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Abstract 
This study investigates how remote sensing and geographic 
information system (GIS) technology can be used with a phys- 
iological crop model to examine spatial variability in county 
soybean yield. Remote sensing provided a means of classifj- 
ing land cover and for identifying agricultural regions within 
the county, while the GIS allowed the spatial organization of 
soil and weather data inputs to the model. Results show that 
spatial variability in simulated county yield is often large 
and corresponds closely with soil moisture availability. This 
availability is inpuenced primarily by soil properties and by 
the timing and amount of precipitation, bath of which vary 
greatly across space. Examination of the spatial patterns of 
simulated yield can improve production estimates and high- 
light vulnerable areas during droughts. While data acquisi- 
tion for remote sensing, GIS, and physiological models can be 
costly, these tools allow analysis fhat is impossible through 
other means and that provides insight into the interacting 
variables influencing yield. 

Introduction 
Physiological crop models are a n  important tool that agricul- 
tural meteorologists use to examine the link between climate 
and crop production. While many of these models were orig- 
inally designed for farm management, some have been used 
to measure the impact of climate variability and change on 
regional-scale crop yield (Hodges et al., 1987; Curry et al., 
1990; Adams et al., 1990; Rosenzweig, 1990). However, 
changing the spatial scale at which such models are used 
comes at a price. Because the models require detailed input 
values, one must either use databases with high spatial and 
temporal resolution, or generalize over relatively large areas. 
Unfortunately, generalization can obscure the spatial varia- 
bility of environmental variables within the region. For ex- 
ample, the choice of a single soil type or meteorological data 
set could produce results that do not accurately represent the 
region being examined because of the sensitivity of physio- 
logical models to certain input variables. Most researchers 
adopting or evaluating this methodology recognize this limi- 
tation (Rosenberg, 1992). However, they have been con- 
strained by the lack of an efficient means of incorporating 
the spatial variability of input variables into their models. 
Remote sensing and geographic information systems (GIS) can 
be used to derive data inputs for physiological models and 
overcome some of these constraints. Collectively, these tools 
should allow researchers to assess the impact of climatic var- 
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Figure 1. Location of Orangeburg County, South Caro- 
lina. 

iability and change on agriculture with greater detail and 
with regard to spatial patterns. 

This research develops a methodology for using remote 
sensing and GIs techniques with the physiological soybean 
growth model, SOYGRO (Wilkerson et al., 1983), to capture 
the spatial variability of input variables affecting yield esti- 
mates. Orangeburg County, South Carolina is used as the 
case study for demonstrating a procedure to identify agricul- 
tural regions, construct and manipulate spatial databases, 
and simulate soybean yield. There are three objectives to this 
research: (I) to describe the methodology for linking remote 
sensing and GIS data to physiological crop models; (2) to as- 
sess the sensitivity of simulated yield to spatial variability of 
input variables: and (3) to demonstrate the usefulness of the 
three tools for identifying spatial patterns of crop yield. 

Study Area 
Orangeburg County, South Carolina is located in the south- 
central portion of the state [Figure 1). It extends approxi- 
mately 105 kilometres in the east-west direction and 45 kilo- 
metres in the north-south direction. The county is largely N- 
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Plate 1. Remote-sensingderived landcover classes for Orangeburg County. SPOT XS data at 20m by 
20m were used to classify the land cover. 

ral and was selected because it is one of the most important 
agricultural counties in the state. It includes extensive soy- 
bean production and has a range of environmental condi- 
tions, including a wide variety of soil types. These factors 
allow tests of the sensitivity of simulated yield to spatial var- 
iability. 

Methodology 
LanMover Classlflcatlon 
The first step of the study was to identify agricultural regions 
in Orangeburg County. To accomplish this, a state-wide land- 
cover classification, recently compiled by the South Carolina 
Land Resources Commission (SCLRC), was used (Lacy et al., 
1991). The SCLRC used five scenes of SPOT satellite imagery 
fiom leaf-off periods in December 1988 and March 1989 to 
derive eight land-cover categories statewide. The land-cover 
classification was based on a combination of Anderson Level 
I and Level I1 data that adequately includes the state's major 
land-cover classes, including (1) Urban, (2) Agricuhural, (3) 
ScrubIShrub, (4) Forest, (5) Water, (6) Forested Wetland, (7) 
Non-Forested Wetland, and (8) Barren. 

The SPOT data had been geometrically rectified to the 
Universal Transverse Mercator (UTM) coordinate system us- 
ing the nearest-neighbor transformation. An unsupervised 
statistical clustering algorithm was used to derive 50 initial 
clusters from each image, based on original brightness values 
within the scene. An iterative "cluster busting" technique 
was subsequently applied to minimize the number of unclas- 
sified pixels (Jensen et al., 1992; Narumalani et al., 1993). 
The procedure involved developing a binary mask whereby 
successfully labeled clusters were recoded as "0" and the 
unclassified clusters as "1". The mask was subsequently ap- 
plied to the original image to isolate the areas that could not 

be classsed. The parameters of the statistical clustering algo- 
rithm were modified and it was re-applied to these "unclas- 
sified" areas, thus resulting in new statistically independent 
clusters. A total of three iterations of cluster busting were 
performed, resulting in 110 new clusters which were grouped 
into the respective eight land-cover classes to produce a final 
land-cover classification image map for the entire scene 
(Plate 1). The five classified image maps were merged to pro- 
duce a composite land-cover map for Orangeburg County. 
Because all imagery was rectified to a standard coordinate 
system (i.e., UTM), the imagery could be geographically edge- 
matched. The procedure must be done so that geographic in- 
formation from several adjacent images or maps can be rep- 
resented as spatially contiguous data. Table 1 shows the total 
acreage of the respective land-cover classes. A mask was ap- 
plied to delineate agricultural areas, recoding the agricultural 
class as "1" and non-agricultural classes as "0" (Figure 2). 

SOYGRO 
SOYGRO is a physiological soybean growth model developed 
at the University of Florida. Its mathematical structure re- 
lates major processes of soybean growth (e.g., photosynthesis, 
respiration, tissue synthesis, translocation of protein, and se- 
nescence) to environmental conditions (Wilkerson et al., 
1983). The model is part of a comprehensive software pack- 
age that includes several crop-growth models sharing stan- 
dardized data structure (IBSNAT, 1986). It has been tested 
under a variety of environments and has proven reliable in 
estimating yield under well-managed conditions (Curry ef al., 
1990). SOYGRO requires meteorologic, soils, and crop man- 
agement data as inputs. 

Meteorological data inputs to the model include maxi- 
mum and minimum temperature, precipitation, and solar ra- 
diation. Photoperiod, also required, is calculated from lati- 
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tude and longitude. Daily temperature and precipitation data 
were obtained from five stations in the Orangeburg County 
region [Figure 3). While only two stations fall within the 
county (Orangeburg and Eutawville), three IBamberg, Black- 
ville, and Pelion) lie close to its borders. All stations are part 
of the National Weather Service cooperative network, except 
Eutawville, which is part of Clemson University's agricul- 
tural meteorology network. Solar radiation data were availa- 
ble from South Carolina State College in Orangeburg as part 
of the Solar Energy Research Institute (SERI) network. 

SOYGRO requires soil variables related to water content, 
root growth potential, root water uptake, and nutrients. A 
value for each parameter is specified for several layers with- 
in the soil profile. Soils data were provided by the Pee Dee 
Research and Education Center, Florence, South Carolina, 
and the University of Florida's Institute of Fond and Agricul- 
tural Sciences (Curry et a]., 1990). 

Management data requirements include sowing date, 
plant population, row spacing, sowing depth, and irrigation 
strategy. These values were derived &om experiment station 
reports and weekly crop and weather reports (Barefield and 
Chrestman, 1991). 

OganWng, Manipulating, and Merging Model Inputs 
Initially, all required data inputs were organized spatially us- 
ing ARC-INFO, a vector-based geographic information system 

TABLE 1. LANDCOVER CLASSIFICATION AREAS DERIVED FROM SPOT IMAGERY 

class Id Land Cover Area (ha) 

1 Urban 1,945 
2 Agriculture 71,980 
3 ScrubJShrub 39,820 
4 Forest 107,295 
5 Water 5,276 
6 Forested Wetland 56,321 
7 Non-Forested Wetland 698 
8 Barren 6,728 

that stores and manipulates spatial data (Peuquet and Mar- 
ble, 1990). SOYGRO is sensitive to soil moisture stress and is 
greatly iniluenced by the timing of precipitation. Unfortu- 
nately, the density of meteorological stations in the county is 
as sparse as in most parts of the United States, requiring the 
creation of a meteorological surface. Because present interpo- 
lation schemes often do not prcserve important features of 
precipitation time series and because it is important to main- 
tain internal consistency between variables, we constructed 
Thiessen polygons, centered on the location of five weather 
stations, to represent meteorological surfaces (Figure 3). 
Thiessen polygons (i.e., Voronoi polygons) are commonly 
used in analyzing climate data such as precipitation (Aron- 
off, 1993). While this method does not allow spatial variabil- 

Figure 3. Thiessen polygons developed from five weather 
station locations and used to represent meteorological 
data inputs. 
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TABLE 2. DRAINED UPPER LIMIT (DUL) AND LOWER LIMIT (LOL) VALUES FOR EIGHT SOILS 

Drained Drained 
Soil Lower Upper Soil Lower upper 

Layer Limit Limit Layer Limit Limit 
Soil Thickness (LOL; (DUL; Soil Thickness [LOL; [DUL; 
Type (cm) cm3/cmJ) cm3/cm3) Type (cm) cm3/cm3) cm3/cm3) 
Bomeau 
Sand 

Coxville 
Sandy 
Loam 

Dothan 
Loamy 
Sand 

Dunbar 
Sandy 
Loam 

0.121 Fuquay 
0.125 Sand 
0.142 
0.143 
0.244 
0.260 
0.260 
0.293 
0.293 
0.293 

0.254 
0.254 
0.254 
0.341 
0.341 
0.341 
0.342 
0.356 
0.356 
0.356 

0.124 
0.167 
0.172 
0.271 
0.275 
0.275 
0.275 
0.279 
0.279 
0.279 

0.145 
0.154 
0.208 
0.208 
0.275 
0.342 
0.313 
0.313 
0.313 
0.313 

Golds- 
boro 

Sandy 
Loam 

Noboco 
Loamy 
Sandy 

Orange- 
bug 

Loamy 
Sand 

ity within each subregion of the county, it does preserve in- 
ternal consistency between temperature and precipitation 
data. The same solar radiation times series was used for each 
polygon, because this variable was measured at only one lo- 
cation in the center of the county. 

Soil series data make up the second data layer. The South 
Carolina Water Resources Commission (scwRC) provided dig- 
ital soils series data which were derived from 1:24,000-scale 
soil survey maps of Orangeburg County (USDA, 1988). At- 
tributes for each soil series were stored in a relational data- 
base. The original data set consisted of 46 soil types, but was 
reduced to the eight dominant soils that were important for 
soybean production in the county. The characteristics of the 
eight soil types differ significantly [Table 21, and can result 
in yield variations for many crops. 

To maintain consistency with remote-sensing-derived 
data, the meteorological and soils coverages were converted 
from vector to raster format. These data were merged with 
the land-cover image map to identify the specific meteorolog- 
ical and soils characteristics within agricultural areas. The 
five Thiessen polygons used for interpolating meteorological 

data for the county were subdivided according to soil type 
for agricultural lands. 

Simulation 
To evaluate the reliability of SOYGRO under a variety of con- 
ditions in Orangeburg County, simulated yield was compared 
to observed yield at the Edisto Research and Education Cen- 
ter, Blackville, South Carolina. Modeled yield values for dif- 
ferent soybean varieties and planting dates were compared to 
those measured at the experiment station during six simula- 
tion years, 1986 through 1991. During most years, two soy- 
bean varieties were planted on two different dates. A total of 
2 1  measured yield values allowed a detailed evaluation of 
model performance under relatively controlled conditions. 

The next step was to simulate soybean yield under a 
range of environmental conditions representative of those 
found throughout the county. Each simulation serves as a 
yield sensitivity test to changes in meteorological, soils, and 
field management data, and, collectively, these tests measure 
how spatial variability in the input variables influences yield 
estimates. At one level, these simulations allow examination 
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Figure 4. Modeled versus observed yield 
at Edisto Research and Education Center, 
Blackville, South Carolina. 

TABLE 3. COEFFICIENT OF VARIATION (CV) OF YIELD VALUES FOR THE FIVE 
METEOROLOGICALLY DEFINED THIESSEN POLYGONS 

Year Bamberg Blackville Eutawville Orangeburg Pelion 

into the causes of yield variations over time. At another level, 
they provide a means of identifying the spatial patterns of 
simulated yield across the county. Forty combinations of 
county-wide meteorological and soils data sets provided in- 
put values to SOYGRO, reflecting the eight dominant soil types 
in the five Thiessen polygons. Each of the 40 simulations of- 
fers a unique solution reflecting the interaction between a 
given meteorological time series and soil properties. In addi- 
tion, it is possible to control for meteorology by examining 
the variability within a Thiessen polygon, and it is possible 
to control for soil type by examining yield on specific soil 
types between different Thiessen polygons. 

Results and Discussion 
Assessment of Model Accuracy 
SOYGRO performed well in estimating soybean yield at the 
Edisto Research and Education Center, Blackville, South Car- 
olina. The average simulated yield for 21 different input con- 
ditions during the six-year period was 2027.5 kglha as com- 
pared to the average measured yield under corresponding 
conditions which was 1963.4 kglha (Figure 4). Most modeled 
yield values are within 10 to 15 percent of field values, re- 
sulting in relatively low root-mean-square-error (RMSE) and 
mean-absolute-error (MAE) values of 339.3 and 259.7 kglha, 
respectively. These results suggest that SOYGRO adequately 
estimates yield under a variety of weather conditions, soil 
types, and soybean varieties at the Center. While there is al- 
ways a risk when extrapolating such "point" tests to larger 
regions, the model has been tested extensively under a wide 
variety of conditions around the world (IBSNAT, 1986). 

Range of Yleld Variability 
Forty simulations were run for each year between 1986 and 
1991. In any individual year, yield ranged widely with the 
different input data sets and was very sensitive to soil type. 
The mean coefficient of variation of yield values within a 
given polygon (i.e., controlling for meteorology) ranged from 
2.4 to 69.7 percent (Table 3). Such variability results largely 
from the difference in soil moisture-holding capacity. Two 
soil variables are particularly important in the model. The 
lower limit (LOL) measures the point at which soil moisture 
is low enough to cause plant dormancy, and the drained up- 
per limit (DUL) measures a soil's highest water content after a 

thorough wetting and nearly complete drainage. Differences 
between DUL and LOL represent the amount of potentially ex- 
tractable water. Simulated yield can vary among soil types 
either because DUL values are relatively low, preventing plants 
h m  taking advantage of precipitation, or because LOL values 
are high, causing the plant premature water stress. For exam- 
ple, 1990 simulations reveal regular soil moisture stress in 
the Eutawville polygon during the growing season for two 
soil types-Bonneau sand and Coxville sandy loam (Figures 
5a and 5b). This stress reduced yield on these soils signifi- 
cantly (Table 4). Yields on the Bonneau sand are low be- 
cause of very low moisture-holding capacity (low DUL values) 
through the soil proffle. Yields on the Coxville sandy loam 
are low because its clayey nature restricts extraction of mois- 
ture by plant roots prematurely (high LOL values). Yields 
simulated using Goldsboro sandy loam and Noboco loamy 
sand are substantially higher because of greater moisture 
availability during the growing season (Figures 5c and 5d). 

Meteorological differences also account for yield varia- 
bility within the county as shown with simulated yield val- 
ues on Orangeburg loamy sand for each of the five Thiessen 
polygons during 1986 (Table 5). The large range in yield val- 
ues during this relatively dry year results from the scattered 
nature of precipitation during the growing season. An exami- 
nation of the daily precipitation time series shows the con- 
trast between stations with relatively low yield-Blackville 
and Orangeburg-and one with relatively high yield-Eutaw- 
ville (Figures 6a, 6b, and 6c). Regular precipitation in Eutaw- 
ville during most of the growing season resulted in higher 
yield values. By contrast, precipitation fell less frequently in 
Blackville and Orangeburg, causing moisture stress, decreased 
photosynthetic activity, and reduced yield. A more signs- 
cant difference between the stations is the number of days 
when precipitation exceeded 20 rnm. Given the relatively 
low water-holding capacity of Orangeburg loamy sand, sub- 
stantial rainfall is necessary to overcome drought stress. The 
minor precipitation events in Orangeburg and Blackville pro- 
vided only brief plant recovery. 

The contrast between meteorological stations is consider- 
ably less during years of ample precipitation such as 1989 and 
1991 (Table 5). Precipitation over the region during these 
years is more uniform, resulting in a relatively equal levels 
of moisture availability at each station. Furthermore, maxi- 
mum yield is constrained by the limits of moisture holdmg 
capacity which is reached during large parts of the growing 
season at all locations within the county. 

Identifying the Spatial Varlablllty of Yleld 
The greatest benefit of using SOYGRO with remote sensing 
and GIS technologies is the ability to detect spatial patterns 
of yield during individual growing seasons. During the 1988 
growing season, for example, spatial variability in rainfall 
and soil type combined to produce a wide range of simula- 
ted yield values across the county (Plate 2). In general, grow- 
ing season conditions were favorable for soybeans through- 
out the county. There were, however, some regional varia- 
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Figure 5. (a) 1990 growing season precipitation in the Eutawville polygon and moisture stress on Bonneau sand. Drought 
stress reduction factor values range from 1 (no stress) to 0 (complete stress) and measure the degree to which moisture 
deficiency reduces photosynthetic activity. (b) 1990 growing season precipitation in the Eutawville polygon and moisture 
stress on Coxville sandy loam. (c) 1990 growing season precipitation in the Eutawville polygon and moisture stress on 
Goldsboro sandy loam. (d) 1990 growing season precipitation in the Eutawville polygon and moisture stress on Noboco 
loamy sand. 

TABLE 4. 1990 SIMULATED YIELD IN THE EUTAWVILLE THIESSEN POLYGON 

Yield 
Soil Type (kglha) 

TABLE 5. 1986, 1989, AND 1991 SIMULATED YIELDS ON ORANGEBURG LOAMY 
SAND 

Yield (kdhal 

Bonneau sand 
Coxville sandy loam 
Dothan loamy sand 
Fuquay sand 
Goldsboro sandy loam 
Lynchburg fine sandy loam 
Noboco loamy sand 
Orangeburg loamy sand 

tions. Simulated yields were highest within the two south- 
ernmost Thiessen polygons, referenced by the Bamberg and 
Blackville stations, because rain fell more regularly during 
important stages of crop growth at these two stations than at 
the three northern stations. The relative uniformity of yield 
in the Bamberg and Blackville polygons suggests that the 
timing of precipitation provided sufficient soil moisture to all 
soils. By contrast, precipitation at Orangeburg was not suffi- 

Location 1986 1989 1991 

Bamberg 1,695 3,031 3,576 
Blackville 1,145 3,061 3,693 
Eutawville 2,979 3,083 3,708 
Orangeburg 966 3,101 3,626 
Pelion 1,756 3,150 3,653 

cient for producing high yields on all soils, and the greatest 
spatial variability of yield is found in the central portions of 
the county. In the western portions of the county, simulated 
yield values are low because of the prevalence of a particular 
soil type, the Fuquay sand, which has relatively low water- 
holding capacity. Precipitation falling at both the Pelion and 
Orangeburg stations was not adequate to sustain high yields 
on this soil. 

During extremely dry years, the spatial representation of 

February 1996 PE&RS 



Plate 2. Spatial patterns of simulated yield during 1988 growing season. 

I 

Plate 3. Spatial patterns of simulated yield during 1986 growing season. 
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(4 
Figure 6. (a) Precipitation and drought stress during 1986 
growing season, Blackville polygon, using Orangeburg 
loamy sand. (b) Precipitation and drought stress during 
1986 growing season, Orangeburg polygon, using Orange- 
burg loamy sand. (c) Precipitation and drought stress dur- 
ing 1986 growing season, Eutawville polygon, using 
Orangeburg loamy sand. 

and August, 1986, adversely affecting crops (Karl and Young, 
1987). SOYGRO simulations with remote sensing and GIs data 
for 1986 successfully captured the impact of dry conditions 
on soybean yield (Plate 3). The spatial patterns of yield show 
that the drought was most significantly felt in the central 
portion of the county, as precipitation deficit was greatest at 
the Orangeburg station. The only large portion of the county 
spared by the intensity of the drought occurred in the east 
where slightly more regular precipitation caused higher sim- 
ulated yields on the most favorable soils. 

Conclusions 
The study of Orangeburg County, South Carolina provides an 
example of the steps required to link remote sensing and GIS 
with physiological crop models. These procedures would be 
applicable to other regions within the constraints of data 
availability. Some of the data sets used in this study are wide- 
ly available, while others are not. Meteorological data includ- 
ing maximum and minimum temperature and precipitation 
are available for all regions of the United States. The spatial 
density of precipitation stations is not always sufficient to 
capture convective precipitation that may be important to re- 
gional yield values. It is possible that the implementation of 
doppler radar will improve precipitation estimates over space 
(Klazura and Irny, 1993). Given that interpolation schemes 
do not adequately resolve daily precipitation surfaces, dop- 
pler radar products could provide the best means for ex- 
pressing growing season precipitation at high resolution. 
While the network of solar radiation stations is relatively 
sparse, there exist reliable methods of estimating solar radia- 
tion &om other meteorological parameters (Hodges et al., 
1985). Availability of digital soils data is more limited than 
meteorological data. At present, several efforts have been 
made to build digital soils databases for most U.S. counties, 
but it is an expensive and time consuming process (Reybold 
and TeSelle, 1989: Reed and Whistler, 1990). Finally, land- 
cover data can be acquired at reasonable costs, but must be 
updated regularly in order to monitor shifting agricultural 
regions. 

In principle, a comparison of the costs and benefits of 
linking remote sensing, GIs, and physiological models would 
be justified. The problem lies in defining and quanhfying 
many of the intangible costs and benefits. For example, it 
is relatively easy to place dollar amounts to several data ac- 
quisition costs (e.g., SPOT images are presently available for 
$2,50O/scene, and computer hardware and software required 
for image processing and GIs analyses while varying in price 
can still be quantified). However, there are intangible costs 
associated with applying these technologies. Examples of 
these include the cost of shared resources, personnel train- 
ing, unexpected hardware and software failures or glitches 
(including "down-time"), etc. 

Quantifying benefits is even more difficult. The results 
presented here, however, suggest that the costs involved in 
linking remote sensing, GIS, and physiological models are 
warranted. This link allows one to examine spatially com- 
plex, non-linear, interacting environmental variables and 
their influence on crop yield. The ability to identify spatial 
patterns of simulated yield encourages further examination 
of the physical causes of these patterns. Because these causes 
are seldom explained by a single variable, the ability to merge 
interactive variables spatially is vital. In addition, considera- 
tion of the spatial variability of model inputs should enhance 
research that investigates the impact of future climatic varia- 

yield can identify those regions most severely affected. The bility and change on agricultural production. Traditionally, 
year-end county estimate of soybean yield during 1986 was such research has lacked my spatial detail as single, domi- 
1,007 kglha, approximately 25 percent below the 5-year run- nant soil types, and single meteorological data sets are often 
ning mean for the period. Much of the southeastern United used to estimate regional-scale changes. The analysis pre- 
States experienced intense drought between December, 1985 sented in this study shows that simulated yield values can 
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vary significantly over space when local data sets are used. 
Because climate impact studies often must deal with unpre- 
dictable future scenarios, i t  seems prudent to exploit data 
sources that are more certain. This study also shows that a 
soils database alone could help to improve estimates of crop 
~ i e l d  changes by providing a more realistic range of possible 
changes. It is possible that regional-scale analysis could be 
improved through spatial data manipulation, whereby weight- 
ed averages are computed using simulation and overlays of 
meteorological and soils databases. 

The research presented here could be expanded to in- 
clude different regions and environmental conditions, longer 
time periods, and a variety of crops and models. Rapid 
growth of new technologies may improve the methodology 
described here. Perhaps the main constraint pertains to the 
derivation of areal estimates for the meteorological point 
data. While present interpolation schemes do not produce 
precipitation fields that can be used with physiological mod- 
els, output from doppler radar could provide an alternative 
to Thiessen polygons which assume a uniform precipitation 
surface. The integration of remote sensing, GIs, and physio- 
logical crop models should evolve with the quality and avail- 
ability of digital data bases necessary to drive the models. 
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MULTIPURPOSE CADASTRE: TERMS AND DEFINITIONS 

This booklet presents a list of "core" terms and definitions that represent a good beginning to a 
common vocabulary for use in GISILIS. Also included are terms used in the fields of automated 
mapping, facilities management, land records modernization, natural resource management 
systems, and multipurpose land information systems. 
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