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Abstract

The three-dimensional conformal coordinate transformation
has many applications. In terrestrial photogrammetry it can
be used to transform arbitrary stereomodel coordinates to ob-
ject space systems. Determination of initial approximations
in such situations is typically not as straightforward as in the
aerial case. A method is presenled which allows a direct so-
lution of initial approximations given any arbitrary angular
orientation and three-dimensional conlrol,

Introduction

The three-dimensional conformal (seven-parameter) transfor-
malion is commonly used when transforming coordinates
from a stereomodel into an object space system, or to link
adjacent stereomodels to form a strip. It uses seven parame-
ters: scale; three rotations (omega, phi, and kappa); and
translations in x, y, and z. When dealing with nominally ver-
tical photography, determination of initial approximations
for the non-linear, iterative solution is straightforward be-
cause the values of omega and phi can be assumed lo be
zero (Moffitt and Mikhail, 1980). However, in close-range
phologrammelry, the values of the three rotation angles can
take on any value, and assumption of zero values generally
leads to a divergent solution. To overcome this difficulty, a
method has been devised which enables accurate determina-
tion of initial approximations for all parameters, thus ensur-
ing convergence of the iterative solution.

Three-Dimensional Rotations

The angular attitude of three-dimensional Cartesian coordi-
nale axes in one system relative to another can be specified
by three independent parameters. Two common sets of para-
melers are lill, swing, azimuth and omega, phi, kappa. A dis-
cussion and derivation of the equations for these parameters
can be found in Wolf (1983). From either of these two sys-
tems, a three-dimensional rotation matrix can be derived.
The rotation matrix format is given in Equation 1: i.e.,

My, My, My,
M = | m,, m,, m,, (1)
Ty My, Mg

The definitions of the elements of the rotation matrix in
terms of tilt (1), swing (s), azimuth (@) and omega (w), phi (¢),

kappa («) are given in Equations 2 and 3, respectively: i.e.,
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i, = — cos(a) cos(s) — sin(e) cos(f) sin(s)

m,, = sin(&) cos(s) — cos(a) cos(t) sin(s)

m,, = — sin({) sin(s)

m,, = cos(a) sin(s) — sin(a) cos(l) cos(s)

m,, = — sin(a) sin(s) — cos(a) cos(t) cos(s) (2)
m.,, = — sin(t) cos(s)

m,, = — sin(a) sin(t)

m,., = — cos(a) sin(f)

m,, = cos(f)

m,, = cos(g) cos(k)
m,, = sin(w) sinlg) coslk) + cos(w) sin(x)

m,, = — cos(w) sin(g) cos(k) + sin(w) sin(k)
m,, = — vos(¢) sin(x)
m,, = — sinfw) sin(g) sin(x) + coslw) cos(«) (3)

m,, = cos(w) sin(e) sin(k) + sin(w) cos(x)
m,, = sin(e)

m,, = — sin(w) cos(¢)

M,, = cos(w) cos(e¢)

For vertical aerial photography, the values of tilt or
omega and phi are nominally zero. However, [or close-range
applications, the camera axis can be pointed upward from
the horizon, causing one or more ol these angles to be
greater than 90 degrees. In order to analyze rotations involv-
ing such large values, numerical ranges encompassing each
of these angular parameters must first be defined. Convenient
ranges of values for these paramelers are as follows:

tilt: (0° to 180°) omega: (—180° to 180°)
swing: (—180° Lo 180°) phi: (—90° to 90°)
azimuth: (—180° to 180°) kappa: (—180° to 180°)

These ranges are chosen to fulfill two purposes. First, they
enable all possible angular orientations between two sets of
three-dimensional coordinate axes to be uniquely defined,
thus circumventing the duality problem discussed by Shih
(1990). Second, they enable a straightforward conversion be-
tween Lhe tilt, swing, azimuth system and the omega, phi,
kappa system. Note that the ranges shown for swing, azi-
muth, and kappa are not the typical 0° to 360°, This is done
for convenience within the program,

With the above range definitions, converting between the two
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Figure 1. Vector N, normal to plane 1-2-3.

syslems is elementary. It does require the use of an inverse
tangent function which computes the full-circle range from
—180° to 180° such as the “atan2” function in FORTRAN or
C. To convert from either system to the other, first the rota-
lion matrix (or at least the necessary terms within it) is
formed from the angles in the given system. Then, if the an-
gles of tilt, swing, and azimuth are required, they can be
computed by Equations 4, 5, and 6: i.e.,

tilt = cos™! (im,,) (4)
swing = lan ' (—m,,/—m,,) (5)
azimuth = tan' (-=m,,/—m,,) (6)

Alternatively, given a rotation matrix, the values for
omega, phi, and kappa can be computed hy Equations 7, 8,
and 9: i.e.,

omega = tan' (—m,,/m,, (7)
phi = gin ! (m,,) (8)
kappa = tan' (=m,,/m,,) (9)

The full-circle inverse tangent function (i.e., atan2) must
be used with the indicated numerators and denominators,
complete with leading minus signs where indicated, in order
to obtain the proper quadrant. Other difficulties which could
arise are determination of swing and azimuth when tilt is
zero and determination of omega and kappa when phi is 90
degrees. In these cases, both the numerator and denominator
are zero in Equations 5, 6, 7, and 9, giving undefined resul(s
from the inverse tangent function. Under these circum-
stances, Equations 10 and 11 or 12 and 13 can be applied:
ie.,

If tilt =0
azimuth = 07 (10)
swing = tan! (—m,,/—m,,) (11)
It phi = 90
omega = 0° (12)
kappa = tan™' (m,,/m,,) (13)

Given the above treatment ol the situation where tilt is zero,
the usual problem of swing and azimuth being undefined is
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avoided, Visualization of what these angles mean can be dif-
ficult; however, mathematically it all works out.

Vectors and Planes

Part of the procedure for computing initial approximations
for the rotations involves determination of the normal vector
to a plane. The fundamentals are briefly presented here.
Given three points (1, 2, and 3) in three-dimensional space, a
vector (see Iigure 1) which is normal to the plane defined by
these points can be computed by use of the cross-product
given in Equation 14. This cross-product can be computed
using determinants (Thomas and Finney, 1982), as illustrated
by liquation 15: i.e.,

N-P,xP, (14)
i j k
N= [X%—X VW 2% (15)
57X VW 272

Thus, Equation 16 shows the form of the normal vector,
in terms ol unil veclors: 1, j, k: i.e.,

N=uai+bj+ck (16)

where

a= [J’z_YJ[z-.‘_ZJ = {}rﬂ—}":]{zz‘z1]
b = {X:,_XIJ{Zz"Z!] = {xz_x|]lza_z1]
G== [xz_'x:J{.V:i_'_Vl] = [Xn_x1}[_3’z_y'1]

In developing a procedure for determining the angular
relationship between the two systems, it was decided to ex-
press the attitude of the normal vector (as if it was pointing
along the negative z axis) in terms of tilt and azimuth. Figure
2 shows the normal vector placed at the origin for the pur-
pose of determining these two angular parameters. Tilt is de-
lermined by calculaling the elevation angle above the x-y
plane and adding 90° to the result. From Figure 2, the ex-
pression [or tilt, given in Equation 17, was obtained. The azi-
muth of the normal vector is equal to the azimuth of the
projection of N onto the x-y plane, and is given in Equation
18: i.e.,

Figure 2. Normal vector, N, at origin.
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i ke c o
tilt = tan (t\fa‘d = b‘) + 90 (17)
. = a
azimuth = tan ! (b) (18)

where a, b, and ¢ are the coefficients of i, j, and k, respec-
tively.

In Equation 18, it is again necessary to employ the full-
circle inverse tangent function (i.e., atan2) in order to obtain
the proper quadrant.

Three-Dimensional Conformal Coordinate Transformation
A description and derivation of the three-dimensional con-
formal coordinate transformation can be found in Wolf
(1983). Only a summary of the equations involved is pre-
sented here.

The seven unknown parameters for this transformation
are

s - scule factor;

®, ¢, K - rotations about the x, y, z axes, respec-
tively; and

T, T, T, - translations of the origin in the x. y. z di-
rections,

The form of the transformation is given in Equations 19,
20, and 21: i.e.,

Xr: = Sh[mlan F; m:“}r’“ = m:il'zu] E: Tx [lg]
Y. = s(m.X, + m,Y, + m,,Z,) + T_.- (20)
‘Zc = 'I"'[m\:JXﬂ f szYﬁ + HTS:‘Z‘,} T T‘z [21]

In these equations, the m values are elements of the rota-
tion matrix, previously specified as functions of @, ¢, and «
(Equation 3). X, Y., Z, and X, Y,, Z, are coordinales of a
point in the control and arbitrary systems, respectively. The
equations are non-linear in terms of s, w, ¢, and «, requiring
an iterative least-squares solution.

In order for the least-squares solution to be achieved, it
is necessary for coordinates of common points to be
“known’ (or measured) in bath systems. These comman
points may consist of various combinations of horizontal and
vertical control. In a practical case, all three coordinates (x,
y, and z) will have been determined in the arbitrary (model)
system for each common point. The procedure for determin-
ing initial approximations (to be described next) requires that
full three-dimensional coordinates be known for at least
three points in both systems. It is recognized that this con-
straint (not allowing separate horizontal and vertical control)
is a limitation of the method. However, when this method is
used in conjunction with close-range applications, this con-
straint can be minimized by determining three-dimensional
coordinates of the exposure stations and using them as two
of the required control points. This leaves only one addi-
tional three-dimensional control point which must be estab-
lished in object space. If additional common points are
available, various combinations of three points could be
used, and the results averaged. This would lead to a more re-
fined set of values and, perhaps more importantly, indicate
the presence of blunders in the observations.

Initial Approximation for Scale

Computalion of the scale [aclor is straightforward. Select a
representative pair of points and calculate a ratio of com-
puted lengths of the line in the two systems. In the usual
sense of the transformation (from arbitrary to control coordi-
nates), this scale factor can be calculated by Equation 22: i.e.,
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distance in the control system
distance in the arbitrary system

scale = (22)
Assuming there are no blunders and the representative line
is sufficiently long, an accurate approximation for the scale
factor can be determined this way.

Rotations of Omega, Phi, and Kappa

Determination of accurate approximations for the three angu-
lar rotations is the crux of the method. This process shall be
presented in a sequence of seven steps.

(1) Select the Three Geometrically Strongest Points

In order to obtain sufficient geometric strength, three points
having a widely distributed base must be selected. This is
done to reduce the likelihood of chonsing three points which
are nearly collinear. An analogy can be found in linking ster-
eomodels during strip formation in semi-analytical aerotrian-
gulation, where the projection centers are used as common
points in order to provide additional geometric strength. The
choice of three points will be based on the points which
form a triangle having the largest altitude, where altitude is
defined as the perpendicular distance from the longest side,
to the point not on that side. This determination can be
made in either the control or arbitrary system if no blunders
exist. Figure 3 illustrates how this altitude is defined. In this
figure the longest side is labeled (a) and, because the speci-
fied altitude is perpendicular to this side, it must be internal
to the triangle. A formula for the square of the altitude is
given by Equation 23: i.e.,

at + b* — c!):

hz:bz_( 2-a

(23)

If more than three control points are available, the value
of h* is computed for all combinations of three points and
the set giving the largest is chosen.

(2) Compute the Normal Vectors at a Common Point in both Systems
Computation of the normal vectors requires the application
of Equation 16 at the common point in both systems. This
will result in two sets of a, b, and ¢ coefficients. One set is
based on the arbitrary coordinates and the other is based on
the contral coordinates.

(3) Determine Tilt and Azimuth for the Normal in each System
Tilt and azimuth of the normal vector in both systems are
based on Equations 17 and 18.

(4) Perform an Initial Rotation of Points in both Systems Using Corresponding
Values of Tilt and Azimuth

This rotation will cause the plane defined by the three points
to be parallel to the x-y plane in both systems. It is accom-
plished by compuling a rolation matrix for each system,
based on their respective values for tilt and azimuth, with

] c

Figure 3. Altitude from longest side.
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swing set equal to 0° (see Equation 2). Then this rotation ma-
trix is applied to two of the three points in each system, re-
sulting in transformed points having equal z coordinates.
This is accomplished as illustrated by Equations 24, 25, and
26: i.e.,

X = muX + myy + g,z (24)
y’ = nl?lx + n"‘!ﬂ_y + m?.i‘z [25}
Z = MyuX + Mg,y + My2 (26)

These equalions are applied a total of four times, once
for each of the two points in the control system and once for
each of the same two points in the arbitrary system. For the
first two applications, the rotation matrix for the control sys-
tem is used along with x,y,z control coordinates for the two
points. For the last two applications, the rotation matrix for
the arbitrary system is used along with corresponding x,y,z
arbitrary coordinates.

The resulting prime coordinates define horizontal lines
in both systems and require application of a swing value to a
line in one system to give it the same direction as the line in
the other system. Equation 26 is shown for clarity; however,
it is unnecessary to compute the z' coordinates because they
are not used in subsequent calculations,

(5) Determine Swing by Difference in Azimuths for the Common Line

Using the transformed coordinates of the two points as deter-
mined in Step 4, compute the azimuth of the connecting line
in each system. The swing required to align the arbitrary sys-
tem with the control system is then computed by Equation
27! L.e.,

swing = azimuth(control) — azimuth(aribtrary)  (27)
(6) Combine the Two Tilts, Two Azimuths, and One Swing Into One Overall
Rotation Matrix

Rotation matrix M, is formed using tilt and azimuth of the
normal vector in the arhitrary system, in conjunction with
the swing value determined in Step 5. Rotalion maltrix M, is
formed using only the tilt and azimuth of the normal vector
in the control system (i.e., M, remains as calculated in Step
4), Equation 28 shows how a point’s coordinates in the two
systems can subsequently be related: i.e.,

Xu X.-
M, - [y] =M, [V]
Z Z.

0 '«

(28)

The “equals” sign in this equation is not technically ap-
propriate. Its meaning in this context is “corresponds to” or
“is in a similar location as.”

The rotation matrices are then combined into a single ro-
lalion malrix M, as shown in Equation 29, where the
“equals’’ signs have the same meaning as in Equation 28:

i.e.,
X: X, X
[}IH] ) Mllll . ME - [yr] B M . [y{]
z Z Z,

a

(29)

(7) From Rotation Matrix M, Compute Values for Omega, Phi, and Kappa
This is accomplished by applying Equations 7, 8, and 9 or
possibly 12 and 13.

Translations in X, Y, and Z

Because the transformation equations are linear in terms of
T,, T, and T,, initial approximations are not required. How-
ever, if their values were desired, Equations 19, 20, and 21
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Taste 1. Dara ror ExampLE TRANSFORMATION.
X-control  Y-control Z-control x-arb  y-arb z-arb
Point (m) (m) (m) (mm) (mm) (mm)
1 730412.363 83091.394 141.244 51.15 -—23.62 —=71.58
2 730576.273 83155.275 146.276 3.30 22.81 —42.89
3 730409 480 83277.516 143536 2044 20,50 —126.39
4 730604.274 83109.509 150.266 3.47 16,11 21.70

could be rearranged so that the translation terms are isolated
on one side of the equation. Computation of the translations
can then be performed using a common point.

Example

To illustrate the method, the following example is given. Ta-
ble 1 lists the coordinates of the common points in both sys-
lems.

Scale

The longest line from the given set of four points is line 3-4.
Alter this has been determined, the scale computation in-
volves the application of Equation 22 as illustrated below:

_ length of 3-4 (control) _ 257.325 _
length of 3-4 (arbitrary)  106.147

scale 2.4242

Rotations

(1) Using every combination of three points from the total of
four, lengths of the sides of a triangle are computed, along
with the altitude. Table 2 summarizes these computations for
each of the four combinations. The columns headed SIDE a,
SIDE b, and SIDE ¢ show the lengths of the three sides of the
triangle being considered, with SIDE a being selected as the
longest. Column h gives the computed altitude for the trian-
gle. Note that points 1, 2, and 3 gave the strongest triangle
(largest h, marked by *) and are therefore used for the rota-
tion calculations.

(2) Computation of the normal vectors in both systems
results from application of Equation 16 to the two sels of co-
ordinates for points 1, 2, and 3. Table 3 shows a summary of
the computation for both normal vectors at point 1. The col-
umns COEFF a, COEFF b, and COEFF ¢ show the computed
normal vector coefficients.

(3) Application of Equations 17 and 18 to the coefficients
from Table 3 yields the listed tilt and azimuth values.

(4) Using the tilt and azimuth values from Table 3, the
following rotation matrices were calculated:

Arbitrary rotation matrix:

0.096605956 0.088825453 —0.991351264

[0.57684 1792 —0.736128514 0.000000000]
0.131235178

0.729761933  0.670987965

Control rotation matrix;

—0.896264753 —0.442589809 —0.028701105

0.442772214 —0.896634132 0.000000000
=M,
0.012708052 —0.999588038

0.025734390

TABLE 2. SUMMARY OF TRIANGLE COMPUTATION,

Points SIDE a SIDE b SIDE ¢ h

1 2 3 206.810  186.158 175,990 148.465*
1 Z2 4 192,975 53.801 175.990 48.281
1 3 4 257.325 192.975 186.158 139.168
2 3 4 257.325 53.801 206.810 16.582
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TABLE 3. SUMMARY OF NORMAL VECTOR COMPUTATION.
SYSTEM  COEFF a COEFF b
d.lbmdn\f —34810.6311 —3503.7284

COEFF ¢ Tilt Azimuth

—685.276 B82.4580° -

132.5873°

control ~-790.1507 —390.1890 30691.426 178.3553" —116.2809°
Tagie 4. RoTaTED COORDINATES.

SYSTEM X ¥ . 3 Vs

Arbitrary h2,00781 73.80426 -14.55751 44.86396

Control 248903.72 —691422.31 248919.02 —691597.64

These rotation matrices are then applied, using Equations 24
and 25, to the corresponding coordinates of points 1 and 2
(from Table 1) to give the values listed in Table 4.

(5) Using coordinates of the endpoints of line 1-2 listed
in Table 4, the following azimuths are computed:

—113.4977°
175.0136°

azimuth(arbitrary) =
azimuth(control) =

Equation 27 is then applied to these azimuth values to yield
the following value for swing:
swing = 288.5113°

(6) Using the value for swing computed in Step 5 and
the values for tilt and azimuth in the arbitrary system (from
Table 3) computed in Step 3, the following rotation matrix,
M,, is computed:

Arbitrary rotation matrix with swing:

0.672494198 —0.669840397 —0.314746560

0.123284530 —0.317944953 0.940059536
M
0.729761933

0.670987965 0.131235178

When matrices M," and M, are multiplied, the following
rolalion malrix, M, is compuled:
Overall rotation matrix:

0.476844613 0.590071780 —0.651486385
0.701705747 —0.701918103 —0.122147540

[-0.529365903 —0.398906344 —0.748?62625]
M =

(7) Using Equations 7, 8, and 9 results in the following
values for omega, phi, and kappa:

w = 99.8717°
¢ = 44.5640°
Kk = —137.9880°

Using these initial approximations, a three-dimensional con-
formal coordinate transformation was performed, giving the
following set of corrections for the first iteration:

As = 0.0002
Aw = 0.0021°
A¢ = 0.0063°
Ak = —0.0027°

Conclusions

The foregoing method of computing initial approximations
for a three-dimensional conformal coordinate transformation
has been extensively tested and found to be successful in all
cases, under the assumptions of no blunders and strictly
three-dimensional control points. It is particularly useful in
close-range photogrammetric applications where the unusual
rotations can be difficult to predict or visualize.
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