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Abstract 
An approach using straight lines as features to solve the 
photogrammetric space resection problem is presented. An 
explicit mathematical model relating straight lines, in both 
object and image space, is used. Based on this model, Kal- 
man Filtering is applied to solve the space resection prob- 
lem. The recursive property of the filter is used in an itera- 
tive process which uses the sequentially estimated camera 
location parameters to feedback to the feature extraction 
process in the image. 

This feedback process leads fo o gradual reduction of 
the image space for feature searching, and consequently 
eliminates the bottleneck due to the high computational cost 
of the image segmentation phase. It also enables feature ex- 
traction and the determination of feature correspondence in 
image and object space in an automatic way, i.e., without 
operator intezference. 

Results obtained from simulated and real data show that 
highly accurate space resection parameters are obtained as  
well as a progressive processing time reduction. 

The obtained accuracy, the automatic correspondence 
process, and the short related processing time show that the 
proposed approach can be used in many real-time machine 
vision systems, making possible the implementation of appli- 
cations not feasible until now. 

Introduction 
Space resection problems are not restricted to photogrammet- 
ric applications; they are also found in machine vision sys- 
tems. Specifically in robotics, a machine vision system can 
be implemented using a camera positioned either remotely 
(eye-off-hand) or attached to the robot wrist [eye-in-hand). In 
the eye-in-hand system, the key problem is the determination 
of the camera location and orientation, relative to the global 
or object reference system, each time a movement is made. 
In the eye-off-hand configuration, on the other hand, camera 
location and orientation are known, and tracking or determi- 
nation of the wrist position becomes the problem. In both 
cases, the solution is obtained using a space resection ap- 
proach. 

To solve the space resection problem, the six unknown 
parameters (three rotations and three translations) are com- 
puted using a set of control points whose coordinates are 
known both in the image and in the world reference systems. 
In spite of its wide dissemination, the classical method pre- 

A.M.G. Tommaselli is with the Departamento de Cartografia, 
Universidade Estadual Paulista, Rua Roberto Simonsen, 305, 
10060-900 Presidente Prudente, SSo Paulo, Brazil. 

C.L. Tozzi is with the Departamento de Engenharia da Com- 
puta~B0 e Automa~lo Industrial, Faculdade de Engenharia 
ElBtrica, Universidade Estadual de Campinas, Cidade Univer- 
sitkia Zeferino Vaz, C.P. 6101, 13081-970 Campinas, SBo 
Paulo, Brazil. 

PE&RS January 1996 

sents two fundamental problems in real-time applications: (1) 
The solution of a system of non-linear equations and (2) au- 
tomatic feature extraction and correspondence. 

The solution of a system of non-linear equations requires 
linearizations, and an iterative procedure must be used 
which is time consuming and, thus, improper for real-time 
applications. Solutions which attempt to reduce the compu- 
tational costs related to the linearization process have been 
proposed in the literature (see, for example, Lenz and Tsai 
(1988) and Fischler and Bolles (1981)). 

Automatic feature extraction and correspondence is of 
crucial importance in real-time applications, given that point 
determination in the image and its correspondence to the 
control points in object space must be conducted in an auto- 
matic way, i.e., without operator interference. This requires 
the use of image segmentation techniques which are time 
consuming and may become a bottleneck in the whole pro- 
cess, because the computational cost of feature extraction is 
much higher than is the cost of parameter estimation. Lee et 
al. (1990) reported an experiment using a rectangular shape 
based model. In their approach, the image processing steps 
required 32 seconds while the solution to the space resection 
equations used only 1.07 ms in a Sun workstation. Similar 
considerations regarding this bottleneck are presented by 
Gruen (1992). 

Another approach that tries to overcome these problems 
is the use of more meaningful features, such as straight lines, 
curved lines, rectangular shapes, junctions, etc., instead of 
points. Among these features, straight lines have been largely 
preferred because they present some advantages over other 
features: 

Identification of straight lines in the image is easier than the 
identification of points, and the correspondence problem can 
be solved with a smaller probability of gross errors; 
Straight line parameters can be obtained with subpixel preci- 
sion; and 
There are many straight lines in images of industrial environ- 
ments. 

The use of alternative features in the space resection 
problem has recently received increasing attention, and some 
methods have been proposed in the literature (Lugnani, 
1980; Tommaselli and Lugnani, 1988; Mulawa and Mikhail, 
1988; Dhome et al., 1989; Chen et al., 1989; Salari and Jong, 
1990; Liu et al., 1990; Wang and Tsai, 1990; Lee et a]., 1990; 
Echigo, 1990; Chen and Jiang, 1991; Chen and Tsai, 1991). 

For some applications, even the use of alternative fea- 
tures may not be enough to attain a viable real-time solution. 
This may occur if the image feature extraction process must 
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Figure 1. Vectors normal to the interpretation 
plane in object space and in image space. 

be applied over the full image, resulting in a time consuming 
process. 

Some authors have proposed the use of parallel process- 
ing techniques or hardware implemented solutions to remove 
this bottleneck. These solutions, however, are costly, equip- 
ment dependent, and cannot be generalized. 

The concept of Verification Vision can be used as an ad- 
ditional approach to increase the throughput of the system. 
According to Feddema et al. (1991), "the purpose of Verifica- 
tion Vision is not to recognize objects but to verify and up- 
date the location of the objects based on a selected number 
of image features." If the object model is known and an esti- 
mated camera position and orientation are available, the po- 
sition of the selected feature can be predicted and the feature 
extraction process is applied only to a small window enclos- 
ing the feature, instead of to the whole image. 

In "eye-in-hand" robot vision systems, a good estimate 
for the camera location parameters is always available from 
the kinematics model of the manipulator (Paul, 1981), and 
the concepts of Verification Vision can be directly applied. 

An additional improvement in the concept of Verifica- 
tion Vision can be obtained using filtering techniques (Tom- 
maselli and Tozzi, 1992). Filtering techniques offer two great 
advantages when applied to the dynamic space resection 
problem in eye-in-hand robot vision systems: 

Parameter estimation can be achieved using past observations 
with no necessity of storing them; and 
If convergence is assured, the camera location parameter esti- 
mates are recursively improved for each new observation in- 
troduced. 

This recursive filtering approach, associated with the 
concept of Verification Vision, can be used to feedback to the 
feature extraction step to reduce the search space and, hence, 
to decrease computational efforts. The better the camera lo- 
cation estimate, the smaller are the window to be processed 
and the computational effort needed for feature extraction. 

Sequential procedures were extensively studied by the 
photogrammetric community in the problem of on-line trian- 
gulation. Gruen (1985) discussed some aspects of sequential 
algorithms, emphasizing the Kalman Covariance Update, the 
Triangular Factor Update, and the Givens Transformations 

Update. The advantages of the Triangular Factor Update 
were also reported by Gruen (1982). 

The main objective of this work is to present a photo- 
grammetric approach to space resection using the concept of 
Verification Vision, as stated above. A mathematical model 
for the correspondence of a straight line in the object and 
image spaces is adopted (Tommaselli and Tozzi, 1992). Kal- 
man Filtering is applied to the camera parameter estimation 
process, and it is shown that a feedback of the estimated 
camera parameters into the image feature extraction process 
leads to a global reduction in the computational effort. 

In the next section, the adopted mathematical model is 
presented. The proposed recursive procedure, the application 
of Kalman Filtering, and the feature extraction methodology 
are then described. Finally, results with simulated and real 
data are discussed and conclusions are presented. 

The Mathematical Model for the Space Resection Solution 
The mathematical model adopted for the solution of the 
space resection problem using straight lines is based on the 
equivalence between the vector normal to the interpretation 
plane in the image space and the vector normal to the ro- 
tated interpretation plane in the object space (Tommaselli 
and Tozzi, 1992). The interpretation plane is defined as be- 
ing the plane which contains the straight line in the object 
space (L), the projected straight line in the image space (I), 
and the perspective center ( P a  of the camera (see Figure 1). 

The vector normal to the interpretation plane in the im- 
age space is given by 

where f is the focal length and 0 and p are the parameters of 
the straight line in the image plane, using its normal repre- 
sentation (cos0.x + sin0.y - p = 0). 

The vector n, normal to the interpretation plane in the 
object space, is defined by the vector product of the direction 
vector of the straight line (d) and the vector difference (PC - 
C) (see Figure 1): i.e., 

where 
X,, Y,, 2, are the coordinates of the perspective center of 

the camera; 
X,, Y,, Z, are the three-dimensional coordinates of a 

known point on the straight line; and 
1, m, n are the components of the direction vector d of 

the straight line; all defined in the object space reference sys- 
tem. 

Multiplying vector n by the rotation matrix R eliminates 
the angular differences between the object and the image ref- 
erence systems and results in a vector normal to the interpre- 
tation plane in object space that has the same orientation as 
vector N, normal to the interpretation plane in the image 
space, but different in magnitude. Thus, 

(3) 
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where A is a scale factor, defined by A = IlNIllllnll, and R is the 
rotation matrix, 

Space Resection Using Straight Lines and Kalman Filtering 
In this section, the main steps of the recursive approach for 
the solution of the space resection problem using straight 
lines and Kalman Filtering are presented. The aim of this ap- 
proach is the reduction of the computational cost at the level 
of image segmentation. 

It is assumed that 

cosd.cos~ cosw.sin~+sino.sin4.cosx sinw.sinx-cosw.sin~cos~ 
cos+.sinx cosw.cos~-sinw.sin+.sin~ sinw.cosx+cosw.sin~.sin~ (4) 

sind sinw.cos4 cosw.cosd 1 
defined by the sequence M, (K) My (4) M, (w) of rotations. 

Using Equations 1 and 2, Equation 3 can be rewritten as 
The inner orientation parameters of the camera are stable and 
they are previously determined using a self-calibrating bun- 
dle adjustment, with convergent cameras; 
The object model is known, i.e., for each straight line in the 
object, the coordinates of its two endpoints are known in the 
object reference system, and these values are supposed to be 
free of errors; and 
At an initial time, an a priori estimate for the location and 
orientation parameters is available. In the case of space resec- 
tion, these a priori estimates are obtained using the robot 
kinematics. In the case of object location, some probable po- 
sition must be computed in the recognition step. 

where the q's are the elements of the rotation matrix R, as 
defined in Equation 4. 

In the above equations, A can be eliminated by algebraic 
manipulation. In order to avoid divisions by zero, Equation 5 
is split into two sets of equations, according to the value of 
parameter 0 (orientation of the straight line in the image): 
i.e., 

Let x, = [K, 4, w, X,, Y,, ZJ be the state vector defining 
the camera position and orientation at time t, and P, its co- 
variance matrix, and let z; = [a,bIT be the observation vector 
for the j* feature in the image. 

The sequence of steps for the proposed recursive ap- 
proach to the solution of the space resection problem is de- 
scribed below (see Figure 2): 

for 45" < 0 5 135" or 225' < 0 5 315', 

r,;n,+ r1;nY + r,;n, 
cot0 = 

r,, - n, + r,, - ny + r,, . n, (1) At the initial time (t, = 11, the a priori estimate for state 
vector k,,, and its covariance matrix PI,, are assigned to var- 
iables 2, ,,_, and P ,,,-,, respectively; 

[2) Using the predicted state vector estimate %,,,-,, a perspec- 
tive transformation is applied to the endpoints of all straight 
lines in the object model. Hidden lines of the projected ob- 
ject model must be excluded; there are several "hidden 
lines" algorithms which can be used. It seems that in less 
cornplex environments the early Roberts algorithm is appro- 
priate for this task (Rogers, 1985). The visible lines are la- 

- p  r , l . n , + r , , - n y +  r,;n, -= 
f-sin0 r,, . nx + r,, . ny + r,, . n, 

Using the relationships between the elements of the nor- 
mal vector and the parametric representation of the straight 
line in the image, Equation 6 can be rewritten as 

where the elements of the parametric equation (y = o.x + b) 
are PREDICTED ESffFItAJE d e ~ 1 " i  a = - cot 0 and b = plsin 0 

and, for 0" < 0 2 45" or 135' < 0 1225" or 315' < 0 5 360°, 

tan0 = 
r21 - nx + r,, . ny + r2, . nz 
r,, - n, + r,, . ny + r13 - n, (8) 

-P  41 ' nx + r32 ny + r33 nz -- 
f. COSO rll . n, + rl, . ny + rl, . n, 

In this case, a new parameterization for the straight line 
must be introduced: i.e., 

where I ..... I MCTWIZATION IN THE WINDOW 1 I ..... - ........ - .. - . 
a* = -tan 0 and 

From Equations 10 and 11, Equation 8 can be rewritten as 

Figure 2. Recursive procedure between feature 
extraction and filtering. 1 
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beled. Predicted values for 0 and p are computed for the Th 
line; 

(3) A search window is computed using the projected 
endpoints of the j* straight line. The corners of the search 
window are defied taking into account the covariance ma- 
trix of the predicted state estimate p,,,-, and the straight 
line length. This is done using covariance propagation and 
the collinearity equations; 

(4) From the polygon that defines the window, the limits of the 
scan lines are computed; 

(5) Edges are then detected in the search window using the So- 
be1 operators (this step is omitted if an edge image is al- 
ready available); 

(6) The observation vector zi  is obtained from the edge subi- 
mage using vectorization techniques, e.g., the Hough trans- 
form [Ballard and Brown, 19821 or 0 - p grouping [Dudani 
and Luk, 19781. Systematic errors are eliminated at this step 
using precomputed calibration parameters. If more than one 
line is detected within the search window, the predicted 
values f a  0 and p computed in Step 2 are used for the se- 
lection of the most probable one; 

(7) The Iterated Extended Kalman Filter is applied and a state 
estimate f, , , and its covariance matrix PI,, are computed 
using the observation vector z[ obtained in the previous 
step; 

(8) The filtered state parameters and their covariance matrix ob- 
tained using the jfh observation is considered as a predicted 
value for the (j+lIu' observation, and the algorithm proceeds 
on to Step 2. 

The filtered state parameters and their covariance matrix 
obtained using the j" observation are used as the predicted 
values for the ( j+ l )Lh  observation to update the perspective 
transformation from object to image space. After each itera- 
tion, the filtered state parameters obtained are better than the 
previous ones; hence, the displacement between the acquired 
image feature and the projected one is progressively reduced, 
resulting in a reduction of the search window. This proce- 
dure is repeated until all available lines have been proc- 
essed. 

If a dynamic process is considered, a prediction ji,,,,, 
and Pk+, ,, for the next time tk+, is established using the 
available estimates and the system model. In the case of ro- 
bot applications, the joint control parameters can be meas- 
ured, and the differential changes in the state are predicted 
using the Jacobian (Paul, 1981). An error estimate for this 
prediction may be computed if robot joint uncertainties are 
known. 

The IEKF Applied to the Resection Problem 
The (Iterated Extended Kalman Filtering) is a recursive 
method for state estimation, which enables an observation to 
be processed once it becomes available. This property makes 
feasible the proposed recursive strategy in which feature ex- 
traction in the image is improved by better state estimates. 

In Appendix A, a short review of the IEKF equations is 
presented. A more detailed description can be found, for ex- 
ample, in Jazwinski (1970). 

The application of the IEKF to the space resection model 
results in the following dimensions for matrices and vectors: 

where 

gk = [ K ,  t$, W ,  X,, Y ,  ZJT is the state vector at time t,, 
z, are the observations at time t,, 

is an iterator, 
K is the Kalman gain matrix, 
M is the partial derivatives matrix, and 
P is the state covariance matrix. 

The rotation matrix (Equation 4) can be subdivided into 
three row vectors: i.e., 

Using this notation, Equations 7 and 12 can be rewritten as 

where f is the camera focal length, n is the vector normal to 
the interpretation plane in the object space, and a and b (a* 
and b*) are the observations, defined as 

For the measurement model as stated in Equation 15, the 
M matrix (Equation A6, Appendix A), defined by the partial 
derivatives of the measurement model with respect to the el- 
ements of the state vector, is written as 

aF, aF, aF, aF, aF1 aFi ------ 

a~ a+ a~ ax, arc az, 
aF, aFz aFz aFz aF, a ~ ,  M =  [ I  a~ at$ a~ ax, au, az, 

where 

and x, is on element of the state vector. 
The derivatives of the rotation matrix with respect to 

state elements are 

where ci = cosi and si = sini. 
The partial derivatives of the measurement model (Equa- 

tion 15) with respect to the rotations are 
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Figure 3. Steps in the Bp grouping (Du- 
dani and Luk, 1978). I 

The partial derivatives of the measurement model (Equa- 
tion 15) with respect to the translations are 

au - av aw av 

= - - az, 
- - 

azo d F , = - f .  
az, vz ' ax, v2 

aw - av aw - av 

aYc 
- w- v - w- 

aye BF, = -f.aZc az, 
v2 ' az, v2 

where 

aw -= 
aw iiw 

(-r , , .n+r, , .m).-=[r, , .n-r , .r) ,~=(-];;m+r, .n.  
ax. a Y, a 4  

The partial derivatives for the measurement model as 
defined by Equation 14 are obtained eimilarly. 

Feature Extraction 
The feature extraction step is a key procedure in the pro- 
posed recursive approach. Once a state estimate is available 
[either an "a priori" estimate or a filtered estimate), the defi- 
nition of a search window in the image space is feasible. The 
main goal of the feature extraction process is to find a 
straight line in the image which corresponds to a straight 
line in object space, 

For the edge detection, it is assumed that spatial discon- 
tinuities result in gray-level discontinuities in the image. The 
edges in the image are detected using the Sobel operators. 
Furthermore, the gradient direction is computed from these 

operatars, but using a 5 by 5 window, in order to increase 
the precision (Kittler et a]., 1987). 

The edges can be detected in the whole image or for the 
defined search window. The elements which have a gradient 
magnitude greater than a defined threshold are considered as 
belonging to an edge. In order to connect these elements, a 
vectorization procedure is used. 

The &p grouping method (Dudani and Luk, 1978) was 
adapted for our approach because only one straight line is 
selected at a time. In this method, edge pixels are classified 
using three grouping steps, known as 8, p, and xy-grouping. 
The &grouping gathers the edge pixels that have gradient di- 
rections within a specific angular range, e.g., 8, to e,, se- 
lected based on the e distribution; the pgrouping classify the 
edge pixels of 0 groups according to their pvalues (com- 
puted for each pixel using the equation p = x.cos8 + y.sin8); 
and the xy-grouping verify discontinuities within each 8 p  
group (Figure 3) .  

There could be several lines within a window but only 
one corresponding to the selected object straight line. The 
proposed adaptation is summarized in Figure 4. A histogram 
of the 8 values is generated, scanning for the edge pixels 
over the search whdow. The peaks this histo&& are 
compared with the predicted 8 value and the nearest value ts 
chosen. A 8 group is defined by the edge pixels which have 
8 values within an interval, centered in the chosen peak of 
the histogram, and bounded by pre-defined limits, consistent 
with the precision of the gradient detection method. Then, 
the search window is scanned and a p histogram is gener- 
ated, using only the edge pixels in the selected 0 group. The 
peaks in the p histogram are analyzed to find the closest to 
the predicted p. Finally, the edge pixels which are within the 
6-p intervals are grouped. The edge image is directly used in 
the adapted 9-p procedure with no further processing. For a 
selected &p group, only the pixel with the highest gradient 
magnitude is selected in each scan line. 

The edge pixel coordinates are defined in the frame buffer 
reference system. These coordinates must be transformed 
(scaled and translated) to an approximated center of the image. 
The systematic errors are corrected using Equations 18: i.e., 

where 

Figure 4. Adapted Bp grouping. 
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Figure 5. Error analysis for a space resection using straight lines. 

x, and y, are the image coordinates of a pixel related to 
the principal point (image center); and 
c,, c,, k,, and ds are the inner orientation parameters, ob- 
tained from a previous camera calibration, where c, and 
c are the image coordinates of the principal point; k, is 
the coefficient of radial distortion (higher order coeffi- 
cients and decentering distortion are neglected]; and d, 
is the scale factor in x. 
A least-squares adjustment is used to fit a straight line to 

the selected set of image edge points with subpixel precision. 
As observed earlier for the mathematical model, two sets of 
equations must be defined and used according to the 0 value. 
These equations are derived from the least-squares solution, 
considering the pixel x (or y] coordinate bee of errors. 

For 45" < 6 2 135' or 225" 6 I 315", 

The variances obtained from Equations 20 and 22 are 
measurements of precision, indicating only the scattering in 
the line fitting. However, in addition to the scattering in the 
line fitting, errors in the inner orientation parameters (mainly 
in the principal point) must be taken into account in the 
computation of covariance matrix R. This can be done by co- 
variance propagation techniques, as discussed next. 

Suppose that the a and b parameters are computed as a 
function of two point's coordinates (x,, yl) and (x,, y,). Then 

If coordinates (x,, y,) and (x,, y,) are affected by system- 
atic errors, then Equation 23 can be rewritten as Equations 
24 and 25: i.e., 

1 
a = G . ( ~ . Z x , . y ,  - E x , - E y i ~  (19) a' = (y2 - CY - (Y, - cY)) 

I (XZ - c, + (XZ - 3 d, x, + c, - (x, - 3 d,l (24) 
b = - . ( - C . x , . ~ ~ ; ~ + ~ x : - C . ~ , )  det - -- a 

where N is the number of pixels and det = (N . I x: - 
(1 + d,) 

z x, . z x,). The a and b variances are given by b ' =  b + a . c , -  c, 

Lz and a' -2 a; = - 
det b -  det (20) With these corrections, parameters a' and b' are ob- 

tained. The effect of an error in the radial lens distortion (k,) 
F~~ 00 < 0 I 4 5 ~  or 1350 < 0 I 2250 or 31S0 < 0 I 3600, was neglected due to the small magnitude of this error. 

Similarly, for 0" < 0 5 45" or 135' < 6 I 225' or 315" < 0 
1 

a* = - . (N*zx ;y ,  - zy;zx,) 2 360°, 
det* (21) 
1 a* = (x, - XI) 

b*=- .  
,* = (x1 . Y, - Yl ' xz) 

( - z y , - z x ; y , + x y : . ~ x , )  (V, - ~ 1 )  Iv, - Y11 
(26) 

det * 

where det* = (N z y; - z y, - y,). Similarly, a* and b* 
variances are given by 

N 
0:- = - C Y," and a;. = - 

det det (22) 

In order to avoid gross errors, the residuals are com- 
puted and verified after line fitting, eliminating the pixel 
with the largest residual, and then performing a new line fit- 
ting. This process is repeated until a predefined number of 
points remains in the set and the residuals are larger than a 
defined threshold. If large residuals still remain for the de- 
fined minimum number of points, a straight line error vecto- 
rization is assumed. 

a*' = a* - (1 + d,) 

b*' = (b* - c, + a* . cv) (1 + d,) 

As the parameters a and b (or a* and b*) are computed 
using line fitting, the following equations, derived by the co- 
variance propagation method, must be used to determine the 
variances of the a' and b' parameters: 

1 az 
a;, = - a; + - c r i  

(1 + d,)' (1 + ds)4 

ag. = c; . cr: + a; + aZ a& + a:, 
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and, for a*' and b*', 

+ u&) + (b* - c, + a* cY) ~2~ (32) 

Equations 29 to 32 enable the computation of the accu- 
racy of the straight line fitting in the image, considering both 
the scattering of the edge pixels and the effects of the errors 
in the inner orientation parameters (except k,). 

Results 
In this section, results obtained with the proposed recursive 
procedure using simulated and real data are presented and 
discussed. 

Procedures for Simulated Data Generation 
The inner orientation parameters of the camera were as- 
sumed known. It also was assumed that neither the robot nor 
the object move during image acquisition. The following par- 
ameters for the simulated camera were used: 15-mm focal 
length, 5- by 4-mmz imaging area, and 10- by 1 0 - p 2  pixel 
size. 

For the established exterior camera parameters (position 
and orientation), the image coordinates corresponding to ob- 
ject points (corners) were computed using the collinearity 
equations. Random errors with a standard deviation of 3 pm 
were introduced in the image. This error of 3 pm is equiva- 
lent to one-third of the pixel size; this precision for the im- 
age coordinates was assumed because straight lines can be 
extracted with subpixel precision (Liu and Huang, 1991). 

The straight line parameters (a-b or a*-b*) were Enally 
computed from pairs of points corresponding to the object 
edges using Equations 23 and 26. 

The variances of the straight line parameters in the im- 
age (a-b or a*-b*) were obtained using covariance propaga- 
tion. Supposing that u: = u; and neglecting correlations, the 
variances of the a and b parameters can be written as 

Similar considerations are used for the a*-b* representa- 
tion: i.e., 

Results Obtained from Simulated Data 
Extensive simulations were carried out in order to verify the 
behavior of the proposed model, and the results for a typical 
situation are described here. 

The object reference system was supposed to be coinci- 
dent with the global reference system. A wireframe cube of 
70-mm edge size, 1108 mm away from the origin of the 
camera reference system, was considered, and simulated data 
for this configuration was generated as described above. The 
12 lines corresponding to the edges of the cube were used 
(no hidden lines), and estimates for the camera state vector 
were obtained sequentially. 

Figures 5a and 5b show the true errors and estimated 
standard deviations for the rotation and translation pararne- 
ters, respectively, for each line processed. The true error (E,) 
is defined as the difference between the estimated and the 
true parameter values, and the standard deviation (a,) is de- 
fined as the square root of the estimated variance. 

For this configuration, 50 experiments were conducted 

and the mean-square values for the true error (L) and esti- 
mated standard deviation (urn) were computed using the last 
iteration values for each experiment. The results obtained are 
presented in Table 1. 

The following conclusions can be derived from the anal- 
ysis of the graphics of Figure 5 and the data in Table 1: 

The filter has a strong convergence over the 12 lines. In fact, 
for the example considered, when the ninth feature was in- 
troduced, the filter had already converged to the final values; 
Only four lines are sufficient to obtain a good estimate; 
Parameters k and X, converge before the others; 
A high accuracy estimation is reached with this approach; for 
the example considered, rotational and translational standard 
deviations were smaller than 6 minutes and 1.6 mm, respec- 
tively; and 
The estimated standard deviations are consistent with the 
computed mean-square errors. 

Simulations were also carried out for particular situa- 
tions, such as concentration of observed lines in the corners 
of the image, deficient configurations of straight lines, outli- 
ers in the observations due to wrong correspondence, errors 
in the inner orientation parameters, and different focal 
lengths. 

Adeauate resuonses were obtained for these situations, . . 

showing h a t  the iroposed solution can be applied for most 
of them. These results are omitted due to lack of space. 

Results Obtained with Real Data 
Experiments with real data using a partially controlled envi- 
ronment were performed in order to verify the accuracy po- 
tential of the proposed method. 

Images were collected using a Kentec-CcD camera, with 
15-mm nominal focal length and grabbed by an AT-Vista 
board, installed in an AT-386 computer. Although the images 
were grabbed with 512 by 400 by 8 bits, only the 200 even 
lines were used in order to speed up the whole process. 

The inner orientation parameters were obtained using a 
self-calibrating bundle adjustment, with the six convergent 
images taken from a set of 20 circular targets and with the 
principal point related to the approximated center of the 
frame buffer (256, 200). The values of the calibrated inner 
orientation parameters and their standard deviations are pre- 
sented in ~ i b l e  2. 

The edee imaees were obtained off-line using the Sobel 
operators G d  cogputing the gradient direction &th a 5 by 5 
window; the edge image was stored in the memory when the 
recursive procedure was performed. Values for the scattering 
in the line fitting procedure were considered in the range 10 
pm to 1 pm, depending on the quality of the image. The var- 
iance considered for the observations also takes into account 
the errors in the inner orientation parameters. 

In a typical experiment the camera was installed on a 
tripod, observing a cube of 70 mm. During image acquisition, 
the camera and the object were motionless. A priori esti- 
mates for the external orientation parameters were approxi- 
mately measured in the experimental set (predicted values). 
The original picture and the edge image for a cube 1.12 m 

TABLE 1. RESULTS OBTAINED FROM THE SIMULATION OF THE WIREFRAME CUBE 

TNR Predicted Predicted 
Value Estimate Variance EMn Urn 

- 

K 2.8 rad 2.72 [0.086)2 -0.00195 0.00152 
@ 0.5rad 0.56 (0.086)2 -0.00130 0.00154 
w -1.17 rad -1.10 (0.086)' 0.00185 0.00161 
X, 540. mm 548. [10.0)2 1.460 1.533 
Y, 880. mm 872. [10.0)2 1.087 1.505 
Z, 400, nun 410. [lO.O)Z 1.675 1.486 
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TABLE 2. INNER ORlENTATl0N PARAMETERS OF THE CCD CAMERA. 

Focal 
Radial x Scale Length 

Parameter c, (mm) c, (mm) Distortion Factor (m&) 

Value -0.1478 0.0487 0.000323 0.06847 16.3896 
ur 0.0165 0.0191 0.000031 0.00021 0.0633 

away from the camera are presented in Figures 6a and 6b, re- 
spectively. The results obtained are presented in Table 3. 

Conclusions 
A recursive approach based on straight line correspondences 
and on state estimation using Kalman Filtering has been pre- 
sented for the solution of the sDace resection ~roblem. 

The proposed approach wis tested using iynthetic and 
real data, and the results obtained codrm its effectiveness. 

The most important contributions of the proposed ap- 
proach are the adoption of an explicit mathematical model 
using straight lines for the space resection solution; the use 
of iterative filtering, allowing the progressive improvement of 
the exterior camera parameter estimation; and progressive re- 
duction of the feature searching space in the image, thus re- 
ducing the computational effort at the image processing level 
and making feasible many applications in the area of robot 
vision. The obtained accuracy and the processing time show 
the applicability of the proposed approach in several differ- 
ent tasks related to machine vision and photogrammetry. 
Further improvements can be obtained using more accurate 
inner orientation parameters and using more stable and 
higher resolution CCD cameras. More effective edge detection 
and vectorization techniques must be studied and applied to 
this approach. 

In the revorted ex~eriments, both the camera and the ob- 
ject were stat&. other methods of sequential estimation 
could be applied with some advantages over Kahan Filter- 
ing and with the same concept of gradual reduction in image 
space for feature extraction. However, the original recursive 
method was proposed to be applied with dynamic problems 
such as moving objects or robot wrist location; in these 
cases, Kalman Filtering seems to be suitable. 

The presented mathematical model can also be em- 
ployed in s~ feature reconstruction by computing the inter- 
section of the interpretation planes generated from two (or 
more) distinct views. 

Reduction of the Feature Searching Space 
For the configuration described above, the computing time 
for each step in the procedure has been determined. Table 4 
presents these results for the nine visible edges of the cube. 
The edges were sorted on the table from left to right accord- 
ing to the sequence in which they were detected in the itera- 
tive processing. An AT-386 computer was used for all the 
calculations. It is worth noting the reduction in the vectori- 
zation time once each new observation was processed, 
whereas the computation time of the other steps, mainly the 
estimation step, did not change significantly. A picture where 
showing the progressive reduction of the feature searching 
window for this configuration is presented in Figure 7. Xk 

m 

(b) 

(a) 

Figure 6. (a) Picture of a cube 1.12 m away 
from the camera. (b) Edges of the cube using 
Sobel operators. 

is the n-vector state at tk; 
is an n-vector state transition function; 
is an (n by r) matrix; 
is an r-vector, called state transition noise 
(wk - N(O,Qk)); and 
is an (n by r) matrix of state transition. 

Let zk be the observation vector: i.e., 

where 
Zk 

nk 
are the observations at tk; and 
is the vector of measurement noise, nk - 
N(0,Rk). 

Equation (A3) describes the measurement model. 
The Kalman filter as originally proposed deals with lin- 

ear models only. In order to use its approach to a non-linear 
discrete model, the equations must be extended by Taylor 
linearization. In the next steps, the equations for the IEKF (It- 
erated Extended Kalman Filtering) are presented without fur- 
ther development. 

The IEKF is based on an iterator which is analyzed for 
each iteration to verify the filter convergence. This iterator is 
given by 

where (2, - h[q,, tk) - M,,, (2,,,-,-q,)) are the predicted re- 
siduals; and Kk,, is the Kalman gain matrix at tk using esti- 
mates for the state vector given by q,. Kalman gain is 
expressed by 

TABLE 3. PREDICTED AND FINAL FILTERED VALUES OBTA~NED USING THE IEKF. 
FOR A CUBE 1.12 M AWAY FROM THE CAMERA. 

Predicted Values Filtered Values 

Appendix A Predicted Standard Filtered Standard 
State Deviation State Deviation 

Iterated Extended Kalman Filter (IEKF) K 2.6070 0.0523 2.577852 0.0015 
Let Equation A1 be the description of a discrete dynamic sto- cp rad 0.4870 0.0523 0.469064 0.0013 
chastic system: i.e., w -0.6280 0.0523 -0.644857 0.0020 

xc 528.00 10.00 523.18 1.45 
x k + ~  = 4 (~k ,  f k + ~ t  tX) + ( ~ k r  tk) W k + ~  (A11 Yc mln 628.00 10.00 621.10 1.68 

2, 785.00 10.00 789.19 1.72 For a linear system, 
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TABLE 4. COMPUTATION TIME, IN SECONDS, FOR EACH STEP OF THE RECURSIVE PROCEDURE, AND SEARCH WINDOW AREA, GIVEN IN PIXUS, FOR EACH STRAIGHT LINE. 

Line 67 74 45 56 52 23 36 41 12 
Step 

Hidden Lines 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.05 
Scan Lines 0.11 0.11 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
Vectorization 6.31 3.46 1.37 1.43 0.88 0.60 0.55 0.77 0.83 
Filtering 0.22 0.22 0.22 0.22 0.28 0.16 0.22 0.1 7 0.22 
Total Time 6.69 3.85 1.70 1.76 1.27 0.86 0.87 1.05 1.15 
Window Area 28520 1876 3545 2946 1326 1002 71 3 581 552 

Bmmm 
Figure 7. Search window reduction by feedback of the es- 
timation step. 
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