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Abstract 
This paper discusses the basics of digital image compression 
and explains the conceptual differences of various ap- 
proaches. Two techniques, the standard JPEG algorithm and 
the newly developed HierarchicaI Predictive Coding [HPC) ap- 
proach, are described in detail. They are compared with re- 
spect to geometric quality, loss of information, compression 
ratio, and compression speed. JPEG yields better compression 
ratios; however, it is significantly slower than HPC. 

Introduction 
The advancements in softcopy photogrammetry and the de- 
velopment of digital photogrammetric workstations have lead 
to a tremendous demand for digital aerial and satellite im- 
agery. These images can be obtained directly by using solid- 
state cameras and satellite sensors, or indirectly by scanning 
existing photographs. Despite all the advantages of digital 
images over film, the problem of image storage needs more 
attention. Single satellite (SPOT) scenes contain 6,000 by 
6,000 pixels or 36 MBytes, and aerial images are often 
scanned with a resolution of 20 micrometres, which results 
in image sizes of 10,000 by 10,000 pixels or 100 MBytes of 
data. As digital images generally contain a significant amount 
of redundant information, these large storage requirements 
can be reduced by proper data compression. 

Image data compression is concerned with minimizing 
the number of bits required to represent an image. Early appli- 
cations of data compression can be found in the fields of tele- 
communication, data storage, and printing (Wallace, 1991). 
High-resolution television, satellite remote sensing, and fac- 
simile transmission are among the major users of digital image 
compression. Storage of large quantities of digital image data 
is of major concern for archiving aerial photographs and satel- 
lite images, as well as medical and document scans. Other ap- 
plications of compressed images include time critical data 
processing, in which case the speed of image analysis algo- 
rithms is improved by applying them to compressed data. 

For the past few years the Joint Photographic Expert 
Group (PEG) has been working toward establishing an inter- 
national digital image compression standard for still images, 
both gray scale and color (Rabbani et al., 1990; Wallace, 
1991). Photogrammetric research in image compression has 
focused on the suitability of the JPEG algorithm for softcopy 
image analysis and remote sensing. Special attention was 
paid to geometric and radiometric degradations of recon- 
structed images after compression (Sarjakoski et al., 1992; 
Nunes et al., 1992). 
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Image compression algorithms can be classified in loss- 
less and lossy techniques. Lossless compression reduces the 
number of bits required to represent an image such that the 
reconstructed image is numerically identical to the original 
one on a pixel-by-pixel basis. On the other hand, lossy com- 
pression schemes allow degradations in the reconstructed 
image in exchange for a reduced bit rate. These degradations 
may or may not be visually apparent, and greater compres- 
sion can be achieved by allowing more degradation. 

The next part of this article describes theoretical aspects 
of image compression and some standard definitions, such as 
entropy and redundancy, the compression ratio, and the 
Hu£fman code. The third part of the paper deals with the 
classification of compression techniques. Then we discuss 
the JPEG algorithm and the Hierarchical Predictive Coding 
(HPC) approach. Finally, experiments are presented to show 
the advantages and disadvantages of both techniques with re- 
spect to geometric quality, loss of information, compression 
ratio, and compression speed. 

lmage Compression - Basic Concepts 
This section explains basic terms and techniques used in 
digital image compression. It deals with the definition of en- 
tropy and redundancy, the compression ratio, and the Huff- 
man coding technique. 

Entropy and Redundancy 
In most real-world images, the gray values of adjacent pixels 
are highly correlated. This means that a great deal of infor- 
mation about the gray value of a pixel could be obtained by 
inspecting its neighbors. Therefore, a large amount of redun- 
dant information is available in these images. 

A measure of the information content of an image is the 
entropy (Lynch, 1985). It expresses the minimum number of 
bits necessary for the representation of an image without any 
loss of information. The entropy is a global measure of the 
correlation between gray values of neighboring pixels. For an 
n-bit image with M gray levels (M = Zn), the entropy H can 
be computed as 

M 

H = - ,=u E p (g,) log, p(g,) 

where p(g,) is the percentage of occurrence of each gray value, 
which can be obtained from the image histogram. Most data 
sources, including digital images, have non-uniform gray 
value distributions. If these distributions were uniform, the 
entropy would have a maximum at 
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H,, = log, M (2) TABLE 1. ENTROPIES AND REDUNDANCIES OF THE THREE IMAGES WHICH WERE 
USED FOR EVALUATING THE COMPRESSION SCHEMES [UNITS: BITS/PIXEL] 

where M is the number of gray levels. Because real images 
seldom have uniform probability distributions, their entropy [bits'pixelsl Aerial Image Road Image Target Image 
is always less than H,,. For a given digital image, the redun- 5.79 3.36 2.75 
dancy R is defined as follows (Lynch, 1985): Redundancy 2.21 4.64 5.25 

R = log, M - H (3) 

The entropies and redundancies of the images used for our continued until the Huffman code of the original source is 
investigations are shown in Table 1. found. 

The Huffrnan method will result in a variable length 
The Compression Ratio code. The length of a code word is inversly proportional to 
The general compression ratio AC is defined as the ratio of the probability of the symbol. This means that long code 
the number of the image before words are used for low probability symbols, and short code 
and the number of bytes of the compressed image. The maxi- words for high probability symbols. 
mum compression ratio AC,,, that can be achieved without 
any loss of information is defined as follows (Storer, 1988): Classification of Image Compression Techniques 

log2 M The following section takes a closer look at lossy and loss- 
AC,, = - 

H (4) less compression techniques, as well as the algorithms and 
transformations involved. It is based on publications by Jain 

For a digital image, we reach the maximum compression (1988) and Storer (1988). 
ratio when the image coding results in bits-per-pixel rates 
equal to the entropy (Storer, 1988). Thus, to achieve the Lossy Compression Techniques 
maximum compression ratio, we first need to eliminate or re- In lossy compression techniques, degradations of gray values 
duce the correlations between pixels, and then to code these are allowed in the reconstructed image in exchange for a re- 
pixels as efficiently as possible. duced bit rate as compared to lossless schemes. Typically, 

Optimum methods encode independent (uncorrelated) lossy compression algorithms consist of three steps: 
pixels in a way that makes the average bits per pixel equal 

(1) Image Decomposition or Transformation. In this step the 
or close to the image entropy. This kind of coding will con- image is transformed to a new domain, such as the fre- 
sequently achieve the maximum compression ratio and pre- quency domain, in order to reduce the dynamic range of the 
serve all information. The first implementation of such a signal (gray values) and to eliminate the correlations be- 
coding was described by Shannon et al. (1949), and an im- tween the original gray values. 
proved method was developed by Huffman (1952). (2) Quantization. In this step the transformed pixel values are 

mapped onto a smaller, finite number of output levels, in 
The Huffman Code order to reduce the number of possible output symbols. The 

Huffman developed a procedure for encoding a statistically type and degree of quantization impacts the quality of a 
lossy scheme. 

in a Way as to produce the most (3) Symbol Coding. The resulting output sequence from the 
ficient code. An efficient code is one that achieves bits-per- quantization process must be efficiently coded, by using 
pixel rates close to the image entropy. A source can be methods such as Huffman coding. 
defined as an information-generating process that emits a se- 
quence of symbols chosen from a finite alphabet. For exam- The most common lossy compression techniques are 

ple, a computer performs its computations on binary data. based on predictive coding and on transform coding. 

These data may be considered as a sequence of symbols gen- 
erated by a source with a binary alphabet composed of 0 and LOSSY Predictive Coding 
1. In the case of digital images, an n-bit image can be viewed The predictive coding scheme employs the correlation be- 
as being generated by a source (the CCD sensor) with an al- tween neighboring pixel values to determine the gray values 
phabet of 2n symbols, which represent the possible gray of a digital image. Differential Pulse Code Modulation (DPCM) 
ues. is the most common approach to predictive coding. Gener- 

The Huffman coding method is based on the following ally, DPCM works as follows: The predicted image is com- 
principles: puted on a pixel-by-pixel basis by investigating the correla- 

tions between the gray values of a pixel and all its neighbors. 
If the two least probable symbols of a source with an 
alphabet of size (a) are combined, a new source with (a-1) The predicted image is subtracted from the original image to 

symbols is generated. form a differential image in which pixel values are less cor- 
m ~f he code words for the reduced source are known, it can be related than in the original. The differential image is quan- 

shown that the code words of the original source are identi- tized and encoded (Rabbani et 0 1 . 3  1990). 
cal to those of the reduced source for all symbols that have In a lossy DPCM scheme, m pixels within a neighborhood 
not been combined. Furthermore, the code words of the two of the current pixel are used to make a linear prediction of 
least probable symbols of the original source are formed by the pixel's gray value. The linear estimate is denoted by&,, 
appending 0 or 1 to the right of the code word of the com- and x, are the original gray values: ice., 
bined symbol in the reduced source. 
The Huffrnan code for a source with only two symbols con- 
sists of the code words 0 and 1. 

,=I 
(5) 

To construct the Huffman code of a given source, the 
original source is reduced by repeatedly combining the two The a, are the predictor coefficients. The prediction is 
least probable symbols until a source with only two symbols usually rounded to the nearest integer. It is also necessary to 
is obtained. The Huffman code for this reduced source is clip the prediction to the range [o, 2"-11 for an n-bit image. 
known (0 and 1). Then the code words for the previous stage The set of predictor coefficients may be fixed for all images 
are found by appending a 0 or I to the code word corre- (global prediction), or may vary from image to image (local 
sponding to the two least probable symbols. This process is prediction), or may even vary within an image (adaptive pre- 
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diction). To compute the optimum predictor coefficients, the 
squared prediction error is usually minimized. 

The difference image (em) is constructed by subtracting 
predicted gray values from the original ones: i.e., 

em = x,,, - x, - 
Once the difference image is computed, it has to be 

quantized. A large portion of the compression achieved by a 
lossy DPCM is due to quantization. A quantizer is simply a 
staircase function that maps a large number of input values 
into a smaller number of output levels. Let e be the differ- 
ence image and p,(e) be its histogram. A quantizer maps var- 
iable e into a discrete variable e, that belongs to a finite set 
{r,, i = 0, ..., N - 11. The range of values of e that map to a 
particular e, are defined by a set of points (d,, i = 1, ..., N ] .  
The quantization rule states that if e lies in the interval (d,, 
d,,,], it is mapped (quantized) to r,, which also lies in the 
same interval. 

A major limitation of the DPCM scheme is that the pre- 
dictor and the quantizer are both fixed throughout the image. 
DPCM can be made adaptive in terms of the predictor or the 
quantizer or both. ~dap t ive  prediction usuaily reduces the 
prediction error prior to quantization, because the prediction 
is dynamically modified according to the existing configura- 
tion of gray values. For example, by using adaptive predic- 
tors, the coefficients for a uniform area of gray values are 
different from those of edges. Therefore, adaptive prediction 
results in less quantization errors and a better quality of the 
reconstructed image. Generally, non-adaptive predictors per- 
form poorly at gray-level edges. 

Transform Coding 
A general transform coding scheme involves subdividing a 
digital image into smaller blocks and performing a unitary 
transform on each block. A unitary transform can be defined 
as a reversible linear transformation whose kernel describes 
a set of discrete, orthonormal base functions. The goal of the 
transform is to eliminate the correlations between the origi- 
nal pixels of the block; this decorrelation generally results in 
the block energy being redistributed among a small set of 
transformation coefficients. An optimal transformation com- 
pletely decorrelates the data by packing the most amount of 
energy in the fewest number of coefficients. Furthermore, an 
optimal transform should have a minimum number of opera- 
tions. The most common transforms used in image compres- 
sion are the Principal Component Transformation (PCT), the 
Discrete Cosine Transform (DCT), and the Walsh-Hadamard 
Transform (WHT) (Jain, 1988). 

The transform coding scheme employs a strategy for the 
selection, quantization, and encoding of the transformed co- 
efficicnts of each block. The two strategies most commonly 
employed are 

Zonal Sample Selection. Zonal sampling consists of retaining 
only those transformation coefficients that are located in a 
pre-specified zone in the transformed block; all other coeffi- 
cients are set to zero. Generally, the lower frequency coeffi- 
cients are retained while the higher frequency coefficients are 
discarded. Each retained coefficient is quantized and en- 
coded. The major disadvantage of this sampling technique is 
that some of the coefficients outside of the coefficient reten- 
tion zone may contain significant information, and their 
omission can result in significant reconstruction errors. 
Threshold Sample Selection. A threshold level is selected, 
and only the coefficients whose values are above the thresh- 
old are quantized and encoded; all others are discarded. 

Lossless Compression Techniques 
Some image compression applications require the recon- 
structed image to be numerically identical to the original im- 

age on a pixel-by-pixel basis. An example is medical imag- 
ing, where lossy compression schemes may compromise 
diagnostic accuracy. Lossless compression schemes are also 
important in remote sensing, where the spectral characteris- 
tics of images have to be preserved. As one might expect, the 
price to be paid for an error-free image is a much lower com- 
pression ratio as compared to lossy schemes (Rabbani et al., 
1990). 

The primary difference between lossy and lossless 
schemes is the inclusion of quantization in lossy techniques. 
By quantization, the number of possible output symbols is 
reduced. The reduction of the number of output symbols at 
the quantization step leads to degradations in the recon- 
structed image in exchange for a higher compression ratio. 
For an 8-bit image, the maximum compression ratio that can 
be obtained using lossless schemes is 8 divided by the en- 
tropy of that image (see Equation 4). 

The most common lossless scheme is Lossless Predictive 
Coding. It can be implemented by using the same steps as 
explained in the lossy scheme (Rabbani et al., 1990) with the 
exclusion of the quantization step. 

The JPEG Algorithm 
The Joint Photographic Expert Group (JPEG) has proposed 
and developed an algorithm to serve as an international stan- 
dard for the compression of continuous tone (gray-scale or 
color) images. The overall algorithm comprises three main 
components: the baseline system, the extended system, and 
the independent function (Wallace, 1991). 

The baseline system algorithm compresses 8 bits-per- 
pixel images and operates only in sequential mode. In this 
sequential mode, the image is processed from top to bottom 
in a single pass by compressing the first row of data, fol- 
lowed by the second row, and continuing until the end of 
the image is reached. Accordingly, the baseline system is a 
simple and efficient algorithm that  is adequate for most im- 
age coding applications. The extended system adds capabili- 
ties that allow the baseline system to satisfy a broader range 
of applications. One of its applications supports 12 bits-per- 
pixel input in addition to 8 bits-per-pixel. Finally, the inde- 
pendent function is included for applications requiring 
lossless compression. 

The P E G  baseline system starts with dividing the origi- 
nal image into 8- by 8-pixel blocks. Each block is indepen- 
dently transformed using the Discrete Cosine Transformation 
(DCT). The forward DCT for a block of 8 by 8 pixels is defined 
as follows: 

where 

j, k are spatial coordinates in the block domain; 
f(j,k) are gray values of the pixels of the block; 
u, v are coordinates in the frequency domain; and 
C(u), C(v) is 1/+ for u, v = 0, and 1 otherwise. 

The DCT has become by far the most widely used trans- 
formation for image compression due to its simplicity and 
fast implementation. Unlike other algorithms, it is image in- 
dependent. Figure 1 shows an 8- by 8-pixel block of gray 
values. This block was then transformed using Equation 7; 
the 64 forward DcT coefficients are displayed in Figure 2. 

In the next step, all transformation coefficients are nor- 
malized (weighted) by applying a user defined normalization 
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Figure 1. The original image block of 8 by 8 gray val- 
ues ( f ( j ,  4). 

array that is fixed for all blocks. Each component of the nor- 
malization array Q(u,v) is an 8-bit integer that determines 
the quantization step size. Larger values correspond to larger 
quantization steps. Generally, the components of this array 
are computed such that small values (small quantization 
steps) are associated with low frequencies, and large values 
(large quantization steps) are associated with high frequen- 
cies. The level of compression of an image can be modified 
by changing this array, e.g., by scaling it by a constant. Thus, 
different normalization arrays will yield different compres- 
sion ratios. 

The normalized coefficients are then uniformly quan- 
tized by rounding to the nearest integer. The resulting nor- 
malized and quantized coefficient FNQ(u,v) is given by 

F(u,v) FNQ(u,v) = nearest integer - 
Q(u,v) 

where 

F(u,v) is the coefficient after DCT at pixel (u, v), and Q(u,v) 
is the normalization factor from the quantization table. 

The 75 percent quantization table, which was defined by 
JPEG, is shown in Figure 3. 

The upper-left coefficient in the DCT block is referred to 
as the DC coefficient, while the remaining coefficients are 
called the A c  coefficients. The auantization of the A c  coeffi- 
cients produces many zeros, especially at higher frequencies. 
To take advantage of these zeros, the 2D array of normalized 
and quantized DCT coefficients is formatted into a ID vector 
using the zigzag ordering scheme shown in Figure 4. This 
zigzag ordering rearranges the coefficients in approximately 

Figure 2. Forward DCT coefficients of the block shown 
in Figure 1 (F(u, v)). 

Figure 3. The JPEG-75 quantization table (Q(u, v)). 

decreasing order. Many coefficients towards the end of the 
array are zero. 

Next, the DC prediction is performed, which is a prereq- 
uisite for the coding of the DC coefficient. It is done by sub- 
tracting the DC term of the previous block from the DC term 
of the current block. DC prediction produces a differential DC 
coefficient, which is typically small due to the high correla- 
tion of neighboring DC coefficients. Each differential DC coef- 
ficient is encoded by a variable length code (VLC), such as 
the Huffman code. It represents the number of significant bits 
in the DC term followed by a variable length integer (VLI) rep- 
resenting the value itself. 

In a similar fashion, AC coefficients are coded with alter- 
nating VLC and VLI codes. The vLc table, however, is a two- 
dimensional table which is indexed by a composite 8-bit 
value. The lower 4 bits of the 8-bit value, the column index, 
is the number of significant bits of a non-zero AC coefficient. 
The higher order 4 bits, the row index, is the number of zero 
coefficients which precede the non-zero A c  coefficient. 

The Hierarchical Predictive Coding Scheme 
Hierarchical Predictive Coding (HPC), as described in this 
section, was developed by the authors based on a compres- 
sion scheme for digital video sequences (Florida Atlantic 
University, 1992). The algorithm starts by creating a scale 
level representation of the original image (image pyramid). It 
is derived by smoothing the gray values of the original image 
to a predefined, lower resolution. For instance, a square im- 
age of 1024 by 1024 pixels is decomposed into the following 
five scale levels: 1024 by 1024, 512 by 512, 256 by 256, 128 
by 128, and 64 by 64. The image pyramid is generated by 
convolving higher resolution images with the Gaussian oper- 
ator and reducing the pixel size by half. 

Figure 4. The quantized and normal- 
ized DCT coefficients FNQ(u, v) are 
ordered according to the shown 
scheme. 



Image Pyramid Difference Images 

Figure 5. Graphic representation of the HPC-8.5.3.1 
scheme. 

Difference images are computed between all levels. 
These differences represent the high frequency components 
of the previous level of the image pyramid. The original im- 
age can be reconstructed from its representation at the coars- 
est level (e.g., 64 by 64 pixels), and all the difference images. 
The pixel values of the difference images are usually small; 
therefore, they can be coded and stored by a lower number 
of bits. This would result in a lossless compression of the 
original image. However, in order to achieve higher compres- 
sion ratios, the number of bits of the difference images are 
reduced by quantization, which leads to image degradation 
and lossy compression. 

The w C  algorithm consists of the following steps (see 
Figure 5): 

The image pyramid is created by smoothing the original im- 
age sequentially with a Gaussian operator of size 3 by 3. This 
results in a scale level representation of the original image. 
The difference images at all levels are computed. For in- 

stance, an original image of 1024 by 1024 pixels is replaced 
by one 64- by 64-pixel image and four difference images. 
The values of the highest level image (64 by 64) and the first 
difference image (128 by 128) are stored as 8-bit integers. 
The values of the 2561128 difference image are stored and 
coded as 5-bit integers. 
The values of the 5121256 difference image are stored and 
coded as 3-bit integers. 
The values of the 1024/512 difference image are stored and 
coded as 1-bit integers. 

Using this representation (HPC-8.5.3.1), a compression ra- 
tio of 3.6 can be achieved. For higher compression ratios, the 
difference images are represented by fewer bits. However, 
the degradation of the reconstructed image increases. In our 
experiments, we reached a compression ratio of 4.5 by quan- 
tizing the difference images in the following way: 128: 8 bit; 
256: 3 bit; 512: 3 bit; and 1024: 1 bit. This will be referred to 
as HPC-8.3.3.1 in the next section. 

Experiments and Results 
Both JPEG (baseline system) and HPC image compression and 
decompression software were implemented on a Sun SPARC- 
station 2 to investigate the advantages and disadvantages of 
the two techniques. The quality of the reconstructed images 
was evaluated by the following measures: visual loss of in- 
formation, compression ratio, compression speed, and geo- 
metrical distortion of the image. The algorithms were tried 
out on images containing various levels of entropy, and 
should, therefore, show the influence of the image contents 
on the compression results. The following three images were 
used in our tests: 

A scanned, 8-bit aerial image of Chaco Canyon, New Mexico 
(Figure 6). The size of the image is 1024 rows by 1024 col- 
umns, and the number of bytes to store the original image is 
1,048,576. 
An 8-bit road image captured by a digital camera mounted on 
a van (Figure 7). The size of the image is 1024 rows by 1280 
columns, and the number of bytes to store the original image 
is 1,310,738. 
An 8-bit target image captured during the test-field calibra- 
tion of a digital camera (Figure 8). The size of the image is 

,- - 
C - ,. ., :: 

I.. < '  :. .., . 
krdicrlm-4.6 

. : 
1. .I .> 

Figure 6. Compression results obtained by different algo- Figure 7. Compression results obtained by different algo- 
rithms and quantization levels of a scanned aerial photo- rithms and quantization levels of a high resolution digital 
graph of Chaco Canyon, New Mexico. road image collected from a driv~ng van. 
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Figure 8. Compression results obtained by different algo- 
rithms and quantization levels of a digital calibration im- 
age containing control point targets. 

1024 rows by 1280 columns, and the number of bytes to store 
the original image is 1,310,738. 

Table 1 shows the entropy and the redundancy of the 
three test images. 

The aerial image has the largest entropy, and the target 
image has the smallest entropy, because there are only a very 
few features in the latter image. Thus, the target image con- 
tains the most redundant information, while the aerial image 
contains the lowest amount of redundant information. 

Compression Ratios 
The three images were compressed using the JPEG algorithm 
at different quantization levels and the HPC technique using 
two different quantization thresholds. Table 2 shows the re- 
sulting compression ratios. 

These results clearly show that a large amount of com- 
pression can be achieved when using lossy compression 
schemes. The compression ratio obtained by using lossless 
schemes is limited by the entropy of the image. For example, 
in the lossless compression case of the aerial image, the com- 
pression ratio is 1.3, which is approximately 8 divided by 
the entropy of the image (5.79 bitslpixel). 

The reader should also notice the difference in compres- 
sion ratios for different images at the same quantization 
value. For example, at JPEG quantization level 75, the aerial 
image was compressed only 5.9 times, while the target image 
was compressed approximately 43 times. This difference is 
due to the amount of redundancy available in the target im- 

TABLE 2. COMPRESSION RATIOS DEPENDENT ON IMAGE TYPE AND QUANTIZATION 
VALUE 

age and the large information content in the aerial image. As 
the HPC scheme is not based on transform coding, the com- 
pression ratio is independent of the image contents (en- 
tropy). 

Quality of the Reconstructed Image 
After being compressed by a lossless scheme, the recon- 
structed image is identical to the original image on a pixel- 
by-pixel basis. Lossy schemes cause degradations of the 
reconstructed image in exchange for larger compression ra- 
tios. These degradations of the reconstructed image lead to 
radiometric and geometric distortions. We studied the radio- 
metric as well as the geometric distortions caused by lossy 
schemes. 

For evaluating radiometric distortions, the gray values of 
the reconstructed images were compared to the original im- 
age on a pixel-by-pixel basis. Table 3 presents the radiomet- 
ric distortions (average and mean gray-value differences) of 
the images at different quantization levels. 

These results show that the radiometric distortions de- 
pend to a limited degree on the level of quantization and, 
therefore, increase with the compression ratio. Thus, the ra- 
diometric quality of the reconstructed image deteriorates 
with larger compression. This is especially obvious for the 
JPEG algorithm; a block pattern appears in the reconstructed 
images if the quantization level was selected too low. The 
HPC scheme, on the other hand, causes a blur of the recon- 
structed image. 

The geometric distortions are most important for soft- 
copy photogrammetry as they change the locations of image 
points and, consequently, influence the accuracy of objects 
reconstructed by photogrammetric procedures. For the pur- 
pose of investigating geometric distortions of the recon- 
structed images, 2500 points were defined in the original 
image. In the reconstructed images, their positions were 
found using the least-square matching method. Table 4 pres- 
ents the geometric distortions (in pixels) for different quanti- 
zation levels of the aerial imaee. 

By analyzing Table 4, on: can conclude that geometric 
distortions for compression ratios below 5 are small and can 
be neglected. Thus, it is safe to use these images for precise 
photogrammetric analysis and point determination. Recon- 
structed images from compression levels above 10 can be 
used for tasks that do not require precise point determina- 
tion, such as the extraction and interpretation of features. 

Computing Time 
As the sizes of digital images used in softcopy photogramme- 
try are very large - they range from anywhere between 4K by 
4K (16 MBytes) to 10K by 10K pixels (100 MBytes) - com- 
puting time plays a major role in selecting a compression 
scheme. Computing time is independent of the quantization 
factor and the compression ratio. 

The time required to compress and decompress a 1024 by 
1024 (1-MByte) image on a Sun SPARCstation 2 using the JPEG 

TABLE 3. RADIOMETRIC DISTORTIONS OF RECONSTRUCTED IMAGES DEPENDENT 
UPON QUANTIZATION LEVELS. THE NUMBERS IN EACH COLUMN REPRESENT THE 
AVERAGE AND MEAN DIFFERENCES OF GRAY VALUES OF THE ORIGINAL AND THE 

RECONSTRUCTED I M A G E S  [UNITS: GRAY VALUES] 

Quantization 
Technique value(s) 

JPEG 100 (lossless) 
JPEG 75 (iossy) 
JPEG 40 (lossy) 
HPC 8.5.3.1 (lossy) 
HPC 8.3.3.1 (lossy) 

Aerial Road Target 
Image Image Image 

1.3 2.4 2.9 
5.9 33.3 43.5 

12.5 40.0 62.5 
3.6 3.6 3.6 
4.5 4.5 4.5 

Compression 
technique Aerial Image Road Image Target Image 

JPEG-75 2.65 / 3.06 1.32 / 1.52 0.47 / 0.54 
JPEG-40 3.96 1 4.48 1.43 / 1.64 0.51 / 0.59 
JPEG-5 8.26 / 9.80 2.05 / 2.36 1.72 / 1.98 

HPC-8.5.3.1 1.60 / 1.81 1.58 / 1.78 1.55 / 1.79 
HPC-8.3.3.1 1.62 / 1.89 1.61 / 1.80 1.60 / 1.80 
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Distortions
lcomp. ratiol IPEG-75 15.sl JPEG-40 [12.5] IPEG-5 [42.3j H P C - 8 . s . 3 . 1 [ 3 . 6 ]  H P C - 8 . 3 . 3 . 1 [ 4 . 5 ]

maxrmum x
maxrmum y

RMS in x
RMS in y

17.036
1.2 .572
o.786
0.807

o.292
0.353
0 .038
o.o42

2.654
0.815
o.107
o.102

0.308
o.67L
0.036
0.031

1 . 3 0 3
2 .O75
0 .056
0 .070

algorithm is about 20 seconds. The HPC algorithm needs 7 sec-
onds for the same image size. The JPEG technique is considera-
bly slower because it employs the discrete cosine hansforma-
tion, which is very time consuming. The FIPC scheme is faster
because it is mostly based on convolutions. Therefore, it can
be easily implemented on an array processor to perform real-
time compression for digital image collection. As |PEG is the
established standard for image compression, there are dedi-
cated chips available that compress low resolution images
(e.g., 6a0 by aBO pixels) in real time.

Conclusions
In this article, the popular JPEG compression scheme was
compared to a new algorithm based on the Hierarchical Pre-
dictive Coding (HeC) technique. The HPC technique is faster
and maintains a good geometric and radiometric image qual-
ity. However, we could only achieve small compression ra-
tios. The pnc technique, on the other hand, is rather slow if
implemented in software, but it achieves high compression
ratios that, in extreme cases, cause considerable distortions
of the compressed image. Both radiometric and geometric
distortions were evaluated, and it was found that, for com-
pression ratios smaller than 5, these distortions are smaller
than 1/10 of a pixel and can be neglected. Larger compres-
sion ratios may distort the images considerably and are not
recommended for aerial softcopy photogrammetry. However,
the reader should keep in mind that comoression ratios ob-
tained by IPEG heavily depend on the imige contents (en-
tropy), and, therefore, Iarger compression ratios may be
adequate for machine vision and other close-range applica-
tions.

Image compression is an important topic in softcopy
photogrammetry, as very large digital images (> 100 MBytes)
are commonly used in photogrammetric workstations. Differ-
ent compression schemes are already available in hardware
and, as such, have become an integral part of softcopy sta-
tions. Most commercial compression hardware is based on
the pEG algorithm, which is the industry standard for image
compression.

Image compression alone, however, will not solve all
problems of handling large quantities of digital data. Data-
bases need to be developed to manage digital images in a ge-
ographic information system (crs), and make them easily and
quickly accessible for the user. In a cIS, photogrammetric
images must be tied to a geographic reference system and
should contain the full orientation information, or they
should be available as geocoded or ortho-rectified scenes
which can be directly used as layers of a raster cls.
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