
Using Public Domain Geostatistical and 
GIs Software for Spatial Interpolation 

C. Varekamp, A.K. Skidmore, and P.A.B. Burrough 

Abstract 
A spatial interpolation system is presented that uses public 
domain geostatistical and GIS software from the U.S. and 
The Netherlands. This paper describes how component pro- 
grams were linked together. The system was tested with a 
case study involving the mapping of forest soil variables. The 
system has the advantage that the program components are 
of low, or no cost, and are readily available on the internet. 

Introduction 
The objective of spatial interpolation is to generate a map of 
a variable that was measured at point locations. In order to 
produce an interpolated map, a model containing one or 
more parameters is used to define an interpolation function. 
The user will often chose the function based on the proper- 
ties required from the desired output map, for example, 
smoothness of the interpolated surface. 

Why would a user require an interpolated surface? There 
are two main reasons: 

Exploratory data analysis, undertaken to visualize the spatial 
pattern of variables, and to understand processes between 
multiple variables. Such an approach is necessarily explora- 
tory in nature, but is particularly useful for comprehending 
relationships and designing models. A practical example is 
mapping the volume of contaminated soil in order to esti- 
mate clean-up costs. 
Generate input layers for GIS models of, for example, hydro- 
logical processes, forest growth, soil erosion, or climatic im- 
pacts. 

Geostatistical interpolation has been used in combination 
with GIS to overcome problems of choropleth maps in GIs. 
Van Meirvenne and Hofman (1992) showed that many varia- 
bles (such as pH) are continuous across map boundaries. 
Consequently, errors are introduced into GIS models when an 
average value for the polygon is read from a traditional cho- 
ropleth map. Geostatistical techniques are used to interpolate 
soil properties when undertaking standard soil mapping, or 
when mapping heavy metal concentrations along rivers (e.g., 
Stein, 1991). Another example is the use of interpolated 
maps for modeling error propagation in a GIS (Heuvelink et 
al.,1989). 

At a practical level, much work has been done by Isaaks 
and ~rivastava (1989) and Deutsch and Journel (1992) to de- 

C. Varekamp is with the Department of Water Resources, 
Wageningen Agricultural University, Nieuwe Kanaal 11, 
6709 PA Wageningen, The Netherlands. 

A.K. Skidmore (the corresponding author) is with the School 
of Geography, UNSW, Sydney 2052, Australia. 

P.A.B. Burrough is with University of Utrecht, Netherlands 
Centre for Geoecological Research ICG, Faculty of Geographi- 
cal Studies, P.O. Box 80.115, 3508 TC Utrecht, The Nether- 
lands. 

velop public domain geostatistical software and guidelines 
for the analysis of data. However, geostatistical software tools 
in commercial GIS remain rudimentary; consequently, incom- 
plete "tool-boxes" are offered in commercial GIS packages. A 
related problem is that few GIS analysts understand geosta- 
tistical techniques, even though the software appears easy to 
use in commercial packages. For example, we interviewed an 
analyst who had interpolated soil variables by pushing but- 
tons in  the order specified by a commercial GIS manual; 
however, a sub-optimal variogram model had been fitted to 
the data, and the analyst had little comprehension of the 
process or of the results. 

There is clearly a need for lower cost and easy-to-use 
geostatistical software, as well as adequate documentation for 
analysts. Robust and accurate software for geostatistics is 
available. Examples include GSTAT, a multivariate geostatisti- 
cal program by Pebesma (1993); GEO-EAS, a user-friendly 
package now distributed by the University of Lausanne, 
Switzerland but originally developed by Englund and Sparks 
(1988); and GSLIB, a complete geostatistical software library 
with 37 FORTRAN programs by Deutsch and Journel (1992). 
There are also general GIS packages available in the public 
domain, including the PC-Raster package by Van Deursen 
(1992) used here. 

To summarize, the aims of this study were to 

identify suitable public domain software for geostatistical 
(and GIS) analysis, 
link these separate geostatistical and GIS programs into a sys- 
tem for spatial interpolation, 
test the system with a case study, and 
highlight how the system is useful for GIS analysts. 

This paper aims to guide new, or even experienced, users in 
building their own spatial interpolation system using public 
domain software. In order to avoid yet another introduction 
to geostatistical techniques, we assume an elementary knowl- 
edge of this topic, such as presented in readily available 
books by Burrough (1986, Chapter 6) or Webster and Oliver 
(1990, Chapter 12). 

System Description 
The interpolation system proposed here links sub-program 
components developed by different geostatistical and GIS 
packages. The overall aim is to link these sub-programs in  
order to convert point data into maps. To achieve this, the 
geostatistical tools have been grouped into four broad func- 
tional classes: 

exploratory data analysis (EDA), 
parameterization, 
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Figure 1. Flow chart showing the spatial interpolation pro- 
cess from point data to interpolated map. The dotted 
boxes represent the different tools as  stages of the pro- 
cess, shaded boxes are computer programs, ovals are 
different types of data, and solid lines are flows of data. 

validation, and 
interpolation and display. 

Figure 1 presents a flow chart of the spatial interpolation 
process from point data to interpolated map. The dotted 
boxes represent the broad functional classes, shaded boxes 
are computer programs, ovals are different types of data, and 
solid lines are flows of data. Functional stages 1 to 4 of the 
process are further subdivided; each subdivision requires a 
specific program component. For example, the first stage, ex- 
ploratory data analysis (EDA), explores the statistical proper- 
ties of the data (Tukey, 1977). The EDA function has been 
subdivided into tasks to generate univariate statistics, to de- 
tect outliers, to describe bivariate statistics, and to transform 
data. The four functional stages are described in detail be- 
low. - - 

Table 1 lists the public domain computer packages and 
programs obtained from the Internet and libraries. For each 
program, a description of its function and the source are 
given. The programs are very different in nature. For exam- 
ple, there are programs which use "parameter" files that 
have no user interface whatsoever, and are distributed as 
FORTRAN-77 source code. But there are also interactive graph- 
ical model fitting programs with a menu driven user interface 
(e.g., program WLSFIT has a graphical user interface). 

These disparate programs were successfully linked using 
MS-DOS batch files, with program execution following the di- 
rection of the flow chart in Figure 1. Simple user screens 
were created for the different stages in the spatial interpola- 
tion process. Figure 2 shows the user interface. There are 
five user screens, each with different menu options corre- 
sponding to the steps in the spatial interpolation process. 

Each main functional class in Figure 1 is now described 
in detail. 

Exploratory Data Analysis (EDA) 
Exploratory Data Analysis (EDA) was a precursory stage intro- 
duced to discover the statistical and mathematical properties 
of the data. Using EDA techniques, any necessary data trans- 
formations may be discovered, and appropriate models to ap- 
ply to the data may be considered. FDA techniques became 
popular after a book by Tukey (1977) showed the applicabil- 
ity and usefulness of visualizing data and calculating simple 
statistics as a preliminary stage to confirmatory tests. In addi- 
tion to the methods described here, standard statistical pack- 
ages (such as SPSS, CSS, STATISTICA, MINITAB) offer a variety 

Package Programs Function Source 

geo-eas stat 1 
dataprep 
trans 
scatter 

pc-raster 

gslib 

sem 
wls fit 
spil 
gstat 
calc87 
display 
csf2col 
csf2txt 

gscale 

univariate statistics 
data preparation 
arithmetic transformations 
scatterplots 

Institute of Mineralogy, University of Lausanne, Switzerland. 
Anonymous ftp: eliot.unil.ch 

experimental variograms 
variogram fitting 
interpolation 
geostatistical interpolation 
map definition 
display of maps 
map file to column file 
map file to ASCII file 

attn: Cees Wesseling, Dept. of Physical Geography, University of 
Utrecht, PO Box 80.115, 3508 TC Utrecht, The Netherlands. 
Anonymous ftp: pop.frw.ruu.nl 
http site address: http//www.frw.ruu.nl/pcraster.html 

grey scale postscript maps Geostatistical Software Library and User's Guide (Deutsch and 
Journel, 1992). 
ISBN 019 50 73924. 
Disks with 37 FORTRAN programs (source code). 
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of EDA techniques, while Haslett et al. (1990) describe soft- 
ware to dynamically link map data in one window to (soil) 
variable data in another window, thereby greatly assisting 
the visualization of outliers. 

In this study, the point data were entered and pre-proc- 
essed in a spreadsheet program (specifically Microsoft Excel, 
but any spreadsheet or data base program would suffice). 
The data were output from the spreadsheet in a simplified 
CEO-EAS ASCII format; a data format supported by many geo- 
statistical programs. 
Data Preparation 
The dataprep program, provided by GEO-EAS, reads the sim- 
plified GEO-EAS ASCII file. The file can be sorted, if necessary, 
and a variable created to identify the observations. The 
dataprep program offers utilities for column extraction, row 
extraction, deletion of duplicate rows, and merging with 
other data files. After preparation, the data are input to the 
univariate statistics program. 
Univariate Statistics 
The GEO-EAS program statl displays the number of observa- 
tions and missing data, and calculates univariate statistics. 
Histograms may be viewed in order to investigate distribu- 
tions of the statistics. Variables exhibiting a non-normal dis- 
tribution may be transformed (see the Data Transform sub- 
section below). 
Detection of Outliers 
An outlier is an observation that is well separated from the 
rest of the data (Bowerman and O'Connell, 1990). The pro- 
gram statl may identify outliers using the coefficient of vari- 
ation (CV). The cv is a dimensionless quantity that measures 
the amount of variation relative to the mean. A CV greater 
than 100 per cent may indicate the presence of samples with 
erratic values (Isaaks and Srivastava, 1989). The statl pro- 
gram option "Examine" allows an analyst to easily identify 
record numbers that contain outliers. Rejection of outliers on 
a purely statistical basis is a dangerous procedure (D'Agostio 
and Stephens, 1986), and users should always double check 
how realistic the observations are. Finally, the dataprep pro- 
gram is used to remove outlying values from the data file. 
Bivariate Statistics 
A data set often contains not only the primary variable of 
interest, but also one or more secondary variables. The sec- 
ondary variables often contain useful information about the 
primary variable. The secondary variable may be used by an 
interpolation method termed "cokriging" to improve the ac- 
curacy of estimation for the primary variable. To determine 
the possibility of cokriging, correlations between the primary 
and secondary variables are calculated using a GEO-EAS pro- 
gram called scatter. The scatter program prints scatter plots 
of variables and correlation statistics on the computer screen. 
After exploring linear relationships for all pairs of variables, 
the variables can be grouped into subsets containing only 
variables which are highly correlated (Pan et al., 1993). 
Data Transform 
The trans program allows the user to perform arithmetic 
transformations when necessary. For example, left or right 
skewed distributions may be transformed to a normal distri- 
bution by calculating respectively the logarithm or exponent 
of the original data values (Tukey, 1977). Note that all these 
operations may be undertaken with general statistical pack- 
ages such as SPSS, CSS, STATISTICA, MINITAB, etc. 

Parameterization 
Parameterization is the second stage in the interpolation sys- 
tem and is used to select and fit the parameters needed in 
the different interpolation procedures (Figure 1). These pa- 
rameters are required to solve interpolation equations, as 
well as to calculate neighborhood parameters that determine 

f 
* * * M A I N * * *  

1 Data posting 
2 Univarlate statistics 
3 Preparatlon/Transform 
4 Bivarlate stat~stics 
5 Varlogram 
6 Model fitting 
7 Validation 
8 Grzd deflnltion 
9 InterpolatlonlDisplaY 
10 Map export 

1- 
* * * VARIOGRAM * * * 

1 Varlogram 
2 Dlrectlonal varlogram 
3 Crossvarlogram 
4 Directional crossvarlogram 
5 Maln menu 

L J- 
* VALIDATION * * * 

1 Ordinary krlg~ng 
2 Cokriglng 
3 Inverse distance 
4 Spllnes 
6 Main menu 

L 1- 
INTEWOIATION/DI~PLAY * * 

1 Ordlnary kriging 
2 Cokriglng 
3 Inverse dlstance 
4 Spllnes 
5 Main menu 

i J 
* * * MAP EXPORT * * * 

1 ASCII column flle 
2 ASCII g u d  (Arclnfol 
3 Greyscale PontScrlpt 
4 Main menu 

\ J 
Figure 2. User interface: User screens with menu options 
of the spatial interpolation system. 

which observation points are used for predicting the value of 
each cell in the GIs. 

It is useful to distinguish between two types of interpo- 
lation methods; one is based on a deterministic model and 
the other on a stochastic model. Data input to a deterministic 
model will yield just one outcome, and includes methods 
such as inverse distance, trend surface, moving average, 
splines, and Delauney triangulation. A stochastic model pre- 
supposes that the outcome is uncertain and is described by a 
probability function (Addiscott, 1993); methods include ordi- 
nary kriging, universal kriging, and cokriging. 

For stochastic or "kriging" methods, a model is fitted to 
the experimental variogram; the parameters of the variogram 
model are then used in the interpolation procedure. 

The terminology that is used to describe important fea- 
tures of the variogram is as follows (Isaaks and Srivastava, 
1989): 

Range: The distance at which the variogram reaches a pla- 
teau. In other words, the point at which semivariance stops 
increasing with increasing lag. 
Sill: The plateau the variogram reaches at the range. 
Nugget Effect: The vertical jump from the value of 0 at the 
origin to the value of the variogram at extremely small sepa- 
ration distances. 

Sometimes, we want to predict the average value of a varia- 
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ble within a local area. For example, soil data may be com- 
bined with a remote sensing image in a G I ~  to predict the 
mean soil variable for each remote sensing image pixel. In 
these cases, the stochastic method termed "block kriging" 
may be used. 

Often, information will be available as secondary (and 
easy to measure) variables rather than the primary variable 
of interest. These secondary variables are usually spatially 
cross-correlated with the primary variable (Isaaks and Sriva- 
stava, 1989). The cokriging method also uses this information 
for the prediction of the variable of interest. 

An advantage of stochastic methods is that interpolation 
errors can be calculated and mapped, in addition to the esti- 
mate of the variable. 
Experimental Variogram 
The sem program (from the PC-raster package) calculates ex- 
perimental variograms of the variables. The user specifies in  
a "parameter" file the "lag" distance (which is often approxi- 
mated by the sampling interval), and the maximum distance 
that will be considered between samples. Experimental var- 
iogram values are calculated and written into an ASCII file for 
further processing by the wlsfit and gstat software programs, 
both distributed in the PC-raster package. 
Variogram Model 
The user defines an input file containing the experimental 
variogram values. The operator may choose one of six vario- 
gram model types to be fitted to the experimental variogram 
(e.g., linear, spherical, Gaussian, exponential). The gstat pro- 
gram writes the experimental semivariances to a file. The 
wlsfit program is then used interactively to fit a model to the 
experimental variogram, using a weighted least-squares ap- 
proximation (Cressie, 1985). The resulting model may be 
plotted on screen and printed. 

The selection of a suitable variogram model is very 
much a matter of experience. It is often possible to select a 
few suitable model types. The wlsfit program is particularly 
useful as it calculates a goodness-of-fit statistic that can serve 
as a model selection criterion. 
Splines Smoothing Parameter 
When fitting splines to the data, the value of the so called 
"splines smoothing parameter" is needed. This parameter 
controls the roughness of the interpolated surface. A varia- 
ble that is very continuous will not need much smoothing 
whereas, for a variable that behaves erratically, more 
smoothing is desirable. For this study, we adopted a tech- 
nique called cross-validation to find an optimum value for 
the splines smoothing parameter. Cross-validation allows 
comparison of estimated and true values using only the in- 
formation available in the sample data (Isaaks and Srivas- 
tava, 1989). An observed data value at a particular location 
is temporarily taken from the data set; the value at the same 
location is then estimated using the remaining samples. Af- 
ter doing this for all locations, and repeating the process us- 
ing different "splines smoothing values," an optimum is 
found. 

The cross-validation technique was implemented by 
linking the PC-raster spil program with a C program. The spil 
program cross-validates the set of parameter values, and 
writes estimated and true values into a simplified GEO-EAS 
format ASCII file. A C program was written at UNSW to calcu- 
late the Mean Absolute Error (MAE). By iterating between 
the spil and the C program and calculating MAE, the spline 
smoothing value that results in the smallest MAE is selected. 
The functions of spil have subsequently been implemented 
in the gstat program, and spil is no longer being supported. 
Inverse Distance Parameter 
This parameter is an important input to the inverse distance 
weighting method, because it determines the weight a nearby 
sample receives in proportion to the weight a faraway sample 

receives. As for the splines interpolation method, the inverse 
distance parameter is found by means of cross-validation. 

Validation 
Validation is the third stage in the interpolation process, and 
it allows the predicted values to be compared with the true 
values of a validation data set. Specifically, the objectives of 
this stage are to 

obtain information about the accuracy of the interpolation(s), 
and 
understand how the different methods and parameters affect 
the interpolation results. 

In other words, it assists in empirically selecting an appro- 
priate interpolation method, as well as appropriate parameter 
values for the chosen method. 

The interpolation methods and parameters are validated 
using a separate, independent data set. This data set may be 
obtained after the interpolation and mapping work is com- 
plete, or by using data withheld from the original data set. In 
many cases, collecting an independent data set is difficult to 
arrange, so a withheld sample from the original data set is 
then a reasonable alternative. 
Ordinary Kriging and Cokriging 
The gstat program validates the parameter values for the sto- 
chastic methods. In a parameter file the user gives the varia- 
ble, the parameter values, and the name of a validation file 
containing the validation data set. The gstat program writes 
interpolated values and the true values for the set of valida- 
tion points into an ASCII file. 
Splines and Inverse Distance 
The PC-raster spil program validates the parameter values for 
the deterministic methods. The spil program writes interpo- 
lated values and true values for the set of validation points 
into an ASCII file. 

A C program is executed for all methods to calculate 
validation statistics; the validation statistics measure the 
overall interpolation accuracy. 

Interpolation and Display 
The fourth and final stage in the interpolation process in- 
cludes tools which interpolate the surface, as well as pro- 
duce maps for display, analysis, or further modeling in a GIS. 
In a previous stage of the analysis, the interpolation accuracy 
of the different methods has been calculated. The aim in this 
stage is to produce interpolated maps using the best available 
method, as well as the optimal parameter values. The first 
step is to define a grid to interpolate. 
Grid Definition 
It is important to interpolate inside the observation area, as 
errors rapidly increase outside. The calc program, which is 
part of the PC-raster package, defines the grid to be interpo- 
lated by specifying the number of rows, number of columns, 
map projection, map origin, and cell size. Existing grids from 
other popular GIs systems such as ARC-INFO, ERDAS, GENASYS, 
IDRISI, and SURFER may be simply imported. 
Interpolation 
Interpolation requires a few extra lines added to the gstat 
and spil parameter files, which were also used in the para- 
meterization and validation stages. The extra lines in the 
parameter file first specify the name of the file with grid defi- 
nitions, and then specify the output file names to contain the 
interpolated maps. Interpolated maps are produced in the PC- 
raster file format. For stochastic methods, the interpolated 
map is accompanied by an error map showing the interpola- 
tion uncertainty. 
Map Display 
There are multiple ways to display the interpolated maps. 
The PC-raster display program produces color maps on the 
computer screen. A contouring option in display allows the 
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Figure 3. Sampling configuration. X(m) and Y(m) in UTM 

coordinates. The original data set consisted of an obser- 
vation data set (dots) and a validation data set (circles). 

user to add isolines to color map. The drape program allows 
one variable to be draped over another, and display of the 
result in a semi three-dimensional view. At present, the 
maps may be printed using the software drivers developed 
for Epson or HP DeskJet printers. We have also exported PC- 
raster data to commercial statistical and graphics programs to 
display data, including STATISTICA, MATLAB, SURFER, ARC- 
INFO, ERDAS, GENASYS, and (Aldus) FREEHAND. 
Postscript Prints 
For scientific publications, monochrome maps are preferable, 
with a proper legend and scale. The gscale program pro- 
duces good quality grey-scale images in the postscript lan- 
guage (see examples below!). 
Map Export 
The csf2txt and csf2col programs, which are part of the PC- 
raster package, allow the user to export maps to other soft- 
ware packages for display and further G I ~  modeling. 

Testing 
The interpolation system described above was used to map 
forest soils at Nullica State Forest, located approximately 25 
km northwest of Eden township, on the far south coast of 
New South Wales, Australia. The study area is relatively un- 
disturbed, except for fire, some selective logging, and occa- 
sional grazing. Climate is mild, with an annual rainfall of 
about 1000 mm, and an average temperature of 15°C. The 
vegetation over the 500-m by 600-m study area comprises a 
typical transition of Eucalyptus sieberi (Silvertop Ash) on 
ridges, blending into stringybarks, and changing to gum for- 
est in the valleys. The parent material was described by 
Beams (1980) as a rhyolite, part of the larger Upper Devonian 
Boyd Volcanic Complex. Within the study area, the parent 
material is essentially homogeneous. Forest soils in the vi- 
cinity of Eden have low nutritional status, are highIy weath- 
ered, and are generally acidic (Lambert and Turner, 1983; 
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Acronym unit Description 

phi - pH (1:5 soil-to-water extract, 

ph2 Rhoades, 1982) 
ph3 
ecl  
ec2 
ec3 
pl -av 
p2 -av 

mg kg-' 

Electrical conductivity (1:s soil-to- 
water extract, Rhoades, 1982) 

Available phosphorus (Ca-lactate ex- 
traction, Holford et al., 1985) 

p3 -av 
kl mmol kg-' Available potassium (15 soil-to- 
k2 water extract, Rhoades, 1982) 
k3 
cal mmol kg-' Available calcium (1:5 soil-to- 
ca2 water extract, Rhoades, 1982) 
ca3 
mgl mmol kg-' Available magnesium (1:5 soil-to- 
mg2 water extract, Rhoades, 1982) 
mg3 
nl  Total nitrogen (Kjeldahl method, 
n2 Heffernan, 1985) 
n3 
pl -tot Total phosphorus (Kjeldahl method, 
p2 -tot Heffernan, 1985) 
p3 - tot 

Bridges and Dobbyns, 1991), and the rhyolite parent material 
on which the study area is located is one of the least nutri- 
tionally rich (Keith and Sanders, 1990). 

A grid with cell size of 50 by 50 m was positioned over 
the 500- by 600-m study area such that the columns of the 
grid were oriented approximately north-south along a moun- 
tain ridge. For easy referencing, the grid rows are coded with 
characters, and the columns with numbers (Figure 3). For 
validation purposes, the original data set was split in half to 
form an observation data set (solid dots) and a validation 
data set (open circles). Soil samples were taken from three 
soil layers; three layers were common to all samples. Table 2 
lists the acronyms of the soil properties analyzed. Note that 
the numerical suffix refers to the soil layer; for example, pH2 
is the pH measured in soil layer 2. Phosphorus has an addi- 
tional suffix: "-av" for available phosphorus and "-tot" for 
total phosphorus. For each variable, a short description of 
the method of analysis is given in Table 2. 

Exploratory Data Analysis (EDA) 
Using the dataprep program, the data file was split in half to 
create an observation data file and a validation data file. Ta- 
ble 3 presents univariate statistics calculated with the statl 
program for some selected soil variables (i.e., pH1, ecl ,  cal ,  
pl-tot). Most variables exhibit a moderate positive skewness. 
The only variable showing a negative skewness was pH, 
which is not surprising because pH is derived from H+ con- 
centration by taking the logarithm with base 10. Although 
the distributions are not perfectly normal, transformations of 
the data were not considered necessary. 

We identified outliers using the statl program. The data- 
prep program was used to remove the outliers from the ob- 
servation data set. Table 4 lists the cv before the removal of 
outliers, as well as the cv after the removal of outliers. The 
cv was successfully reduced to less than 100 per cent for 
four out of seven variables in Table 4. The 50 percent drop 
in CV for available phosphorus in soil layer 3, after removing 
only one outlier from the database, suggests contamination 
for this particular soil sample. 

The scatter program was used to generate a correlation 



cal 
phi ecl  mmol pl-tot 
- dS m-' kg-' mg kg-' 

N 
Mean 
Variance 
Std. Dev. 
cv 
Skewness 
Kurtosis 
Minimum 
25th percentile 
Median 
75th percentile 
Maximum 

TABLE 4. LOCATION CODES OF OUTLIERS, CV BEFORE THE REMOVAL OF 
OUTLIERS, CV AFTER THE REMOVAL OF OUTLIERS, A N D  DECREASE IN CV FOR THE 

SOIL PROPERTIES. 

cv (Yo) 

Variable Location codes before after decrease 

matrix for the soil properties in layer 1 (Table 5). Underlined 
coefficients are greater than 0.5 and are statistically signifi- 
cant for p < 0.001; for example, note that cation concentra- 
tions are strongly correlated with electrical conductivity (EC). 
Such information is very useful when trying to estimate by 
cokriging an under-sampled variable (for instance, the varia- 
ble may be expensive to measure) using a highly correlated 
intensively sampled variable. In order to provide an example 
for the following "parameterization" stage, magnesium is 
used to estimate calcium (for soil layer I ) ,  and total phos- 
phorus in layer 1 is used to estimate total phosphorus in 
layer 2. 

Parameterization 
Figure 4 shows experimental variograms and fitted models 
for the soil properties in soil layer 1. The spherical model 
was used for all soil variables; it gave the best model fit ac- 
cording to the wlsfit goodness-of-fit statistic. Figure 5 shows 
experimental cross variograms, and fitted spherical variogram 
models, for the variable combinations [cal,mgl] and [pl-tot, 
p2-tot]. Parameter values for all variogram models are given 
in Table 6. A large difference in goodness-of-fit statistic (i.e., 
the SSDISST ratio computed by the wlsfit program) among the 
variables was found. The model fit for pl-tot is considered to 
be good (SSD/SST=O.OO~), whereas the appropriateness of the 
fitted model for mgl is suspect (ssD/ssT=O.~~O). Most model 
fits result in a rather large value for the nugget parameter 
(CO). This could either mean that the variable varies within 
shorter distances than the sampling distance, or that the 
measurement error is large. 

For pl-tot, the nugget parameter value (CO) is relatively 
small compared with the sill parameter value (C); for pl-tot, 
it is possible to model the spatial variation quite well. The 
range parameter a(m) is a measure for the distance up to 
which the spatial dependence extends. The spatial depend- 

phl ec l  pl -av nal kl ca l  mgl nl  

ecl  -0.40 
p l  - av -0.19 0.49 
nal -0.28 0.53 0.26 
kl -0.16 0.75 0.51 0.29 
ca l  -0.20 0.46 0.03 0.20 0.26 
mgl -0.25 0.79 0.37 0.42 0.57 0.67 
nl  -0.14 !MJ 0.44 0.33 0.59 0.14 0.46 
pl-tot 0.32 0.30 0.28 0.08 0.26 0 . 0 3  0.24 0.55 

ence extends to a few hundred metres for most variables, but 
is nearly 800 m for pl-tot. 

Using the cross-validation technique described above, a 
value of 2 was found to be the optimal inverse distance pa- 
rameter value for all soil properties in layer l. 

Validation 
This stage (i.e., programs gstat and spil in Figure 1) used the 
"validation" part of the data set. Table 7 lists the resulting 
statistics; for each interpolation method, the mean absolute 
error (which estimates the model accuracy), mean error 
(which estimates bias), number of observation sites, and 
number of validation sites were calculated. For cal,  inverse 
distance is the most accurate method, although slightly more 
biased than ordinary kriging. For pl-tot, cokriging is most ac- 
curate, but much more biased than both ordinary kriging and 
inverse distance. 

Interpolation and Display 
Two grids were prepared with the calc; one grid with cells 
of 30 by 30 m, and another finer grid with cells of 10 by 
10m. Block average predictions and variances were calcu- 
lated over the coarser grid using ordinary kriging. To visual- 
ize the effects of different interpolation methods, ordinary 
kriging, cokriging, and inverse distance were used to interpo- 
late on the fine grid. 

Grey-scale maps of the block kriging interpolation for 
p h l  and pl-tot are shown in Figure 6; both the estimated 
concentrations of the soil variables as well as the variance 
are mapped using the gscale program. Such maps are very 
useful as input to other GIS models. 

The csfztxt program exported the fine grid interpolations 
(i.e., ordinary kriging, cokriging, and inverse distance) as 
ASCII files, which were displayed using the MATLAB program; 
Figure 7 shows surface maps of cal. Maps produced by the 
ordinary kriging and cokriging methods were "smooth," but 
characterized by low "peaks" repeated rapidly over short 
distances. This pattern of variation suggests the presence of 

phi 
p l  -av  
nal 
kl 
cal  
mgl 
nl  
p l  -tot 
[cal, mgll 
[pl -tot, p2 -tot] 

CO is the nugget variance; C is the sill parameter, a is the range pa- 
rameter measuring the distance to which the spatial dependence ex- 
tends. 
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Figure 4. Experimental variograms and fitted spherical models for the soil properties in 
layer 1. 

small environmental boundaries within the test ,area. Inverse 
distance maps have a less "smooth" surface, but with many 
steep peaks and pits (Figure 7). 

Discussion 
The main aim of this study was satisfied, that is, building a 
system for the spatial interpolation of point data using public 
domain software. The system was successfully tested with a 
case study that mapped the distribution of eucalypt forest 
soil variables. 

For GIS analysts, another process starts after the data 
have been interpolated and converted to spatial maps. The 
interpolated maps may be visually analyzed, or input to 
models, and integrated with ancillary data. The public do- 

main software used here allows flexible and easy coupling 
with commercial GIS systems; for example, maps have been 
easily exported to ARC-INFO and GENASYS. Figure 8 highlights 
an example, where the interpolated soil variables are draped 
over a digital elevation model (DEM); there is, for example, 
an obvious relationship between pH and terrain. 

For further modeling in GIs, the estimated variance map 
representing the uncertainty of the prediction is important. 
For example, the cells in the northwest of the study area 
have a high variance, and are therefore uncertain (Figure 6). 
Such information may be used to estimate error in maps out- 
put by GIS models (e.g., Heuvelink et al., 1989). 

Turning to those readers who may wish to build a simi- 
lar system, a diverse range of information is available on 
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Figure 5. Experimental cross variograms and fitted spheri- 
cal models for the variable combinations [cal,mgl] and [pl  
tot,p2_tot]. 

defining the interpolation process and selecting suitable pro- 
gram components. The most useful information sources ac- 
cessed in this study are given in Table 8. In particular, the 
book by Isaaks and Srivastava (1989) contains practical ad- 
vice and solutions when defining the separate stages of the 
interpolation process. 

A difficult step is identifying suitable program compo- 
nents; the packages mentioned in this paper all have advan- 

TABLE 7. MEAN ABSOLUTE ERROR (MAE), MEAN ERROR (ME), NUMBER OF 
OBSERVAT~ON SITES (NoBs), AND NUMBER OF VALIDATION SITES (NVAL) FOR CAI 

AND PI- TOT. 

Interpolation 
Variable Method MAE ME Nobs Nval 

cal  Ordinary kriging 0.316 0.0386 47 40 
Cokriging [covaria- 

ble: mgl) 0.322 0.0529 47 40 
Inverse distance 

(a=2.0) 0.311 0.0400 47 40 
pl -tot Ordinary kriging 7.917 0.2436 44 38 

Cokriging (covaria- 
ble: p2 -tot) 7.741 0.7237 44 38 

Inverse distance 
(a=2.0) 8.066 0.1706 44 38 

tages and disadvantages. For example, GEO-EAS is useful for 
teaching and demonstration and has a simple data format 
which has become a standard for most other geostatistical 
packages. The disadvantage of GEO-EAS is that it is slow, uses 
EGA graphics, lacks some interpolation programs such as co- 
kriging, and is not being updated. Source code was provided 
for the GSLIB package, and the package provides a lot of pow- 
erful routines. GSTAT allows a mask to be defined for the in- 
terpolation area, and can interpolate only those cells with 
non-missing values, thereby improving processing time. An- 
other advantage of GSTAT is that it is linked to a powerful 
public domain GIS (PC-raster). 

The software used in this project was obtained hom the 
Internet and the book by Deutsch and Journel (1992). As a 

phi; Mock kriging prediction 
1 

phl; block kriging variance 

I , pl tot; Mock krigingpredicti0n , pl-tot; block kriging variance 

Figure 6. Grey-scale maps of the block kriging interpolation (left) and the block kriging variance (right) of 
phl and pl-tot. Interpolations are on a 30- by 30-m grid. 
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result, the suite of programs used here is a reflection of what 
could be accessed through the Internet using ftp, or the li- 
brary system, at the time the system was built. Some prob- 
lems with file formats (i.e., input and output formats) were 
encountered when linking programs, due to the often very 
different nature of the programs, and the fact that the simple 
(and reasonably standard) GEO-EAS ASCII file format was not 
supported by all programs. Readers should consider using 
mostly GSLIB source code programs which support the GEO- 
EAS ASCII file format. A user friendly interface could then be 
built in a programming language such as C++ or FORTRAN, or 
by using a 4GL such as MATLAB or IDL. 

The system developed here runs under MS-DOS (that is, it 
does not require Microsoft windows). Since completing this 
study, an exploratory variogram analysis tool called VARIO- would make a powerful and user friendly interpolation sys- 
WIN has become available on the Internet. This public do- tem. 
main program has excellent help facilities and is very user There have also been several developments in the PC-ras- 
friendly. The program can be obtained by anonymous ftp ter and GSTAT software since this paper was written. GSTAT 
from the Institute of Mineralogy, University of Lausanne (see now provides a single interface for cross-validation, inverse 
Table 1). Linking this program with a GSLIB derived system distance of kriging interpolation, and conditional simulation. 

Source Type of source Comments 

Burrough, 1986. Book Very useful for an elementary introduction to concepts of GIs, spatial 
interpolation and geostatistics. 

Cressie, 1991. Book Not suitable for the beginner. A treatment of all methods and proce- 
dures. 

Deutsch and Journel, 1992. Manual: Very practical and flexible. The FORTRAN source code allows the 
-Book with theory and detailed user to adapt programs and build user interfaces. Contains interpola- 
program description tion, simulation and utility programs. 
-Diskettes with 37 FORTRAN 
source code programs 

Isaaks and Srivastava, 1989. Book A practical book on geostatistics with many case studies. The popular 
interpolation methods are treated in detail. 

Lancaster and Salkauskas, 1986. Book 

McBratney and Webster, 1986. Article 

Treats the basics of curve and surface fitting. Useful because it is more 
generic than geostatistics alone. 

Very helpful for deciding on appropriate variogram functions and fit- 
ting procedures. 



In  other words, GSTAT replaces blocks 2 a n d  3 i n  Figure 1 
(the SPIL program is  n o  longer used). The  CALC program i n  
PC-raster n o w  allows for dynamic modeling, for example, 
wi th  t ime series data  (Wesseling et al., 1996). 

Conclusions 
Readily available public domain geostatistical a n d  GIS soft- 
ware have great potential for building a user friendly spatial 
interpolation system. Such  a system was  implemented using 
a diversity of public domain computer packages a n d  pro- 
grams. The  set-up can  easily be  extended to include the  in- 
terpolation of categorical variables a n d  the  conditional simu- 
lation of variables, using public  domain software only. The  
use of IBM-PC batch file programs for the  interpolation pro- 
cess works satisfactorily, though improved interfaces could 
b e  implemented using a 4GL (e.g., DL or MATLAB) or pro- 
gramming languages such  as  C++ or FORTRAN. 
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