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Abstract 
The three-dimensional conformal coordinate transformation 
has many applications. In terrestrial photogrammetry it  can 
be used to transform arbitrary stereomodel coordinates to ob- 
ject space systems. Determination of initial approximations 
in such situations is typically not as straightforward as in the 
aerial case. A method is presented which allows a direct so- 
lution of initial approximations given any arbitrary angular 
orientation and three-dimensional control. 

Introduction 
The three-dimensional conformal (seven-parameter) transfor- 
mation is commonly used when transforming coordinates 
from a stereomodel into an object space system, or to link 
adjacent stereomodels to form a strip. It uses seven parame- 
ters: scale; three rotations (omega, phi, and kappa); and 
translations in x, y, and z. When dealing with nominally ver- 
tical photography, determination of initial approximations 
for the non-linear, iterative solution is straightforward be- 
cause the values of omega and phi can be assumed to be 
zero (Moffitt and Mikhail, 1980). However, in close-range 
photogrammetry, the values of the three rotation angles can 
take on any value, and assumption of zero values generally 
leads to a divergent solution. To overcome this difficulty, a 
method has been devised which enables accurate determina- 
tion of initial approximations for all parameters, thus ensur- 
ing convergence of the iterative solution. 

ThrebDimensional Rotations 
The angular attitude of three-dimensional Cartesian coordi- 
nate axes in one system relative to another can be speczed 
by three independent parameters. Two common sets of para- 
meters are tilt, swing, azimuth and omega, phi, kappa. A dis- 
cussion and derivation of the equations for these parameters 
can be found in Wolf (1983). From either of these two sys- 
tems, a three-dimensional rotation matrix can be derived. 
The rotation matrix format is given in Equation 1: i.e., 

The definitions of the elements of the rotation matrix in 
terms of tilt It), swing Is), azimuth (a) and omega (4, phi (Q), 
kappa (K) are given in Equations 2 and 3, respectively: i.e., 
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m,, = - cos(a) cos(s) - sin(a] cos(t) sin(s) 
m,, = sin(a) cos(s) - cos(a) cos(t) sin(s) 
m,, = - sin(t) sin(s) 
m,, = cos[a) sin(s) - sin(a) cos(t) cos(s) 
m,, = - sin(a) sin(s) - coda) cos(t) cos(s) 
m,, = - sin(t) cos(s) 
m,, = - sin(a) sin@) 
m,, = - cos(a) sin(t) 
ms3 = cos(t) 
m,, = cos(q) COS(K) 

mi, = sin(@) sin(q) COS(K) + COS(O)  sin(^) 
m,, = - cos(w) sin[q) COS(K) + sin(@)  sin(^) 
m,, = - c o s ( ~ ]   sin(^) 
m, = - sin(o) sin(cp)  sin[^) + cos(o) COS(K) (3) 
m,, = cos(w) sin(cp)  sin(^) + sin(w) COS(K) 
m,, = sin(cp) 
m,, = - sin(@) COS(Q) 

M,, = cos(0) cos(cp) 

For vertical aerial photography, the values of tilt or 
omega and phi are nominally zero. However, for close-range 
applications, the camera axis can be pointed upward from 
the horizon, causing one or more of these angles to be 
greater than 90 degrees. In order to analyze rotations involv- 
ing such large values, numerical ranges encompassing each 
of these angular parameters must first be defined. Convenient 
ranges of values for these parameters are as follows: 

tilt: (0' to 180') omega: (-180" to 180") 
swing: (-180" to 180°) phi: (-90" to 90') 
azimuth. (-180" to 180') kappa: (-180" to 180') 

These ranges are chosen to fulfill two purposes. First, they 
enable allpossible angular orientations between two sets of 
three-dimensional coordinate axes to be uniquely defined, 
thus circumventing the duality problem discussed by Shih 
(1990). Second, they enable a straightforward conversion be- 
tween the tilt, swing, azimuth system and the omega, phi, 
kappa system. Note that the ranges shown for swing, azi- 
muth, and kappa are not the typical 0" to 360'. This is done 
for convenience within the program. 
With the above range definitions, converting between the two 
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Figure 1. Vector N, normal to plane 1-2-3. 

avoided. Visualization of what these angles mean can be dif- 
ficult; however, mathematically it all works out. 

Vectors and Planes 
Part of the procedure for computing initial approximations 
for the rotations involves determination of the normal vector 
to a plane. The fundamentals are briefly presented here. 
Given three points (1, 2 ,  and 3) in three-dimensional space, a 
vector (see Figure 1) which is normal to the plane defined by 
these points can be computed by use of the cross-product 
given in Equation 14. This cross-product can be computed 
using determinants (Thomas and Finney, 1982), as illustrated 
by Equation 15: i.e., 

systems is elementary. It does require the use of an inverse 
tangent function which computes the full-circle range from Thus, Equation 16 shows_the form of the normal vector, 
-1800 to 1800. such as the uatan2,, function in FORTRAN or in terms of unit vectors: i, j, k: i.e., 
C. To convert'from either system to-the other, first the rota- = mi + b-j + CE 
tion matrix (or at least the necessary terms within it) is (16) 

formed from the angles in the given system. Then, if the an- where 
gles of tilt, swing, and azimuth are required, they can be 
computed by Equations 4, 5, and 6: i.e., 

tilt = COS-' (q3) 

swing = tan-' (-m,,l-m,,) In developing a procedure for determining the angular 
relationship between the two systems, it was decided to ex- 
press the attitude of the normal vector (as if it was pointing 
along the negative z axis) in terms of tilt and azimuth. Figure 
2 shows the normal vector placed at the origin for the pur- 
pose of determining these two angular parameters. Tilt is de- 
termined by calculating the elevation angle above the x-y 
plane and adding 90" to the result. From Figure 2, the ex- 
pression for tilt, given in Equation 17, was obtained. The azi- 
muth of the ngrmal vector is equal to the azimuth of the 
projection of N onto the x-y plane, and is given in Equation 
18: i.e., 

azimuth = tan-' (-m3,/-m,,) (6) 

Alternatively, given a rotation matrix, the values for 
omega, phi, and kappa can be computed by Equations 7, 8, 
and 9: i.e., 

Omega = tan-' (-m,/m,) 

phi = sin-' (m,,) 

kappa = tan-' (-m,,lm,,) (9) 

The full-circle inverse tangent function [i.e., atan21 must 
be used with the indicated numerators and denominators, 
complete with leading minus signs where indicated, in order 
to obtain the proper quadrant. Other difficulties which could 
arise are determination of swing and azimuth when tilt is 
zero and determination of omega and kappa when phi is 90 
degrees. In these cases, both the numerator and denominator 
are zero in Equations 5, 6, 7, and 9, giving undefhed results 
from the inverse tangent function. Under these circum- 
stances, Equations 10 and 11 or 1 2  and 13 can be applied: 
i.e., 
If tilt =oa: 

azimuth = 0" 

swing = tan-' (-m,,l-m,,) 

If phi = 90": 

omega = 0" 

kappa = tan-' (m,,lm,,) 

Given the above treatment of the situation where tilt is zero, 
the usual problem of swing and azimuth being undefined is I Figure 2. Normal vector, fi, at origin. I 



C 
tilt = tan-I (7) + 90' 

aZ + b2 

azimuth = tan-' (:) 

distance in the control system 
(1 7) scale = distance in the arbitrary system (22) 

Assuming there are no blunders and the representative line 
(I8) is sufficiently long, an accurate approximation for the scale 

factor can be determined this wav. 
where a, b, and c are the coefficients of i, 5, and $ respec- 
tively. Rotations of Omega, Phi, and Kappa 

In Equation 18, it is again necessary to employ the full- Determination of accurate approximations for the three angu- 
circle inverse tangent function (i.e., atan2) in order to obtain lar rotations is the crux of the method. This process shall be 
the proper quadrant. presented in a sequence of seven steps. 

Three-Dimensional Conformal Coordinate Transformation 
A description and derivation of the three-dimensional con- 
formal coordinate transformation can be found in Wolf 
(1983). Only a summary of the equations involved is pre- 
sented here. 

The seven unknown parameters for tliis transformation 
are 

s - scale factor; 
w, ip, K - rotations about the x, y, z axes, respec- 

tively; and 
T,, T,, T, - translations of the origin in the x, y, z di- 

rections. 

The form of the transformation is given in Equations 19, 
20, and 21: i.e., 

In these equations, the m values are elements of the rota- 
tion matrix, previously specified as functions of o, rp, and K 

(Equation 3). X,, Y,, Z, and X,, Yo, Z, are coordinates of a 
point in the control and arbitrary systems, respectively. The 
equations are non-linear in terms of s, o, cp, and K ,  requiring 
an iterative least-squares solution. 

In order for the least-squares solution to be achieved, it 
is necessary for coordinates of common points to be 
"known" (or measured) in both systems. These common 
points may consist of various combinations of horizontal and 
vertical control. In a practical case, all three coordinates (x, 
y, and z) will have been determined in the arbitrary (model) 
system for each common point. The procedure for determin- 
ing initial approximations (to be described next) requires that 
full three-dimensional coordinates be known for at least 
three points in both systems. It is recognized that this con- 
straint (not allowing separate horizontal and vertical control) 
is a limitation of the method. However, when this method is 
used in conjunction with close-range applications, this con- 
straint can be minimized by determining three-dimensional 
coordinates of the exposure stations and using them as two 
of the required control points. This leaves only one addi- 
tional three-dimensional control point which must be estab- 
lished in object space. If additional common points are 
available, various combinations of three points could be 
used, and the results averaged. This would lead to a more re- 
fined set of values and, perhaps more importantly, indicate 
the presence of blunders in the observations. 

Initial Approximation for Scale 
Computation of the scale factor is straightforward. Select a 
representative pair of points and calculate a ratio of com- 
puted lengths of the line in the two systems. In the usual 
sense of the transformation (from arbitrary to control coordi- 
nates), this scale factor can be calculated by Equation 22: i.e., 

(1) Select the Three Geometdcally Strongest Polnts 
In order to obtain sufficient geometric strength, three points 
having a widely distributed base must be selected. This is 
done to reduce the likelihood of choosing three points which 
are nearly collinear. An analogy can be found in linking ster- 
eomodels during strip formation in semi-analytical aerotrian- 
gulation, where the projection centers are used as common 
points in order to provide additional geometric strength. The 
choice of three points will be based on the points which 
form a triangle having the largest altitude, where altitude is 
defined as the perpendicular distance from the longest side, 
to the point not on that side. This determination can be 
made in either the control or arbitrary system if no blunders 
exist. Figure 3 illustrates how this altitude is defined. In this 
figure the longest side is labeled (a) and, because the speci- 
fied altitude is perpendicular to this side, it must be internal 
to the triangle. A formula for the square of the altitude is 
given by Equation 23: i.e., 

If more than three control points are available, the value 
of h2 is computed for all combinations of three points and 
the set giving the largest is chosen. 

(2) Compute the Normal Vectors at a Common Polnt in bath Systems 
Computation of the normal vectors requires the application 
of Equation 16 at the common point in both systems. This 
will result in two sets of a, b, and c coefficients. One set is 
based on the arbitrary coordinates and the other is based on 
the control coordinates. 

(3) Determine Tilt and Mmuth for the Normal in each System 
Tilt and azimuth of the normal vector in both systems are 
based on Equations 17  and 18. 

(4) Perform an lnltlal Rotation of Polnts In both Systems Using Corresponding 
Values of Tilt and Azimuth 
This rotation will cause the plane defined by the three points 
to be parallel to the x-y plane in both systems. It is accom- 
plished by computing a rotation matrix for each system, 
based on their respective values for tilt and azimuth, with 

a 

Figure 3. Altitude from longest side. 
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swing set equal to O0 (see Equation 2). Then this rotation ma- 
trix is applied to two of the three points in each system, re- 
sulting in transformed points having equal z coordinates. 
This is accomplished as illustrated by Equations 24, 25, and 
26: i.e., 

These equations are applied a total of four times, once 
for each of the two points in the control system and once for 
each of the same two points in the arbitrary system. For the 
fist two applications, the rotation matrix for the control sys- 
tem is used along with x,y,z control coordinates for the two 
points. For the last two applications, the rotation matrix for 
the arbitrary system is used along with corresponding x,y,z 
arbitrary coordinates. 

The resulting prime coordinates define horizontal lines 
in both systems and require application of a swing value to a 
line in one system to give it the same direction as the line in 
the other system. Equation 26 is shown for clarity; however, 
it is unnecessary to compute the z' coordinates because they 
are not used in subsequent calculations. 

(5) Determine Swing by Difference in Azimuths for the Common Line 
Using the transformed coordinates of the two points as deter- 
mined in Step 4, compute the azimuth of the connecting line 
in each system. The swing required to align the arbitrary sys- 
tem with the control system is then computed by Equation 
27: i.e., 

swing = azimuth(contro1) - azimuth(aribtrary) (27) 

(6) ComMne the Two Tllts, Two Azimuths, and One Swlng Into One Overall 
Rotatlon Matrix 
Rotation matrix MI is formed using tilt and azimuth of the 
normal vector in the arbitrary system, in conjunction with 
the swing value determined in Step 5. Rotation matrix M, is 
formed using only the tilt and azimuth of the normal vector 
in the control system (i.e., M, remains as calculated in Step 
4). Equation 28 shows how a point's coordinates in the two 
systems can subsequently be related: i.e., 

The "equals" sign in this equation is not technically ap- 
propriate. Its meaning in this context is "corresponds to" or 
"is in a similar location as." 

The rotation matrices are then combined into a single ro- 
tation matrix M, as shown in Equation 29, where the 
"equals" signs have the same meaning as in Equation 28: 
i.e., 

(7) From Rotatlon Matrix M, Compute Values for Omega, Phi, and Kappa 
This is accomplished by applying Equations 7, 8, and 9 or 
possibly 12  and 13. 

Translations in X, Y, and Z 
Because the transformation equations are linear in terms of 
T,, T,, and T,, initial approximations are not required. How- 
ever, if their values were desired, Equations 19, 20, and 21 

TABLE 1. DATA FOR EXAMPLE TRANSFORMATION. 

X-control Y-control Z-control x-arb y-arb z-arb 
Point (m) (m) (ml (mml (mm) b~) 

could be rearranged so that the translation terms are isolated 
on one side of the equation. Computation of the translations 
can then be performed using a common point. 

Example 
To illustrate the method, the following example is given. Ta- 
ble 1 lists the coordinates of the common points in both sys- 
tems. 

Scale 
The longest line from the given set of four points is line 3-4. 
After this has been determined, the scale computation in- 
volves the application of Equation 22 as illustrated below: 

length of 3-4 (control) - 257.325 
scale = --- - 2.4242 

length of 3-4 (arbitrary) 106.147 

Rotations 
(1) Using every combination of three points from the total of 
four, lengths of the sides of a triangle are computed, along 
with the altitude. Table 2 summarizes these computations for 
each of the four combinations. The columns headed SIDE a, 
SmE b, and SIDE c show the lengths of the three sides of the 
triangle being considered, with SIDE a being selected as the 
longest. Column h gives the computed altitude for the trian- 
gle. Note that points 1, 2, and 3 gave the strongest triangle 
(largest h, marked by *) and are therefore used for the rota- 
tion calculations. 

(2) Computation of the normal vectors in both systems 
results from application of Equation 16 to the two sets of co- 
ordinates for points 1, 2, and 3. Table 3 shows a summary of 
the computation for both normal vectors at point 1. The col- 
umns COEFF a, COEFF b, and COEFF c show the computed 
normal vector coefficients. 

(3) Application of Equations 1 7  and 18 to the coefficients 
from Table 3 yields the listed tilt and azimuth values. 

(4) Using the tilt and azimuth values from Table 3, the 
following rotation matrices were calculated: 

Arbitrary rotation matrix: 

Control rotation matrix: 

Points SIDE a SIDE b SIDE c h 
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SYSTEM COEFF a COEFF b COEFF c Tilt Azimuth 

arbitrary -3810.6311 -3503.7284 -685.276 82.4590' -132.5973' 
control -790.1507 -390.1890 30691.426 178.3553' -116.2809° 

- - 

SYSTEM X'I Y'I x 'z Y'Z 

(7) Using Equations 7, 8, and 9 results in the following 
values for omega, phi, and kappa: 

Arbitrary 
Control 

52.00781 73'80426 -14.55751 44.86396 Using these initial approximations, a three-dimensional con- 
248903.72 -691422.31 248919.02 -691597.64 formal coordinate transformation was performed, giving the 

following set of corrections for the first iteration: 

These rotation matrices are then applied, using Equations 24 
and 25, to the corresponding coordinates of points 1 and 2 
(from Table 1) to give the values listed in Table 4. 

(5) Using coordinates of the endpoints of line 1-2 listed 
in Table 4, the following azimuths are computed: Conclusions 

azimuth(arbitrary) = - 113.4977" The foregoing method of computing initial approximations 

azimuth(contro1) = 175.0136" for a three-dimensional conformal coordinate transformation 
has been extensivelv tested and found to be successful in all 

Equation 27 is then applied to these azimuth values to yield 
the following value for swing: 

swing = 288.5113" 

(6) Using the value for swing computed in Step 5 and 
the values for tilt and azimuth in the arbitrary system (from 
Table 3) computed in Step 3, the following rotation matrix, 
M,, is computed: 

Arbitrary rotation matrix with swing: 

When matrices wT and M, are multiplied, the following 
rotation matrix, M, is computed: 

Overall rotation matrix: 

cases, under the as&.mptions of no blunders and strictly 
three-dimensional control points. It is particularly useful in 
close-range photogrammetric applications where the unusual 
rotations can be difficult to predict or visualize. 
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