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Abstract 
Image segmentation is a method of defining discrete objects 
or classes of objects in images. Addition of n spatial attxib- 
ute, i.e., image texture, improves the segmentation process in 
most areas where there are differences in texture between 
classes in the image. Such areas include sparsely vegetated 
areas and highly textured human-generated areas, such as 
the urban-suburban interface. A simple udaptive-window iex- 
ture program creates a texture channel useful in image seg- 
mentation. The segmentation algorithm is a multi-pass, 
pair-wise, region-growing algorithm. The test sites include a 
simulated conifer forest, a natural vegetation urea, and a 
mixed-use suburban area. The simulated image is especially 
useful because polygon boundaries are unambiguous. Both 
the weighting of textural data relative to the spectral data, 
and the effects of the degree of segmentation, are explored. 
The use of texture improves segmentations for most areas. It 
is apparent that the addition of texture, at worst, has no in- 
fluence on the accuracy of the segmentation, and can im- 
prove the accuracy in areas where the features of interest 
exhibit differences in local variance. Results indicate that, 
for most uses, segmentation scheme.? should include both a 
minimum and maximum region size to insure the greaiest 
accuracy. 

Introduction 
Image segmentation is the process of dividing digital images 
into spatially cohesive units, or "regions." These regions rep- 
resent discrete objects or areas in the image. Segmented im- 
ages are useful in many ways, primarily by providing the 
basic units used in maps when individual pixels in the im- 
age are too small to use for this purpose. Also, segmented 
images can be easier to interpret, by highlighting specific ob- 
jects in the image. However, automating image segmentation 
has proven difficult. The human mind segments images un- 
consciously as it integrates the data perceived through the 
eyes. To get a computer to effectively partition images has 
proven to be a complicated task. 

A problem arises in segmenting images when the pixels 
which comprise an individual object in an image are not 
spectrally homogeneous. Photointerpreters have long known 
that other clues, aside from spectral brightness, help them to 
analyze an image. In addition, the texture, shape, orientation, 
site, and association have been shown to help analysts inter- 
pret an image. While it is difficult to quantify many of these 
aspects of image analysis used by the human mind, some of 
the above can be measured in ways that are useful in com- 
puter-assisted analysis. The research presented here evalu- 
ates quantitatively the contribution of texture to image 
segmentation. In particular, the intent is to evaluate the rela- 
tive contribution of texture as a function of the characteris- 
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tics of the image being segmented and to show how to scale 
the contribution of texture in segmentation. 

There are many reasons for segmenting an image into 
discrete regions. One goal of remote sensing scientists is to 
map surface phenomena, and often the pixel size in the im- 
age is smaller than the desired map units. For example, at 
the scale of 1:24,000, the minimum size of a usable map unit 
mightbe on the order of 3 hectares. This minimum size is 
equal to 33 TM pixels (30-m spatial resolution] or 75 SPOT 
pixels (20-m spatial resolution). Image segmentation provides 
a logical transition from the units of pixels to larger units in 
maps. Another reason for segmenting an image into regions 
is that subsequent processing steps may require per-region, 
rather than per-pixel, input. It may be beneficial to assume 
that each pixel is one of many observations derived from a 
single object, rather than an independent observation. In fact, 
many methods and models now require multi-pixel input, 
particularly where intra-region statistics need to be calcu- 
lated. A good example is the the use of the Li-Strahler forest 
canopy reflectance model for mapping forest structure 
(Woodcock et al., 1990). 

Image Segmentation 
Image segmentation is the term given to techniques which 
partition an image into multi-pixel regions. Haralick and 
Shapiro (1985), in their survey of image segmentation tech- 
niques, separated them into six types: measurement-space- 
guided spatial clustering, single-linkage region growing, 
spatial clustering, hybrid-linkage region growing, centroid- 
linkage region growing, and split-and-merge methods. 

Measurement-space-guided cIustering involves separat- 
ing images based on histogram peaks to define classes in the 
image. Variations on this approach have been attempted by 
Chow and Kaneko (19721, Weszka et al. (1974), Panda and 
Rosenfeld (1978), Goldberg and Shlien (19781, Ohta et al. 
(1980), and Kohler (1981). As Haralick and Shapiro (1985) 
point out, this type of segmentation is most likely to avoid 
errors through poor region merges; however, it does not pro- 
duce spatially contiguous regions, and some salt-and-pepper 
effect can occur. At times, post-classification filtering of im- 
ages has been used to create regions in an image (Kan et al., 
1975; Goldberg and Goodenough, 1978; Itten and Fasler, 
1979; Thomas, 1980; Logan and Woodcock, 1982; Goldberg 
et al., 1984). Ton et al. (1991) attempted to improve upon 
this approach through a hierarchical class-based approach 
which utilized knowledge of the surface features being seg- 
mented. Nagao and Matsuyama (1979) developed a limited 
pre-classification segmentation in their attempt at spatially 
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codbed smoothing. Spectrally similar adjoining pixels were 
replaced with mean gray-level values in an attempt to sim- 
plifjr, or smooth, the resulting image. In effect, they were cre- 
ating regions based on a limited single-band distance of 
spectral values. This approach was later expanded upon in 
more complex algorithms. 

Single-linkage algorithms involving individual pixel 
linkages to create regions were developed by Bryant (1979) 
and Asano and Yokoya (1981); however, the ease of merging 
inappropriate regions is too great with this form of algorithm. 
Hybrid single-linkage algorithms attempt to avoid this prob- 
lem through using a neighborhood characteristic instead of 
single pixel value. Levine and Leemet (1976) used a shared 
nearest-neighbor parameter for example, while Reed and 
Wechsler (1990) surveyed several filter-based approaches for 
the segmentation of texture images for pattern recognition 
applications. Others (Haralick, 1984; Haddon and Boyce, 
1990; Pavlidis and Liow, 1990) have explored using edge de- 
tection techniques for image segmentation. 

Landgrebe (1980) combined spatial and spectral informa- 
tion in his ECHO classifier, a combined segmentation and 
classEcation algorithm. ECHO attempted to incorporate spa- 
tial relationships into a classification scheme. Problems oc- 
curring with single-linkage region-growing algorithms can be 
avoided in centroid-based algorithms. In centroid-based algo- 
rithms, the region means are re-computed as regions are 
merged, thereby forming a more "realistic" basis for further 
merges. Kauth et al. (1977) developed BLOB for reducing 
noise in the results of classifications of agricultural fields. Al- 
though not extensively tested, BLOB did qualitatively improve 
classification results and the ability to easily outline training 
areas for use in classifications. A multi-pass approach was de- 
veloped by Latty (1984) in which edge pixels were first identi- 
fied based on spectral contrast with adjoining pixels. 
Goodenough et al. (1984) also used edge detection techniques 
to augment their segmentation of SAR images. Their segmenta- 
tion algorithm was a graph-theoretic approach first developed 
by Narendra and Goldberg (1980). Haralick and Kelly (1969) 
suggested at an early date the use of a combination of meas- 
urement space and spatial clustering to determine where clus- 
tering should begin. In effect, "seed" locations were 
determined by histogram peaks in feature space. 

Woodcock et ol. (1983) used Haralick's (1980) sloped- 
facet model to segment rugged forest landscapes where the 
criterion for segmentation was based on the slope and aspect 
of the site. Ioannidis and Kazakos (1985) used a combination 
of Gaussian Densities and Markov fields to segment a highly 
textured image. Unfortunately, it is not apparent whether 
their approach was tested on actual satellite imagery or how 
well their approach worked. Other approaches in the past 
(Brill, 1989) have used only the spectral data without taking 
into account any spatial attributes of the image or objects in 
the image. 

Texture 
Texture can be thought of as the spatial patterns in an image. 
Textures have been described as smooth, fine, coarse, lumpy, 
stippled, mottled, and rippled in photogrammetric applica- 
tions (Ambrosia and Whiteford, 1983). Cross and Jain (1983) 
discussed attributes of texture in terms of coarseness, contrast, 
directionality, line-likeness, regularity, and roughness, and at- 
tempted to reproduce different textures through the use of a 
Markov random field model. Their model was successful in 
creating texture patterns similar to certain types of images. 

Most studies to date have sought ways to define texture 
so as to model natural texture features or to be used in a 
classification (Mitchell et al., 1976; Khashyap and Khotan- 
zad, 1986; Barber and LeDrew, 1991) or segmentation 
(Dougherty and Pelz, 1989; Harlow et al., 1986: Reed and 

Wechsler, 1990; Bournan and Liu, 1991). These approaches at 
defining texture have included the use of Fourier transforms 
(Stromberg and Farr, 1986), fractals (Mandelbrot, 1977). ran- 
dom mosaic models (Ahuja and Rosenfeld, 1981; Modestino et 
al., 19811, mathematical morphology (a binary sieving opera- 
tion which results in a gray-level texture image (Dougherty 
and Pelz, 1989)), syntactic methods, and linear models (from 
Cross and Jain, 1983). Most of these approaches have been in 
the field of pattern recognition and have not been applied to 
the analysis of remotely sensed data. 

Texture has not always been considered an aid in image 
analysis. High variance in portions of images make classifica- 
tion difficult when treated in a per-pixel fashion. Cushnie 
(1987) went so far as to suggest removing textural informa- 
tion entirely through the use of smoothing algoritbms in or- 
der to improve classification results. The approach here, 
however, will be to use these spatial data as an information 
source instead of trying to remove them. 

The development of texture as useful spatial information 
has followed several courses. Texture can be thought of as 
the spatial pattern of gray levels in an image. The measure 
used to describe this pattern can take different forms. One 
method is to pass a filter over the image and use the vari- 
ance of the pixels covered by the filter as the value of the 
pixel in the texture image (Jensen, 1979; Agbu and Nizeyi- 
mana, 1991; Briggs and Nellis, 1991). This is not the only 
way to measure texture, however, and there have been other 
statistics used, as well as differences in the methods de- 
scribed above. 

Woodcock and Ryherd (1989) found that using the above 
local variance texturing technique in an adaptive windowing 
procedure resulted in an improved image for certain applica- 
tions. The adaptive window preserved the boundaries between 
areas of low and high texture (in this case, local variance), 
while not enhancing or widening the edges, which is one of the 
side effects of traditional moving-window texture images. 

Several investigators have used gray-level co-occurrence 
(GLC) matrices inbuilding texture images (Harlow et a]., 1986; 
Barber and LeDrew, 1991). The GLC matrix, a matrix of sec- 
ond-order probabilities, has been used to identify periodicity 
and structure within object texture through a variety of tex- 
ture statistics. Other statistics computed from co-occurrence 
matrices, such as entropy, angular second momentum, and 
inverse difference moment, have also been used (Haralick et 
al., 1973; Peddle and Franklin, 1991). 

Methods 
The approach used to test the effects of using texture in im- 
age segmentation involved developing a series of test images 
for which "ground truth" was available to serve as a refer- 
ence. Segmentations of images using different combinations 
of bands and weightings for texture could then be evaluated 
relative to this "ground truth" standard. For this study, three 
test images were used: a simulated forest image at TM resolu- 
tion, a TM image of an area of natural vegetation in central 
Massachusetts, and a SPOT image in New Jersey of mixed ur- 
ban and suburban land uses. The test images were selected to 
provide a variety of landscapes to determine the effect of add- 
ing texture under differing environmental conditions, spatial 
resolutions, and spectral resolutions. The descriptions of these 
areas and the reference datasets used are included in the dis- 
cussion of the results of the segmentations for these areas. 

In order to test the use of texture in segmentation an 
adaptive-window variance-based texture image was used. 
This approach is described in Woodcock and Ryherd (1989), 
where the digital number (DN) of a pixel in the texture image 
is the local variance in an adaptively placed 3 by 3 window. 
A 3 by 3 window was chosen as the most likely to cross spa- 
tial resolutions with the least areal effects based on the tem- 
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plate size. The location of the adaptively located window 
used to calculate local variance is the window with the low- 
est local variance of all windows that include the pixel. 
Thus, in our case of a 3 by 3 window, nine windows are 
tested. The intent is to calculate texture from the object or 
region to which a pixel belongs and avoid the edge enhance- 
ment associated with the calculation of texture from win- 
dows centered on the pixel in question. (An example of a 
texture image derived using this adaptive-window approach 
is shown in Figure 8.) 

The segmentation algorithm used in all the tests pre- 
sented in this paper is a multiple-pass region-growing ap- 
proach designed by Woodcock and Harward (1992), which is 
based on the Spatially Constrained Clustering algorithm orig- 
inally developed by Tilton (1983). This algorithm is a cen- 
troid-linkage region-growing segmentation algorithm which 
builds spatially homogeneous regions based on Euclidean 
distances in n-dimensional space. The algorithm uses a mul- 
tiple-pass approach with limitations on how many merges 
are allowed in a single pass. Any given region is allowed 
only one merge per pass, and only with that region's recipro- 
cally nearest neighbor in n-dimensional feature space. To 
add an additional check against "rash merges, a parameter 
of the program limits the percentage of regions that can be 
merged in a single pass. For this study, this parameter was 
set at ten percent for all segmentations. 

In the tests of the effect of texture on image segmenta- 
tion, two variables were varied. The first was the level of 
segmentation, or how far the segmentation procedure is al- 
lowed to continue. If the image is not segmented enough, 
then the resulting regions are too small to be meaningful. If 
segmentation is allowed to proceed too far, then many ob- 
jects in the image are merged into the same region, and the 
regions are excessively heterogeneous. The optimal answer is 
a segmentation where the procedure is allowed to progress 
as far as possible until the regions are too large to accurately 
represent the landscape features. In this study, the between- 
band Euclidean distance was used to control the level of seg- 
mentation as a user-specified tolerance. 

In addition to the use of tolerance levels to control the 
degree of segmentation, an approach based on using mini- 
mum region sizes was used. The use of size criteria to con- 
trol the segmentation was added because this approach to 
segmentation produces results more useful for mapping pur- 
poses than the tolerance-based segmentations. The reason is 
that the tolerance-based segmentations tend to produce re- 
sults that include many individual pixels that remain as 
regions, and also several very large regions. These kinds of 
results pose problems for mapping purposes where minimum 
polygon (or region) sizes are an issue. 

The second variable tested is the level of importance, or 
weighting, of the texture data in the segmentation. Weighting 
of texture was done by scaling the DN values of the texture 
image to different ranges. Because the segmentation algo- 
rithm works by merging pixels with the least between-band 
distance, the level of scaling represents the importance or 
relative weight of each band. It was anticipated that, for most 
images, scaling the texture too low would provide less than 
optimal results while, when scaled too high, texture would 
overwhelm the spectral information and reduce the accuracy 
of the segmentation. The optimal scaling of the texture data 
also depends on the type of image being segmented and the 
amouni of local variance in the image. 

Measuring the accuracy or quality of a segmentation is 
difficult, and a new method was devised for this study. The 
regions resulting from each segmentation were assigned to 
classes based on the reference "ground truth'' image. A sim- 
ple plurality rule was applied to pixels within the region 
boundaries to give each region a class label. Once each re- 

gion had been classified, the resulting image was compared 
to the reference image, and the accuracy was tabulated. In 
this scheme, errors occur only when a region crosses a 
boundary on the reference image. Because of the nature of 
the accuracy assessment, accuracy drops as the degree of seg- 
mentation increases. The reason is that in an un-segmented 
image each pixel can unambiguously be assigned to a value 
in the reference image and accuracy will be 100 percent. 
However, as the level of segmentation increases, errors begin 
to occur as individual regions cross boundaries in the refer- 
ence map. The better the segmentation maintains the bound- 
aries as defined in the reference image, the higher the overall 
accuracy of the segmentation. How long the accuracy re- 
mains high as the degree of segmentation increases is a 
measure of the quality of the segmentation. A poor segmenta- 
tion that does not capture the characteristics of the landscape 
will drop in accuracy very quickly as the degree of segmen- 
tation is increased. Also note that, once the size of the 
regions becomes larger than the size of the polygons in the 
reference image, accuracy has to fall. 

This method of measuring accuracy was used to ensure 
separation of effects associated with segmentation and the 
subseauent classification of the regions. Because the alno- 
rithm 1s growing regions, then as smaller regions are a6- 
sorbed, individual class accuracies may fluctuate at another 
class's expense. These fluctuations are related not only to 
how well the class boundaries are being preserved, but also 
to the polygon shapes and sizes, and the degree of fragmen- 
tation in the class. So, while overall accuracy can be helpful 
in understanding the results of a segmentation, individual 
class accuracies are not helpful. 

In order to compare data across segmentations and test 
sites, it was necessary to normalize the variable that meas- 
ures the degree of segmentation in an image. This normaliza- 
tion is simply accomplished by a ratio of the number of 
regions produced by a segmentation to the number of pixels 
in the image (called the RIP ratio). Using this method, an un- 
segmented image has a value of 1.0, while an image with an 
average region size of ten pixels has an RIP value of 0.1. All 
results presented graph accuracy as a function of the Wp ratio. 

Test Images and Results 

Simulated Forest Image 
A simulated forest image was created in order to test the re- 
sults from a segmentation where the forest-stand boundaries 
are distinct and unambiguous. The use of predetermined 
stand boundaries allows for absolute "truth" in evaluating 
the results of the segmentations, which avoids the bias en- 
countered in manual delineation of polygons and in class def- 
initions. The image was simulated to exhibit the values in a 
Kauth-Thomas greenness image (Crist and Kauth, 1986) for a 
western conifer forest based on measurements made in a va- 
riety of Sierra Nevada conifer forest stands. The images of 
forest stands were simulated using the Li-Strahler canopy re- 
flectance model (Li and Strahler, 1985). Forest images were 
simulated for combinations of three sizes for trees and two 
densities of crown coverage, resulting in six classes of forest 
stands. Trees are simulated as randomly located cones on a 
contrasting background. The trees are illuminated from the 
east (or the left side of the page) at a solar zenith angle of 30 
degrees. In the resulting images of these simulated forests, 
three different tones are distinguishable: a bright background, 
dark shadows, and an intermediate tone for illuminated tree 
crowns. These initial images (Figures la  to If) were simu- 
lated at a spatial resolution of 1 metre to preserve the detail 
of the random location of trees. However, to test the use of 
texture in image segmentation, these 1-metre images were av- 
eraged to 30 metres to simulate the spatial resolution of 
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(b) (4 (9 
Figure 1. Modeled trees and background for simulated forest image. Three size classes and two density classes were used. 
(a) Small trees, low density. (b) Small trees, high density. (c) Medium trees, low density. (d) Medium trees, high density. (e) 
Large trees, low density. (f) Large trees, high density. 

Landsat TM images. These six images were then used to fill 
irregularly shaped polygons which were drawn by hand. 
Plate 1 shows the hand-delineated stand boundaries with 
their related size and density class labels, while Figure 2 
shows the completed simulated forest image. Table 1 lists 
the statistics for the six tree classes in the simulated image. It 
is apparent how increasing tree size increases local variance 
(texture), while cover chiefly affects the mean spectral re- 
sponse. Given the simulation parameters, the three kinds of 
sparse and three kinds of dense stands are not spectrally sep- 
arable. The question involved in segmentation then becomes 
whether or not the use of texture is sufficient to differentiate 
stands that have almost identical mean reflectance. 

Test segmentations for the simulated image were run 
with a range of tolerances from 2 to 34, where a tolerance of 
2 results in very little segmentation and 34 is highly over- 
segmented. It was anticipated that the results of segmenta- 
tions based on a combination of texture and spectral data for 
the simulated image would result in segmentation accuracies 
higher than those possible through segmenting either image 
on its own. This result was anticipated because the spectral 
differences are dependent upon the density of trees while the 
differences in the texture channel relate to the tree size clas- 
ses (Table I). The results shown in Figure 3 for the toler- 
ance-based segmentations do not support this assumption. 
The results from segmentations based only on the texture 

Stand Type 
(size, cover) 

small, sparse 
medium, sparse 
large, sparse 
small, dense 
medium, dense 
large, dense 

Simulated Forest Images (1-metre) 

percent height height number 
cover mean variance trees 

29.05 10.0 120.1 5247 
28.48 17.5 370.3 1715 
28.15 25.0 755.8 861 
50.15 10.0 120.1 9078 
49.01 17.5 370.3 3430 
49.20 25.0 755.8 1723 

Simulated TM Pixels 
- - - - -  

greenness greenness greenness greenness 
mean variance tex. mean tex. var. 

112.0 74.0 12.9 8.4 
111.3 169.0 9.9 7.1 
110.4 357.2 6.6 4.8 
80.9 60.8 11.6 12.8 
79.1 171.0 9.8 6.6 
77.5 278.9 6.2 3.1 
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Plate 1. Polygon bounda, for simulated forest refer- 
ence image. Polygons were hand delineated to be filled 
with size/density combinations of modeled trees. 

Sparse Dense 

Blue - Small Trees Magnenta - Small Trees 
Navy - Med. Trees Yellow - Med. Trees 
Red - Large Trees Green - Large Trees 

Figure 2. The polygons have been filled with modeled 
trees and background at six size/density combinations 
and degraded to TM resolution. The brightness values are 
typical of a Kauth-Lambert brightness image. 

While the texture band alone had the highest accuracy, 
it is clear that the use of texture in conjunction with the 
spectral data greatly improves the classification accuracy for 
this type of landscape. Also, the relationship between texture 

channel are the highest, followed closely by the combined weighting and accuracy is clear from the definite pattern of 
results for spectral and texture data when texutre is heavily increasing accuracy as the weighting of texture increases. It 
weighted. The results become progressively worse as the was subsequently found that, in segmentations of actual 
weighting of the texture is decreased, with the use of only western conifer forests, a combination of spectral and texture 
spectral data being the worst. The results from all tests de- bands was qualitatively better than using either texture or 
cline dramatically as the degree of segmentation approaches spectral bands alone in the segmentation (Ryherd and Wood- 
the 0.07 RIP value. cock, 1990). 

tM6k solid l i i  - LIR. lmwe and texture (0-2551 d ~ l I ~ ~ - S i m l m a g e  
med. soad Ihe - Slm. Image anf texrure (0-127) dsshed Umr - Texlure (0-255) 
UarsM tine - Sim. lmsgs end texture (0-28) 

0.75 0.70 0 .S  0.60 0.m 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 
RegionsIPixels 

Figure 3. Simulated Image Segmentation Results. Segmentation was run using the 
simulated forest image and a texture channel. Results using tolerances from 2 to 34 
are ratioed to standardize the results and platted. 

- 

PE&RS February 1996 



- 
thick solid line - Sim. Image and taxlure (0-255) dolled line - Sim. Image 
mad. solid line - Slm. Image and texture (0-127) dashed We - Tenure (0455) 
lhin solid line - Sim. image and texlure (0-28) 

0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 
RegionslPixels 

Figure 4. Simulated lmage Minimum-Size Segmentation Results. Segmentation was 
run on the simulated image and texture using minimum-size criteria ranging from 2 
pixels to 35 pixels. Results were ratioed to standardize the results and plotted. 

The use of a minimum size criterion resulted in quite 
different accuracy curves. It was anticipated that forcing 
even-sized stands would increase overall accuracy due to the 
even-sized nature of the stands in the reference image. The 
resulting classification accuracies (Figure 4) support this as- 
sumptionas all band combinations are higher than the toler- 
ance-based segmentations for equivalent levels of segmenta- 
tion (RIP values). In addition, accuracies remain high until 
almost the 0.025-RIP level, and then exhibit a dramatic fall 
beyond that point as regions begin to exceed the size of 
stands in the reference image. These accuracy results match 
our original expectations, with the texture image alone hav- 
ing the lowest overall accuracy, followed by the spectral 
data, with the combined spectral and texture data having the 
highest accuracy curves. 

A comparison of threshold-based segmentation versus 
the use of a minimum-size criterion can be seen in Figures 5 
and 6. In these figures, the value in each pixel in each region 
is the mean of the pixels for that region in the simulated 
greenness image. Figure 5 is a segmented image where the 
input was the simulated image (greenness band) and the tex- 
ture band (stretched 0 to 255). This image falls along the 
central portion of the accuracy curve and has an RIP value of 
0.14. It represents what could be considered an "optimal" 
segmentation in that it is neither over-segmented or under- 
segmented. However, there are a number of remnant small 
regions of one or two pixels in areas of high spatial variance. 
Figure 6 is a segmentation using the same input bands, but 
forcing merges using the minimum size criterion rather than 
tolerance. It is selected for comparison because it has a simi- 
lar overall classiiication accuracy. The resulting image is 
clearer, because the noise caused by the very small regions 
has been removed. This image has an RIP value of 0.03, 
showing that, while the degree of accuracy is similar (Figures 
5 and 6 have accuracies of 0.85 and 0.87, respectively), this 
image contains far fewer regions. The meaning of this result 
is that, even with the average region size being larger, overall 
accuracy is increased because of the lack of a few extremely 
large regions. 

The change in the combinations of bands producing the 
best results when using size-based segmentation versus toler- 
ance-based segmentation is due to the dramatic increase in 
the accuracy associated with the use of spectral bands when 
a minimum size is enforced. The reason for this increased 
accuracy is that, to achieve the same level of segmentation 
(RIP value) when no-minimum size is used, some very large 
regions are created. These large regions have low accuracies, 
as they cross many boundaries in the reference image. When 
the minimum size criterion is used, regions don't grow in an 
unwieldy fashion. Figure 7 illustrates the size distribution of 

Figure 5. Simulated lmage and Texture Segmentation - 
No Minimum Size. Each pixel in a region has the value of 
the mean of all pixels for that region from the original 
simulated forest image. No minimum region size was in- 
vo ked. 
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Figure 6. Simulated Image and Texture Segmentation - 
With Minimum Size. Again, each pixel in a region has the 
value of the mean of all pixels for that region from the 
original simulated forest image. A minimum size of 18 
plxels per region has been invoked, thus reducing the 
speckled nature of the segmentation. 

regions for both the minimum size and tolerance-based tests. 
It can be seen that the tolerance-based segmentations have 
many small regions, but they are not causing the lower accu- 
racy levels, because the measure of accuracy being used here 
tends to favor small regions. The lower accuracies are being 
caused by the few very large regions which cross the bound- 
aries in the reference image. When segmented with only the 
minimum size criteria, the number of these large regions is 
reduced. 

Another factor that may influence the finding that tex- 
ture alone is more useful for the threshold-based results as 
opposed to the minimum size segmentations is the nature of 
the texture image. The texture image is created using an 
adaptive window where the window location for each pixel 
is determined by finding the location with the lowest local 
variance. This causes "blocks" in the image, or areas with 
the same or very similar texture values (Figure 8). This cubic 
nature in the resulting image greatly reduces high hequency 
variability compared to the amount found in most spectral 
images. In essence, the texture algorithm functions like a 
low-pass filter. This filtering reduces interpixel variability 
within the blocks and tends to promote rapid growth or 
regions inside these blocks. This growth of many moderate 
sized regions in the segmentation process is desirable, and is 
enhanced in the threshold-based approach when these tex- 
ture images are used. 

Leominster TM Image 
Thematic Mapper (TM) imagery of a rural area in New Eng- 
land was used as an example of an area of primarily natural 
vegetation with closed-canopy forests (Plate 2). Aerial photo- 
graphs for the same area were interpreted into land-cover 
classes. A minimum region size equivalent to six TM pixels 
was maintained in the air-photo interpretation. Surface cover 
classes were specifically chosen to reflect potential classes of 
interest to a user, and not limited to classes easily separable 
based on spectral values. These land-cover polygons were 
then transferred to an enlarged hardcopy of the satellite im- 
age and manually digitized. The digitized data were con- 
verted to raster format and then registered to the TM image 
(Plate 3). Table 2 lists the cover types and the means and 
variances in the bands used for segmentation. It was antici- 
pated that the addition of texture to the segmentation of this 
area would not greatly improve the accuracy of the segmen- 
tation. This is chiefly due to the lack of discernible textural 
differences between the major forest types in this area be- 
cause of the high density of forest cover. 
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Figure 7. Sire Distribution of Segmented Regions. Note the small numbers of 
large regions in the no-minimumsize segmentation. This is due to the even de- 
velopment of regions when an increasing minimum size is used to control the 
segmentation. 
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Figure 8. Simulated Forest lmage Texture Band. An adap 
tive-window texture image of the simulated forest image 
using a 3 by 3 adaptively placed filter. The adaptivewin- 
dow approach controls the inflation of edge features. The 
cubic nature of the image is a result of the adaptive-win- 
dow approach. 

The test segmentations for this image were run using 
combinations of spectral bands 3,4, and 5, and a texture 
band created from band 5 .  The tolerance-based segmentation 
results indicate that the use of texture alone yields the best 
segmentations (Figure 9). This result is similar to those ob- 
served for the simulated forest image, and again is attributa- 
ble to the smoothing or filtering effect of the texture algo- 
rithm. All other combinations of bands and weights for 
texture yield very similar results. 

When a minimum size criterion is used to control the 
degree of segmentation, overall accuracies again increase sig- 
nificantly (Figure 10). Also, the results for the segmentations 
using only texture drop relative to segmentations that in- 
clude spectral data. There is virtually no difference between 
the results of the spectral bands with texture or without tex- 
ture added. It is interesting that in this situation the addition 
of texture does not degrade the segmentation results. Given 
the lack of texture differences between classes, it would 
seem entirely possible that the addition of texture, particu- 
larly if it is heavily weighted, could be detrimental. How- 
ever, our results do not support that idea. 

Roselle SWT lmage 
SPOT multispectral imagery was obtained for an area in New 
Jersey, near the town of Roselle (Plate 4) to serve as an ex- 

ample of urban and suburban land uses, and as an example 
using different spatial and spectral resolutions. Again, aerial 
photographs were used to delineate land-cover polygons, 
which were then transferred to an enlarged hardcopy print of 
the SPOT imagery. A minimum polygon size of approxi- 
mately four SPOT pixels was used. The smaller minimum 
polygon size was chosen based on the dense mixed-use na- 
ture of the landscape. These polygons were digitized and 
converted to raster format for registration with the SPOT data 
(Plate 5). Because textural information is often important in 
discriminating human-made landscapes, this urban-suburban 
area has been included. Table 3 lists the classes for this test 
site. It should be noted that some classes exhibit variances 
either above or below those normally expected for those 
land-use classes. For example, the waterclass has one of the 
highest variances, which is unusual because water normally 
has extremely low variance. The reason for this is the nature 
of the reference image, which includes many small regions. 
Often in small classes the "pure" pixels can be outweighed 
by the more mixed edge pixels. The water class consists of 
thin segments of the Rahway River, and thus has a high pro- 
portion of edge pixels. It is the extremes between the very 
low infrared reflectance of the water and the high reflectance 
of the bordering vegetation that creates the high variance in 
this class. Conversely, single-family residential areas domi- 
nate the scene, and while composed of many diverse materi- 
als, the overall spectral range is less than the water and 
vegetation classes. There is also a much lower proportion of 
edge pixels in the large areas of residential tracts, thus re- 
ducing the expected variance. Despite these conditions, most 
classes do have textural differences, and a look at the texture 
image (Figure 11) shows that textural boundaries are being 
prese~ed. 

The suburban fringe of urban areas is difficult to map 
using per-pixel classifiers because of the highly heterogenous 
nature of the land-use classes (Jensen and Toll, 1982). Tex- 
ture has been shown to be useful in these environments in 
the past, (Comers et al., 1984; Moller-Jensen, 1990) and it is 
anticipated that a segmentation scheme would improve accu- 
racy. It was also anticipated that the use of texture would 
further increase the accuracy of classification due to the high 
level of textural information in this type of area. 

Tolerance-based segmentations were run on the Roselle 
image using the three SPOT spectral bands and a texture band 
created from spectral band 3 (near-infrared). The results (Fig- 
ure 12) show that the addition of texture does indeed in- 
crease the accuracy of the segmentations. One noticeable 
result is that the accuracies are much lower for all band 
combinations compared to the other two sites. This result is 
due to the fact that the Roselle site is a very complex area 
comprised of land-use classes that in turn are made up of 
highly diverse components. The overlapping curves of the 
mid-range (0 to 128) and full-range (0 to 255) texture weight- 
i n g ~  indicate that there is some point at which the weighting 
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Plate 2. Leominster, Massachusetts TM Image. TM Bands Plate 4. Roselle, New Jersey SPOT Image. SPOT panchro- 
4, 3, and 2 of a test site near Wachusetts Mountain, matic bands 3, 2, and 1 for an area in suburban New 
Massachusetts. Jersey, west of New York City. 

-.I 

I 

-- 
Plate 3. Leominster, Massachuse..- .?eference Image. 
Reference data for the Leominster site derived from digi- 
tized photo-interpreted land-use maps. 

Green Mixed Forest, Hardwood Dominant 
Blue Mixed Forest, Conifer Dominant 
Red Mixed Forest, no dominant 
Yellow Hardwood Forest 
Black Conifer Forest 
Brown Sparse Mixed Forest 
Cyan Agricultural 
Light Green Water 
Dark Green Wetlands 
Magenta Other 

Plate 5. Roselle, New Jersey Reference Image. Reference 
data for the Roselle site derived from digitized photo-in- 
terpreted land-use maps. 
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Figure 9. Leominster TM lmage Segmentation Results. Segmentation for TM bands 3, 
4, and 5 and texture of band 5 were run using tolerance values from 2 to 34. Re- 
sults were standardized and plotted. 
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Figure 10. Leominster TM lmage Minimum Size Segmentation Results. Segmentation 
for TM bands 3, 4, 5 and texture of band 5 were run using minimum size limits from 
2 to 35 pixels. Results were standardized and plotted. 

of texture is playing a crucial part in the segmentation re- When the average region size grows beyond that of the tex- 
sults. This suggests that the texture band may be weighted ture filter, there is a slight improvement of the mid-range 
too strongly in relation to the spectral bands in the 0 to 255 texture image. Weighting of the texture image at the full 
weighting because the accuracy is falling in the later stages range (0 to 255) is causing the texture image to control the 
of segmentation. This could happen because the blocky na- segmentation at the high-tolerance end of the accuracy curve. 
ture of the texture image is affecting region boundaries. This finding is not surprising, given that the low dynamic 
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TABLE 3. ROSELLE Sm STATISTICS 

SPOT SPOT SPOT Band 3 SPOT SPOT SPOT Band 3 
Class Band 1 Band 2 Band 3 Texture Band 1 Band 2 Band 3 Texture Percent 
Label Mean Mean Mean Mean Variance Variance Variance Variance of Image 

Sing. Pam. Res. 45.438 37.922 44.848 2.409 21.726 20.664 35.646 0.907 46.99 
Mult. Fam. Res. 45.955 38.620 45.763 3.068 24.236 24.767 64.493 1.565 1.39 
Commercial 48.258 40.841 39.420 3.008 101.470 101.513 99.595 2.839 18.38 
Comm. Open Land 44.718 39.049 50.041 3.340 26.486 38.744 160.501 3.413 2.81 
Recreation 39.445 33.327 41.144 2.102 14.263 18.141 66.303 2.465 7.44 
Forest 44.444 37.788 66.232 4.949 19.677 31.771 265.262 5.443 10.35 
Water 38.466 30.684 34.121 4.610 34.881 53.242 185.804 4.993 0.49 
Agriculture 49.256 47.798 52.413 2.759 34.950 92.729 63.837 1.466 0.98 
Transportation 45.144 38.428 39.322 2.852 19.888 25.627 66.304 1.856 2.52 

range of the SPOT spectral bands is easily overwhelmed by 
an additional band, such as texture, having a high dynamic 
range. 

The minimum size segmentation results again show that 
the use of texture alone compares poorly to the use of spec- 
tral channels or spectral channels combined with texture 
(Figure 13). It surprising to note that, when using the mini- 
mum size criterion, there is virtually no difference between 
using the spectral bands alone or in combination with tex- 
ture at all weightings. It would be expected that there would 
be a gradation from having no texture to having the full tex- 
ture range. The lack of separation by texture weightings indi- 
cates that, when a minimum size restriction is invoked, the 
texture differences that are apparent when no minimum size 
is used disappear with regards to controlling the segmenta- 
tion. The use of texture in the segmentation of both this site 
and the Leominster site resulted in no change between tex- 
ture weightings when a minimum size is used. 

Discussion 
The effects of combining spectral bands and texture in a seg- 
mentation scheme have been explored in this research. It 
was originally thought that texture would provide a measura- 
ble, but subtle, improvement in segmentation accuracies 
when added to the spectral data. What has been shown is 
that texture, in certain situations, can be a far stronger addi- 
tion in certain landscapes than had been presupposed. In 
particular, texture can have strong positive effects when us- 
ing threshold-based segmentations. This result is due to the 
nature of the texture image as related to the process of forced 
merges within a minimum size-controlled segmentation. Be- 
cause the texture data are derived from spectral differences 
at the local level where the defining criterion is the least var- 
iance, forcing every pixel within a small area to merge re- 
sults in the same decisions being made in merging at the 
local level as when the texture data are added as a separate 
data layer. In effect, the advantages that a texture layer pro- 
vides are being reproduced by the forcing of a minimum size 
in the segmentation process. The effect of imposing mini- 
mum region sizes is to make the adaptive window texture 
approach redundant. 

It is also apparent from the results that texture is a help- 
ful addition only when the classes in the scene exhibit dif- 
ferences in image texture values. In the images which show 
differences in texture values, like the simulated forest image 
and the urbanjsuburban SPOT image, the addition of texture 
is helpful. Similarly, where texture values are very similar 
between classes, such as in the forest classes in the Leomin- 
ster Thematic Mapper image, the addition of texture does not 
help. While this finding is not surprising, it does provide a 
method for deciding whether or not to include texture. One 
interesting result is that texture generally does not improve 
segmentations controlled by minimum size criteria. 

One final result of interest concerns the lack of negative 
effects associated with the use of texture. Only when texture 
was used independently were results worse than for the tests 
using only the raw spectral bands. Never when texture was 
combined with the spectral bands were the results degraded. 
This result bodes well for the use of texture in practical ap- 
plications of segmentation, as it undermines worries about 
causing problems by adding texture to segmentations. 

An important part of segmenting an image is being able 
to provide segmented regions of useful size to the user. Us- 
ing a minimum size criterion has been shown here to im- 
prove the accuracy of segmented images, as well as to 
improve the utility of segmented images, particularly in areas 
of high spatial variability. One reason for the strength of the 
results in this regard may be because the test sites used here 
happen to have a small range of polygon sizes (particularly 
the simulated forest image). In mapping applications, an op- 
timal approach may be the combination of tolerance-based 
segmentation and a minimum region size, in order to avoid 
the salt-and-pepper effect of remnant small regions. In addi- 
tion, a maximum region size may well be as, or more, impor- 
tant than a minimum region size, because we have seen how 
a few large regions can grow without control and drastically 
affect the accuracy of a segmentation. 

Figure 11. Roselle, New Jersey SPOT Band 3 Texture 
Image. An adaptive-window texture image of SPOT 
Band 3 using a 3 by 3 adaptively placed filter. 
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Figure 12. Roselle SPOT lmage Segmentation Results. Segmentations were run on 
SPOT multispectral bands 1,2,3 and texture of band 3 using tolerances running from 
2 to 34. Results were standardized and plotted. 
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Figure 13. Roselle SPOT lmage Minimum Size Segmentation Results. Segmentations 
were run on SPOT multispectral bands 1, 2, and 3 and texture of band 3 using mini- 
mum size limits of 2 to 35 pixels. Results were standardized and plotted. Note that 
the addition of texture using a minimum size criterion neither improves or detracts 
from the accuracy. 
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Conclusions 
From our tests on the  effect of using texture data in the seg- 
mentation of remotely sensed images, the following can be 
concluded: 

The addition of texture has stronger benefits in 
threshold-based segmentations than in minimum-size based 
segmentations, 
The addition of texture is most beneficial for scones in which 
the desired classes exhibit textural differences, 
The combining of texture with spectral data never degraded 
segmentation accuracies, and 
Seglnentations controlled by minimum size criteria produce 
higher accuracies than threshold-based segmentations. 
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