
pixel region is then calculated by convolving a simple, rec- 
tangular kernel with the classified image. The land use 
associated with the pixel at the center of the kernel is de- 
rived using an unsupervised, non-parametric clustering pro- 
cedure applied to these frequency data. Similar techniques 
have been used more recently by Whitehouse (1990), Guo 
and Moore (1991), Gong and Howarth (1992), and Eyton 
(1993); although, in these studies, with the exception of 
Eyton (1993), the frequency distribution of land-cover types 
surrounding each pixel is compared with those of known ar- 
eas of the candidate land-use categories. 

Although the method developed by Wharton examines 
the frequency with which different class labels occur within 
the kernel, it does not account for differences in their spatial 
arrangement. The limitation that this imposes is evident in  
the following example. Consider two separate 3- by 3-pixel 
windows, each of which has four pixels labeled as the land- 
cover class "Building." In an industrial or commercial dis- 
trict, where these might represent a single large factory or 
warehouse, the pixels are likely to be clustered together in a 
block (Figure la).  By contrast, in a residential area, where 
the same class labels might represent individual houses, the 
"Building" pixels might be arranged in a line (terraced hous- 
ing) or might be physically separate (detached housing) (Fig- 
ure lb).  However, a procedure which simply calculates the 
frequency of different class labels within these windows will 
have no means of distinguishing these two conditions. The 
example illustrates the need to find a reliable method for re- 
cording both the frequency and the spatial arrangement of 
class labels within a given section of the image. One way to 
do this is to record the number of times that different class 
labels occur next to one another within a pre-defined, mov- 
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Figure 2. Adjacency events in a 3- by 3-pixel win- 
dow. 

there are several important differences between SPARK and 
these indices. First, unlike the BCM, the number of elements 
in SPARK'S adjacency-event matrix is independent of the ker- 
nel size. Second, SPARK records information on the precise 
nature of each adjacency event, whereas the BCM simply 
notes whether adjacent pixels have the same or different 
class labels. Third, unlike contagion, SPARK examines adja- 
cency between pixels connected vertex-to-vertex, as well as 
edge-to-edge. Finally, SPARK produces values ranging between 
0  and 1, irrespective of the number of classes (cf., contagion). 

Assigning Pixels to Land-Use Categories Using SPARK 
The land use category, k, for a given pixel is determined by 
comparing its adjacency-event matrix, M, with those derived 
from representative sample areas of the candidate land-use 
categories; the latter will be referred to as "template" matri- 
ces, T,. Note that the sample areas used to generate the 

ing window. A simple technique to achieve this, referred to template matrices are the same size as the spatial reclassifi- 
as the s ~ ~ t i a l  Reclassification  erne el (SPARK), is described in cation kernel. Multiple template matrices can be defined for 
this paper. each land use. These may either be used independently or be 

pooled to produce an "average" template matrix. The advan- 
The SPAtial Reclassification Kernel (SPARK) tage of using a series of independent templates for a single 
SPARK operates by examining pairs of adjacent pixels within land use is that subtle variations in the spatial arrangement 
a square kernel (i.e., those connected along an edge or by a of its constituent land-cover types at different locations 
vertex), the size of which is selected by the user (Figure 2). within the image can be taken into account. However, it also 
The class label associated with each pixel defines the nature results in a linear increase in  computation time. On the other 
of the "adjacency event." For example, contiguous pixels la- hand, use of pooled or "average" template matrices may re- 
beled "Building" and "Tree," respectively, produce a Build- sult in overlap between land-use classes in "adjacency 
ing-Tree adjacency event. Note that each pair of pixels pro- space." 
duces a single adjacency event, so that the order of the labels As the spatial reclassification kernel is passed over the 
is not significant: i.e., the adjacency events "Tree-Building3' image, the current adjacency-event matrix is compared with 
and "Building-Tree" are identical. Thus, in Figure l a  there each of the template matrices using Equation 2: i.e., 
are six Building-Building adjacency events, four of Building- 
Tree, five of Building-Grass, and so on. By comparison, al- \i C C 

though the window in Figure l b  contains exactly the same Ak = 1  - 0.5NZ C (Mjj  - Tk,j)Z 
i=1 I = ]  

(2 J 
number of pixels belonging to each class, there are only 
three Building-Building adjacency events, but six of Build- 
ing-Tree. O < A k < l  (3) 

In practice, SPARK is convolved with the land cover 
image to produce an adjacency-event matrix, M, for each where MZj is an element of the current adjacency-event ma- 

pixel: i.e., trix, Tk,,  is the corresponding element of the template matrix 
for land-use category k, N is the total number of adjacency 

f i ~  f i ~  f i 3  .om fii events in the kernel (determined by the kernel size, e.g., N = 

M ( Iz2 : :: j 20 for a 3- by 3-pixel kernel, N= 72 for a 5- by 5-pixel ker- 
nel; recall that a pair of adjacent pixels produces a single ad- 
jacency event), and C is the number of land-cover classes in 
the image. 

The term A, can be thought of as an index of similarity 
The value of each element, f;,, of the matrix denotes the fre- between the current adjacency-event matrix and the template 
quency with which pixels belonging to class i are adjacent to matrix for land-use category k. Thus, a value of 1.0 indicates 
those belonging to class j, for the current position of the ker- a perfect match with one of the land-use templates, while a 
riel. The number of elements in M is determined by the num- value of 0.0 indicates no match. The pixel at the center of 
ber of classes, C, in the image and is therefore independent the kernel is, therefore, assigned to the land-use category k 
of the kernel size. Note that we only consider the upper tri- for which A, is maximized. A user-specified threshold can be 
angular elements, because M, = Yi. For most studies, where Set to Prevent pixels being assigned to a land-use category on 
the number of land-cover classes is reasonably small, this the basis of a weak match between the measured adjacency- 
represents an efficient means of storing information about the event matrix and a land-use 
spatial arrangement of the land-cover types within the image. 

shows the adjacency-event matrices for the 
TABLE 1. ADJACENCY-EVENT MATRICES FOR SIMULATED 3- BY  P PIXEL WINDOWS 3- by 3-pixel windows presented in Figure 1. SHOWN IN FIGURES 1 A  AND l B ,  RESPECTIVELY. 

The adjacency-event matrix, M, described above, is simi- 
lar in some respects to the spatial-dependency (or co-occur- 
rence) matrix devised by Haralick (1979), though here we 
deal with class labels rather than with raw digital numbers 
(DN). It is also closely related to several of the measures of 
spatial variability used in landscape ecology, notably "Conta- 
gion" (Robinove, 1986; Turner, 1989) and the Binary Com- 
parison Matrix (BCM) developed by Murphy (1985). However, 
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TABLE 2. CONFUSION MATRIX FOR PER-PIXEL IANDCOVER CLASSIFICATION. 

Average Accuracy 97.09% Overall Accuracy 97.29% Kappa Coefficient (x100) 93.0% 

Test Area and Satellite Sensor Data 
To test SPARK, we selected an area to the southeast of London, 
England, covering the borough of Bromley. This area encom- 
passes various types of urban land use, ranging from densely 
occupied early 20th century housing in the northwest, through 
major shopping areas and inter-war industrial areas in the 
center, to low-density suburbs in the southeast. Surrounding 
the urbanized area are very large tracts of open country, many 
of which are statutorily protected green belt lands. 

The image data used in this investigation were extracted 
from a cloud-free, multispectral (XS) SPOT-1 HRV image of 
London, England (scene 32, 246; +22.46') acquired on 30 
June 1986 (Figure 3). In particular, a 512- by 512-pixel sub- 
section (covering an area of approximately 10 km by 10 km) 
of the full image, centered on the town of Orpington, was se- 
lected for detailed study. This area exhibits a complex spa- 
tial pattern of land cover and land use, providing a stringent 
test for both conventional and alternative classification tech- 
niques. The image data were geometrically corrected to con- 
form to the U.K. national grid and were resampled using 
nearest-neighbor interpolation prior to further analysis. 

Results 

Stage 1: Initial Land-Cover Classification. 
The first stage in the spatial re-classification procedure is the 
production of an initial land-cover map from the remotely 
sensed image. A variety of techniques can be used for this 
purpose, including unsupervised multispectral classification, 
region growing, and split-and-merge procedures (Chen and 
Pavlidis, 1979; Mather, 1987; Li and Muller, 1991). Although 
most other studies of spatial reclassification have tended to 
make use of clustering algorithms at this stage, a supervised 
maximum-likelihood algorithm was employed in this investi- 
gation. This is because it is believed to offer the greatest 
control over both the number and the nature of the classes 
defined. In this respect, seven broad land-cover classes have 
been identified in the Orpington subscene: SMALL STRUC- 
TURE, LARGE STRUCTURE, TREE, CROP, GRASS, SOIL, and WATER. 
The SMALL STRUCTURE class corresponds to roads and build- 
ings within the residential districts of the urban area; no at- 
tempt has been made to distinguish between these two 
surfaces, due to the difficulty in identifying pure pixels of ei- 
ther surface at this spatial resolution. Training areas for a 
separate class, referred to as LARGE STRUCTURE, have also 

been identified on the basis of a pronounced contrast be- 
tween the spectral properties of these areas and those of the 
SMALL STRUCTURE class. Detailed examination of the digital 
image (Figure 3) and the corresponding Ordnance Survey 1: 
10,000-scale base maps suggests that the LARGE STRUCTURE 
class corresponds to large buildings, such as factories, ware- 
houses, and hospitals, which often have large, flat concrete 
roofs; these have a much higher reflectance at visible 
wavelengths than, say, the slate and tile roofs and tarmac 
roads found in the residential districts. The remaining clas- 
ses are reasonably self-explanatory. However, it is worth not- 
ing that the GRASS class incorporates regions of open space 
(i.e., gardens and recreational land) within the urban area, as 
well as fields of permanent pasture lying outside it. Simi- 
larly, the CROP class incorporates, and is dominated by, areas 
of wheat and barley; no attempt has been made to distin- 
guish between these two crops in this particular study. 

Irregularly shaped regions, sampled systematically 
within the image, have been used to define several training 
areas for each of the candidate land-cover classes. A second 
set of regions has been used to define an independent test 
set. Some difficulty was experienced in creating the training 
and testing sets for the SMALL STRUCTURE, WATER, and LARGE 
STRUCTURE classes. In the case of WATER and LARGE STRUC- 
TURE, this was because of their relatively limited areal ex- 
tent, while for the SMALL STRUCTURE class it was primarily 
due to the comparatively narrow, elongated regions that it 
forms. Consequently, the number of pixels used to train and 
to test these classes is quite small (Table 2). 

A very low rejection threshold has been set for the maxi- 
mum-likelihood algorithm (> 5 standard deviations, i.e., < 
0.001 percent pixels rejected) to produce an image with no 
unclassified pixels. This is because an adjacency event in- 
volving a NULL class pixel (hereafter referred to as a NULL-ad- 
jacency event) presents a problem at the reclassification 
stage. More specifically, a NULL-adjacency event may obscure 
the true spatial pattern of land-cover types present within 
the kernel. Thus, a SMALL STRUCTURE-NULL adjacency event 
may, in reality, represent SMALL STRUCTURE-SMALL STRUC- 
TURE or SMALL STRUCTURE-GRASS, and so on. Moreover, 
where there is more than one NULL-adjacency event within 
the kernel, it may be impossible to determine the land use at 
that location. 

The results of the initial classification are presented in 
Table 2 and Figure 4. Not surprisingly, given the limited 
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Figure 3. SPOT-1 HRV image of Orpington in the borough of Bromley, southeast London (20- 
m spatial resolution; near-infrared waveband (xs3)). Note that the road pattern within the 
urban area is clearly evident. 

number and rather broad nature of the land-cover classes 
identified, a very high levcl of classification accuracy (overall 
accuracy = 97.3 percent; Kappa coeffirient = 0.93: Congal- 
ton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986) has 
been achieved; although the use of contiguous blocks of pix- 
els for the test set means that this is probably an overcsti- 
mate of the true accuracy valrre. 

Stage 2. Spatial Reclassification 
Having derived a satisfactory land-cover classification, SPARK 
has been used to reclassify the imagc into eight categories of 
land use: medium-density residential, low-density residen- 
tial, commercial/industrial, woodland, arable farmland, per- 
manent pasture, vacantlfallow land, and open water. The 
distinction made here between the medium-density and low- 
density residential categories is somcwhat subjectivc. How- 
ever, for the purpose of this studp, medium-density housing 
broadly corresponds to terraced buildings with relatively 
small gardens, whereas low-density housing corresponds to 
detached and semi-detached buildings with larger gardons. 
This division of residential land was ~ n a d e  to provide a more 
stringent test for SPARK. 

Given the spatial resolution of the SPOT-I-IRV images and 
the range of spatial variation in land cover exhibited by the 
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candidate land-use r:ategories, a 9- by %pixel kernel was se- 
lectfxi for nse in this study. This represents a compromise 
between the need to account for the full range of spatial vari- 
ation in land cover exhibited by certain types of land use, 
such as the two residential categories, and the need to mini- 
mize the smoothing effect associated with large kernels. 

Template matric:es were derived for each land use from 
9- by 9-pixel windows sampled at random within larger 
training areas. To assess the separability of the candidate 
classes in the training set, A, values (Equation 2)  were calcu- 
lated between each pair of template matrices (Table 3) .  This 
is analagous to the use of pairwise-divergence analysis in as- 
sessing the spectral separability of candidate classes in a 
standard multispectral classification. Table 3 demonstrates 
that the A, values are generally very low (A, < 0.37), indicat- 
ing that most of the candidate classes exhibit rather different 
spatial mixtures of land cover. The one clear exception to 
this is the strong match (A, = 0.8) that exists between the 
low-density residential and nledium-density residential tem- 
plates. Further analyses, not reported here, indicate that this 
is also true for other kernel sizes. This suggests that it might 
prove difficult to distinguish these land-use categories using 
a simple kernel-based procedure, such as SPARK. 

Despite this, a 9- by %pixel kernel was applied to the 



land-cover image in an attempt to identify all eight land-use 
categories outlined above (Figure 5). The reclassification ac- 
curacy was tested using an independent set of sample areas. 
The land use in each of these regions was initally deter- 
mined from recent Ordnance Survey 1:10,000-scale base 
maps and was subsequently verified through field observa- 
tion. Table 4 indicates that SPARK ~erforms very well for all 
of the candidate land-use categories using a 9- by 9-pixel 
kernel (overall accuracy = 96.86 percent, Kappa coefficient 
= 0.921: Congalton et al., 1983; Rosenfield and Fitzpatrick- 
Lins, 1986); even the two residential classes, whoseAtemplate 
matrices seemed so similar, appear to be separable in prac- 
tice. 

In addition to examining the standard classification ac- 
curacv table (Table 4), it is instructive to analyze the 4, val- 
ues associated with each pixel in Figure 5 (i.&., the strength 
of the match between the adiacencv-event matrix for that 
pixel and the template matrix for the land-use category to 
which it was assigned). This is important because we need to 
be certain that n&e of the pixels fn the image has been as- 
siened to a eiven land use on the basis of a weak match, be- " " 
cause this would reduce our confidence in the resultant 
land-use map. The results of this analysis are presented in 
Figures 6 and 7 .  These indicate that 4; > 0.5 (i.e., a good 
match) for 99 percent of the image, and 4, > 0.75 (i.e., a 
strong match) for approximately 55 percent of the image. 

Even where a pixel exhibits a very strong match with 
one of the template matrices, our confidence in the land use 
category to which it is assigned may be reduced if that pixel 
also displays a similarly high 4, value for one or more of the 
other categories. This situation is most likely to arise where 
the template matrices for the candidate classes are them- 
selves similar, as was shown to be the case in this study for 
two of the three urban categories (Table 3). To evaluate the 
significance of this effect, sample areas of these three land 
uses were identified within the image. The 4, values were 
extracted from each sample area for all three template matri- 
ces; summary statistics are presented in Table 5.  A differ- 
ence-of-means test (t-test) was used to examine whether the 
average 4, value for a given sample area was significantly 
higher for the template matrix of the corresponding land use 
than for either of the other template matrices. This was, in- 
deed, found to be the case at the 0.01 significance level (i.e., 
99 percent confidence level) for all three sample areas. 

Small Structure 

Figure 4. Land-cover classification of the Orp~ngton sub- 
scene generated using a standard per-pixel, maxlmum- 
likelihood algorithm. 

TABLE 3. THE Ax VALUES BETWEEN TEMPLATE MATRICES FOR 9 -  BY !&PIXEL KERNEL 
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Arable Crops Pasture Woodland Bare Soil Water 

0.29 0.37 0.17 0.19 0.17 

0.18 0.35 0.13 0.14 0.13 

0.20 0.27 0.14 0.18 0.14 
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Figure 5 .  Land-use map produced using the kernel-based 
spatial reclassification scheme (SPARK) with a 9- by 9- 
pixel kernel. 

Discussion 
This paper has examined the development and application of 
a kernel-based spatial reclassification procedure (SPARK) de- 
signed to infer information on land use from the spatial ar- 
rangement of land-cover types within an image. A significant 
feature of this procedure is that it provides a confidence sta- 
tistic (A,) for each pixel in the output (land-use) image. Pre- 
liminary results obtained using SPARK have proved very 
encouraging. In particular, it has proved possible to distin- 
guish quite subtle differences in urban land use, notably, two 
types of residential land that differ principally in terms of 
housing density, within a subscene extracted from a SPOT- 
HRV multispectral image of southeast London, England. 

Despite this, the basic SPARK algorithm could be im- 
proved in two ways: first, by employing different kernel sizes 
in different parts of the image, and second, by taking account 
of the "likelihood" (probability) values associated with the 
class labels in the land-cover image. In terms of the former, 
it should be noted that, while a small kernel is generally 
preferable for non-urban areas (to minimize the smoothing 
effect associated with larger kernels), a large kernel is usually 
required to represent the full spatial variability of land cover 
in urban districts. This issue might be addressed through the 
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Figure 6. Image showing A, values produced using SPARK 
with a 9- by 9-pixel kernel applied to the land-cover map 
of the Orpington sub-scene. High values indicate a good 
match between the current adjacency-event matrix and 
one of the land-use templates; low values indicate a 
weak match. 

Delta-k Value 

Figure 7. Cumulative area (%) of land-use image versus 
A, value. 

development of an adaptive SPARK, where the size of the ker- 
nel varies according to its position within the image. This, in 
turn, would require some means of determining the most ap- 
propriate kernel size at any given location. Possible options 
include 

the use of image texture measures, with larger kernels em- 
ployed over spectrally heterogeneous regions of the image; or 



TABLE 4. CONFUSION MATRIX FOR LANDUSE RECLASSIFICATION USING SPARK (9- BY 9-PIXEL KERNEL) 

Size of Training Set 1 484 224 36 80 72 126 77 15 

Average Accuracy 97.98% Overall Accuracy 96.86% Kappa Coefficient (%) 92.1% 

ommerical 1 Mean 

TABLE 5. THE A, VALUES OBTAINED FOR SAMPLE AREAS OF KNOWN LAND USE the accuracy of the initial land-cover classification. The de- 
A N D  THREE "URBAN" TEMPLATE MATRICES. gree of sensitivity has not been assessed in this paper, but 

will be the subject of future study. This might be achieved 
by providing SPARK with several land-cover images of the 
same scene, produced using slightly different training sets or, 
possibly, different classification algorithms. It will also be 
important to examine SPARK'S dependence on both the num-  
ber and nature of the candidate land-cover classes used at 
this stage. 

Finally, although SPARK has proved successful with 20- 
m-resolution data, the range of spatial scales over which it is 
applicable has yet to be determined. This will be controlled 
by the interaction between the spatial resolution of the sen- 
sor and the spatial variation in land cover in the correspond- 
ing scene. At one extreme, SPARK will cease to be applicable 
where the spectral response of several scene elements is av- 
eraged over the IFOV of the sensor, to produce a homogene- 
ous, composite signal. For most urban areas in the United 
Kingdom, this limit is approached in image data acquired by 
sensors such as the Landsat Multispectral Scanning System 
(MSS). The other limit of applicability is more difficult to de- 

the use of ancillary data [e.g., previous land-use classifica- 
tions of the study area) to divide the image into discrete seg- 
ments for separate processing using different kernel sizes. 

The second potential improvement would be to take ac- 
count of the "likelihood" (probability] that each pixel in the 
land-cover image belongs to the cover type indicated by its 
class label. This information might be obtained directly from 
the maximum-likelihood algorithm used to generate the land- 
cover image. The product of the "likelihood" values for adja- 
cent pixels might then be used to establish a probability 
value for that particular adjacency event. For example, con- 
tiguous pixels labeled "Built" and "Tree" with, respectively, 
likelihood values of 0.8 and 0.7 would produce a Built-Tree 
adjacency event with a probability value of 0.56. This infor- 
mation might, in turn, be used to modify the measured adja- 
cency-event matrix. 

In pursuing this point, it is worth noting that any tech- 
nique which attempts to infer land use by examining the 
spatial pattern of land cover in an image will be sensitive to 

fine. 

Conclusions 
A number of conclusions can be drawn from this study. 
First, it appears possible to derive information on urban land 
use from an analysis of both the frequency and the spatial 
arrangement of class labels in land-cover data produced from 
multispectral images acquired by a high spatial resolution 
satellite sensors. Second, kernel-based spatial reclassification 
procedures represent a relatively simple method by which 
this can be achieved. The development and application of 
one such technique, known as SPARK (Sp~tial  Reclassification 
Kernel), has been described in this paper, SPARK is able to 
distinguish quite subtle differences in land use within and 
around urban areas. It is also easy to implement in most im- 
age processing systems, running on PC platforms upwards. 
Finally, a number of potential improvements to the basic 
SPARK algorithm have been suggested; it is believed that, 
when implemented, these will increase both the accuracy 
and the sensitivity of this technique. 
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