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Abstract 
Traditionally, geographic informa tion systems (GIS) have 
used data generated from remote sensing, but only after the 
data have been preprocessed in some way to provide a suita- 
ble classification. This leads to several weaknesses; the re- 
sulting framework is inflexible and cannot support multiple 
interpretations of the same area. A new model for a GIS is in- 
troduced fhaf includes a set of image understanding meth- 
ods, and expert knowledge governing the application of these 
methods. The methods employed are chosen automatically 
to best emphasize the types of features (rivers, fields, forests, 
etc.) that the user is currently investigating, and the type of 
imagery available. An implementation of the model is de- 
scribed along with details of the knowledge structures and 
image processing methods used. Examples are included to 
show the resulting adaptive nature of image interpretation 
and subsequent inclusion of feature descriptions into the GIS. 

Introduction 
The need to form an integrated environment for remote sens- 
ing data, to encompass both image interpretation and its sub- 
sequent use for geographic analysis and modeling, has 
received much interest of late (Zhou, 1989; Ehlers et al., 
1991). As a consequence, research has been directed towards 
the provision of a data model for this process, often by di- 
recting the output from the image interpretation to the input 
of the geographic database, by utilizing some feature extrac- 
tion process. 

The motivation for this work can be summarized by con- 
sidering the broad spectrum of geographic information sys- 
tem (GIS) users. At one extreme, non-experts would like to be 
able to use remotelv sensed data in GIS a ~ ~ l i c a t i o n s  but do 
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not understand thedprocess involved in changing the-image 
data into a more suitable form. Ideally, their needs should be 
supported, even if they do not wish to understand or be in- 
volved with the process. At the other extreme, expert users 
would like the ability to control the methods involved in ex- 
tracting the spatial descriptions for use within GIS, and to ex- 
periment with different strategies and study their effect on 
the outcome. 

Existing GIS incorporate remotely sensed data most usu- 
ally in the form of a single classified overlay of a scene, 
formed according to established pixel-based spectral classifi- 
cation techniques. The overlay is constructed externally to 
the GIS, often with the aid of an image processing system. A 
good summary of this process is given by De Cola (1989). 
The overlay provides the description for the geographic ob- 
jects of interest (referred to as features) after it is segmented 
into (geometrically) distinct regions. A single overlay often 
represents the only interpretation of the raw data available to 
the GIS and is therefore not ideally suited to some types of 
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problems. The classifications can suffer from being either too 
specific in their application, or too general. While it is rela- 
tively simple to produce more than one scene interpretation 
using existing image processing tools, it is a far from simple 
matter to import more than one classification into a GIs, be- 
cause it causes a conflict over which one should be used. 
Each distinct classification can produce a different spatial 
description for each feature, in terms of both estimated land 
cover and shape. Existing GIS support only one spatial de- 
scription of each feature; worse still, each feature actually 
draws its existence from this single description. 

Proposed Enhancements 
In a data modeling sense, the task of linking semantically the 
results of a scene interpretation process to geographic fea- 
tures (known to the GIS) is called binding (Korth and Silber- 
schatz, 1991). Binding is the general process of joining 
together data from different levels of abstraction within the 
data model. The time at which binding occurs affects the 
flexibility of all database systems. ~ a r l ;  bindings give rise to 
poorer flexibility whereas late bindings increase flexibility, 
usually to the detriment of performance1. Here the binding 
process takes a set of pixels in the raw image data and casts 
it to somehow represent the spatial description of a feature. 
Depending on the application, this process may include a 
vectorizing stage where the boundary pixels are converted to 
vector form. 

The main goal of this work is to allow a single feature in 
the GIS to have more than one geographic description, and, 
in addition, to put off the task of choosing a description until 
the current user task is known; that is, with late binding at 
execution time. By so doing, the description employed can 
be made highly suitable to the current task. 

Example of Adaptive Feature Extraction 
As an example of adaptive feature extraction, consider a GIS 
applied to the analysis of a remotely sensed Landsat TM 
scene containing farmland and a road network. In order to 

'The flexibility issue is similar to that of (say) a network da- 
tabase when compared to a relational database. In the rela- 
tional model, the bindings between the various layers are not 
fixed until query execution time, giving rise to greater inter- 
pretative power because there are no restrictions on how at- 
tributes might be combined. In contrast, database models 
such as network or hierarchical support only fixed, pre-de- 
fined access paths, thus limiting the type of queries that can 
be solved. 
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identify the paddocks where a particular crop is grown, the 
image data could simply be classified, then individual pad- 
docks could be extracted and passed to the G I ~ .  Now instead 
consider a routing task involving the road network. The net- 
work is unlikely to show up well on the classified scene. 
The detection of features such as roads is problematic in 
lower resolution remotely sensed data; the roads often oc- 
cupy a width of less than one pixel in the image; therefore, 
they do not form regions (groups of connected pixels). Their 
presence may be indicated in the raw image only as an alias- 
ing or edge effect. Such features are here said to be linear. 
After performing a classification of the scene, linear features 
often become even more obscure and can be lost altogether, 
because thev are difficult to characterize accuratelv with a 
training set. In order to emphasize them, we must apply an 
entirely different set of tools to the task, involving edge de- 
tection and line following. This in turn produces a different 
inter~retation of the raw data where these features will be 
emphasized, and other features may be less well defined or 
even absent. The point here is that, until the nature of the 
current task is known, it is difficult to provide a suitable in- 
terpretation of the scene. 

The result of applying scene understanding techniques 
to highlight a particular type of feature is here called an im- 
age-view, or view for short. Note that a view is not always 
the same as a traditional classification, but, rather, is more 
akin to the database notion, i.e., as a way of viewing the un- 
derlying data. It is from a view that the spatial description of 
certain individual features is extracted. 

Multiple Spatial Representations 
For many applications it is only necessary to provide a sin- 
gle spatial description for each feature of interest, but there 
are three special cases where multiple representations are ap- 
propriate. 

The first is to support cartographic generalization so that 
the appearance of features can change as the viewing scale is 
changed. For example, an iconic representation of a building 
may be used until the real shape of the building is discerni- 
ble, given the current display scale and resolution of the out- 
put device. A detailed description of this type of feature 
behavior within a GIs is given by Roberts et al. (1991). Sup- 
port for scale-dependent behavior is becoming available in 
some GIS; for example, SMALLWORLD supports a change in 
the presentation of features through a range of display scales. 

The second is in situations where the spatial descrip- 
tions of the features being considered are subject to uncer- 
tainty, either because the data are not accurate enough or the 
feature is by nature not well-defined. An example is where 
land-use change between forest and marginal land is gradual 
and the boundary identified for each individual feature is 
likely to be highly dependent on the different techniques 
used in its production. In existing GIS, the user is typically 
left with no choice as to how such arbitrary decisions are 
made regarding feature extraction, and worse still the users 
may not even be aware of the errors and uncertainties to 
which the methods used can lead. There is a worrying ten- 
dency among GIS users to believe that once a feature has 
been delineated by a series of vectors, then it is entirely cor- 
rect, unambiguous, and reliable (Davis and Sirnonett, 1991). 
By supporting multiple spatial descriptions, expert users can 
be made aware of the margins of error involved and the ef- 
fects on the raw data of different feature extraction policies. 
Hence, the effects of using different image interpretation 
methods on the same feature can be assessed. An expert user 
can choose particular strategies for feature formation, and ex- 
periment with the effects these have on the resulting spatial 
description. 

The third use of multiple representations is where the 
behavior of features over time is to be studied. If some spa- 
tial or spectral property of a feature changes, the feature it- 
self may still be the same (Langran, 1989); that is, its other 
attributes remain unaltered. An obvious example is the 
change in appearance of a paddock in which a harvested 
crop is grown, or the change in shape of a seasonal lake as 
the water level declines. In both cases there may be several 
possible geographic descriptions that could be applied to the 
feature depending on the time of year that the image data 
were captured. To the user the features themselves remain 
persistent, and such changes must somehow be included 
within the overall description of each feature. 

Overview of the GIS 
To support the required increase in functionality, the GIs 
must be extended in several ways. In general terms, a series 
of image analysis tools must be made available, and extra 
functionality must be added to support their use. It is not 
strictly necessary that these tools be physically located 
within the GIS, but rather that their behavior be under the 
control of the GIS. Specifically, the GIS must provide a level 
of functionality beyond that which is normally available, in 
the following areas: 

Support for multiple spatial descriptions of features: 
- to allow different interpretation strategies to be em- 
ployed; 

Ability to create, store, access, and structure the required 
knowledge: 

- to manage the provision of expert knowledge for feature 
extraction; 

Ability to control the behavior of a set of image processing 
tools: 

- to allow feature extraction strategies to be under the 
control of the system or the expert user; and 

Runtime access to the query semantics and information about 
the domain: 

- to ascertain the subject of the query, and the domain in- 
formation required to locate suitable feature extraction 
knowledge. 

Ideally, these extensions would be incorporated into an 
existing, proven GIS. This is theoretically possible but re- 
quires an extremely complex shell to be built that surrounds 
the GIS to somehow include the missing functionality and 
storage structures. Most of this functionality is difficult or 
cumbersome to provide without access to the internal struc- 
ture of a GIS, through source code or low level libraries, and 
consequently the solution adopted here uses a GIS testbed de- 
veloued bv the authors and others as a result of several re- 
search projects. Interested readers are directed towards 
Roberts et aI. (1991) and Roberts and Gahegan (1993). To 
support the work described here, the GIS has been extended 
at the conceptual and physical layer. An additional new 
layer, the view layer, is added to manage the transition from 
raw image data to feature data (Gahegan, 1994). A descrip- 
tion of the functionality of each layer is given below. 

Svstem Architecture 
The system is built as a series of layers, each one being a 
further abstraction of the raw image data, in much the same 
way as is found with conventional databases. The structure 
is an expansion of the general ANSI/SPARC three-layer archi- 
tecture for relational databases that is often used to describe 
conventional (non-spatial) database models. Note that other 
types of spatial data such as classified overlays and feature 
boundaries can also be included directly into the model as 
view data and feature data, respectively. The discussion be- 
low relates to the structure illustrated in Figure 1. 
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Figure 1. An overview of the structure of the GIS showing 
the various layers and bindings. 

Physical Layer 
The physical layer manages the storage and retrieval of all 
forms of data to and from secondary storage. It must contend 
with image data, view data, feature data, and attribute data 
(alpha-numeric data, often referred to as aspatial). Image 
data are always in raster format, while view data and feature 
data may be expressed in raster or vector form. 

View Layer 
The mappings between the physical data and the conceptual 
model of the domain are necessarily more complicated be- 
cause the former contains image data and the latter contains 
features. Hence, the need for some further translation layer, 
the view layer, to bind them together. It is this layer and as- 
sociated mappings that enable the non-expert user to obtain 
features from the image data without necessarily understand- 
ing all the processes and knowledge involved. The image 
processing component resides at this level. It is controlled by 
the knowledge base in the conceptual layer or optionally 
from the external layer in the case of expert user interven- 
tion. The detailed workings of this layer are described later 
under the heading "feature extraction." 

Conceptual Layer 
At the conceptual layer, the GIS is built around geographic 
features. Features are described by means of a specialization 
hierarchy within an object-oriented architecture (Smith and 
Smith, 1977). Various attributes, methods, and behavior are 
associated with each feature type, and together these form 
the class descriptions (Worboys et al., 1991). Knowledge con- 
cerning feature extraction is also included as a series of 
frames (Minsky, 1975) associated with each feature type. 
Note that the spatial description is here just one more attrib- 
ute of a feature, which can now assume more than one 
value. In fact, its value is not fixed until query time, when it 
is instantiated by analyzing the image data according to the 
stored knowledge. 

External Layer 
The external layer is where the user interacts with the GIs. 
At the external layer, various interfaces can be provided that 
form a view onto the conceptual layer, appropriate for a par- 
ticular application. To the user or application program, the 
system contains a set of geographic features of certain pre- 
defined types which can be manipulated together to form 
maps, or produce other types of results. The user interface is 
independent of the type or source of the data. In other 
words, the non-expert user operates on features without 

knowing whether they are defined as such in the physical 
data or are being formed by the system from image data. 

How the System Operates 
At execution time the subject of the current query or opera- 
tion is found. Next, the system supplies an appropriate view 
of the image data, giving the best possible emphasis to that 
subject. To achieve this, the stored knowledge concerning 
feature-type occurrences is examined, and then is applied to 
form the image view before the query is processed. The in- 
formation required to select the most suitable extraction 
frame is taken from the query itself, and also from the cur- 
rent domain (that is, the area under investigation, the time of 
year, the available sources of data) and is determined by 
matching with the frame header. The raw images are then 
manipulated according to the methods detailed in the frame. 
The end result is that a derived spatial representation be- 
comes associated with, or causes the creation of, each feature 
instance. For regional features, this will most often be in the 
form of a set of pixels; however, the representation can be 
given as a set of vectors if this is more appropriate (for linear 
features, or where vectors are more desirable for any opera- 
tions that are to follow). Views created for a particular task 
are usually saved for future reference. Consequently, before a 
new view is created, a check is made to see if the required 
feature data are already available. 

Example of Operation 
The user first selects a dataset, for example, the wheat belt in 
Western Australia (wA): 

"dataset = wa-wheatbelt." 

This determines the domain of study and is used to match 
against frame headers when searching for appropriate knowl- 
edge for feature extraction. The user continues by issuing a 
query such as 

"display all wheat paddocks." 

The subject of the query, "wheat paddocks," is determined 
and the corresponding feature type is located in the object 
hierarchy. The operation to be carried out (in this case, "dis- 
play") can also place restrictions on the suitability of partic- 
ular knowledge frames, depending on such factors as the 
current viewing scale and the preferred style of presentation 
(pixel or vector). From here a search is made through the 
frames, examining the headers to find a frame for extracting 
wheat paddocks in WA. Assuming that appropriate knowl- 
edge and data are available, a suitable frame will be found. If 
this frame has been previously executed, and the required 
features have already been extracted, then the frame simply 
points to the appropriate storage structure where the feature 
data are located. If not, the frame is passed to the feature ex- 
traction process. Here, the methods described in the frame 
are executed and feature descriptions are produced. These 
are then visualized using the appropriate drawing method in- 
herited from the feature class. An example frame for the 
above query, using Landsat TM data, is described later. 

Feature Extraction 
We now turn our attention to describing the additional func- 
tionality required for the integration of feature extraction. 
From the standpoint of computer vision, the design of an in- 
teractive GIS incorporating image analysis tools provides a 
goal-oriented approach that is lacking where image under- 
standing is seen as a separate preliminary process. A prob- 
lem that is often encountered in image understanding is that 
of specifying accurately what constitutes a feature (Marr, 
1982), or, in other words, "what exactly are we looking for?" 
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The meta-data supplied with the image, the user's request, 
and the knowledge base are used together to provide a con- 
text in which a purposeful interpretation can be constructed. 

Structure of the Knowledge Base 
As mentioned above, knowledge concerning feature extrac- 
tion for each feature type is specialized into a number of 
frames, to a degree determined by the sources of the image 
data and the type of operations to be performed. In other 
words, each different appearance of a feature requires a sepa- 
rate frame. For example, roads have a frame describing their 
linear appearance in Landsat TM imagery, and another as 
identifiable regions in high resolution aerial imagery. Wheat 
paddocks may have a number of frames, each specialized to 
different times in the growing season, all from the same sen- 
sor type. 

Figure 2 shows the structure of a frame. As can be seen, 
it consists of three major components: a header, showing un- 
der what circumstances the frame is applicable; a list of at- 
tribute values for shape, size, and spectral response; and an 
ordered series of extraction methods. Attributes values and 
their variance are stored in descriptor slots. Descriptor slots 
are either range descriptors or functional descriptors as 
shown below: 

RANGE { 

R1+ R Z :  PI ;  
R3 + R4 : PZ; 

FUNCTIONAL I 
DIMENSION d; 
TRAININGDATAld]; 
P = F (v.TRAININGDATA; 

I ;  
DEFAULT : Pdefault; 

I ;  

In the first case, a value v is calculated by finding the 
encompassing range (Ra 4 Rb) which yields a membership 
probability to the feature type (Pa). The range evaluators are 
used in situations where a parallel piped classification is suf- 
ficient. This is the case for the attributes "shape" and "size." 
Functional descriptors determine membership probability on 
the basis of a function F. F essentially represents a parame- 
terization of the training data, and is currently used to fit 
normal distributions to spectral signatures. 

Extraction Methods 
The aim is not to create a complete image understanding sys- 
tem but rather to provide a collection of routines which may 
be bound to frames supplying extraction techniques for spe- 
cific feature types. As such, the system relies on an expert 
for configuration, but subsequently enables non-experts to 
make use of the knowledge that has been provided. 

The remainder of the frame shown in Figure 2 specifies 
a series of extraction methods which produce views of the 
data that may be by themselves inconclusive, that is, they do 
not offer a perfect segmentation. Consequently, several differ- 
ent techniques are often used together with the resulting evi- 
dence being combined into a single image view. Feature 
extraction here consists of three stages: preprocessing, pixel- 
based processing, and feature-based processing. Each of these 
stages are now discussed in turn. 

Preprocessing 
Preprocessing selectively reduces the volume of data to be 
considered. With the increasing size of data sets, it is impor- 
tant to reduce the amount of information at an early stage in 
order to restrict the load on subsequent processes, many of 
which are computationally intensive. These preprocesses 
make use of contextual information stored within the feature- 
type frame to discard irrelevant or unimportant parts of the 
dataset. For example, band selection discards spectral bands 
which do not contribute to the extraction of the given feature 

DOMAIN 0 -1 Frame: Feature I---- 

Application 

Constraints 

Instantiated: 

Location constraints: 

Temporal constraints: 

Extraction 
Re-Process: 

Methods. 1 1  Pixel Based methods: 

Feature hased methods: 

Figure 2. Structure of a frame. Slots in the frame indicate 
(1) constraints under which the frame is applicable, (2) 
typical properties for the feature type, and (3) methods 
for extraction. 

type; spatial selection eliminates data which are not coinci- 
dent with the region(s) of interest from further analysis. 

Pixel-Based Processing 
We consider pixel-based processes as a mapping from image 
data into a view. A view, therefore, represents an interpreta- 
tion of the input with respect to a particular process. For ex- 
ample, a maximum-likelihood classifier maps a multibanded 
data set onto a view using training sets of known targets. 
Similarly, an edge detection maps a single data band into a 
view containing edge strength and direction. A view itself 
can become the input to another mapping; for example, an 
edge detection can be followed by a threshold procedure to 
produce line segments. 

Statistical clustering techniques (Duda and Hart, 1973) 
are still the most popular means of interpreting multispectral 
remotely sensed imagery despite extensive research in the 
area of expert and knowledge-based systems (Argialas and 
Harlow, 1990; Wharton, 1987; Ton et al., 1991). One of our 
interests has been to introduce such functionality within a 
practical framework, and to add segmentation tools such as 
edge detectors into the classification process. Edge evidence 
is widely used in computer vision and image processing in 
order to interpret images. A survey on edge detection is re- 
ported by Torre and Poggio (1986). Gong and Howarth (1990) 
used an edge detection as an additional band to a maximum- 
likelihood (ML) classification, essentially as a means of char- 
acterizing texture in SPOT HRV. 

May 1996 PE&RS 



- - 

The fundamental difficulty with edge detections lies in evaluate the uncertainty of such a feature is to simply calcu- 
the definition of an edge. The problem is identifying what late an average of the pixel-based uncertainty values that 
constitutes a significant change in intensity. This involves constitute the feature. In the previous example, the certainty 
specifying the structure of an edge either as a sharp step of a region would be an average of the a posteriori probabili- 
edge, or as a gradual blurred intensity change. Essentially, ties of the defining pixels in the view. 
this is a problem of scale because a gradual blurred edge ap- 
pears as a sharp edge at a greater scale and vice versa. In Combining Evidence 
computer vision the problem may be addressed by scale The combination of evidence from a number of processes of- 
space analysis (Sonka et al., 1993) in which edges are fers two major advantages. First, reliance of the interpreta- 
marked only if they occur at several resolutions within the tion on a single property of a feature type is reduced, and 
image. Essentially, the aim is to detect the same feature at a second, a variety of properties can also be F~~ 
number of generalizations the data. this example, many native forests have a relatively poor spectral 
shifts the problems because it is still necessary to specify a discrimination (caused by irregular tree density), yet may 
range of (theoretically infinite) resolutions and to state how still be identified by virtue of their boundary definition with 
the feature is reconstructed from its multiple detections. We the surrounding areas. Such concepts form the basis of re- 

the problem significance in a more cent work in the attempt to unify results from low-level pro- 
manner. We regard the knowledge concerning the cess to form a more accurate image segmentation (Pavilidis 

resolution of the image and the scale of a particular feature and Liow, 1990). Additionally, by weighting the importance 
type be prerequisite knowledge for feature ex- one attribute over another, we may successfully apply the 
traction which is attached to the relevant frame. For practical same extraction technique to a range of dissimilar feature 
purposes, this means that a fMme contains the processes and types. The problem presented by this approach is exactly 
parameter values which are necessary to extract the given how the various sources of information (or intermediate 
feature type. For example, we know that (as a function of views) may be combined. The approach taken here is to 
scale) roads may appear in Landsat TM imagery as small- defer the formation of spatial descriptions until all available 
scale (aliased) edges; therefore, the smoothing parameter for information has been considered, as opposed to forming the 
the edge detection (Canny, 1986) is set to emphasize descriptions during low-level analysis and subsequently 
edges of this type. this simple technique performs splitting, merging, or discarding them. In this situation the 
quite well, it is often true that there exists no direct relation- low level processing is simply used as a focusing mechanism 
ship between a feature type and the most appropriate pa- to identify areas of the image which may merit further inves- 
rameter values to extract it from it's surroundings. We are tigation. 
currently investigating a more robust, iterative technique in In order to combine evidence, it is either necessary to 
which parameter values are varied strategically based on an define the relationship between each of the sources or to 
evaluation of the results obtained. map each source into the same domain. If we define the do- 

main into which each data set is mapped as the range of 
Feature-Based Processing probabilities representing a particular hypothesis or goal, 
Feature-based methods use the properties and relationships then each contributing data source must only define its be- 
of features as their basis for grouping together the graphical havior with respect to the goal and not with each of the 
elements within a view into spatial descriptions of features. other contributing sources. This concept is similar to the 
Hence, the feature-based descriptions abstract from the pixel- multisource data analysis approach taken by Lee et al. (1987) 
based view of the scene and enable structural characteristics in so far as data are mapped into "data classes" as a bridge 
of the data to be established. Attributes such as size, shape, between the data and user defined "information classes." 
and relationships with other features provide useful cues for Consider the example of using two sources of informa- 
the purposes of interpretation. Recently, a number of re- tion, an edge detection and a classification. Given a specific 
searchers have realized the potential of using, in particular, goal, such as "identify wheat paddocks," we must be able to 
region-based techniques in the analysis of remotely sensed create a mapping from each data set to the goal. Without loss 
data. Nichol (1990) described some basic algorithms and of generality, we may specify the task as the process of ex- 
demonstrated the usefulness of this approach. Bart1 et al. tracting wheat paddock boundaries. The a posteriori proba- 
(1993) showed how region-based analysis can be useful for bilities of a wheat classification are shown in Figure 3a. By 
fusion of information from multiple platforms. Tailor et a]. thresholding these a posteriori probabilities, we obtain 
(1986) used region-based techniques as the basic reasoning regions whose boundary may be determined, and whose 
element in their knowledge-based segmentation system. Sim- probabilities are a function of the pixels they encompass. By 
ilarly, line-based techniques have been used in the automatic assuming that edge strength represents the probability of 
extraction of linear features such as roads (Cleyenbre~~el  et wheat paddock boundaries, we have mapped both data sets 
al., 1990) and lineaments (Wang and Howarth, 1990). into the same domain and may now combine them. Figure 

Once detected, feature attributes such as size, shape, and 3b shows an edge detection of the same area. Figure 3c 
minimum bounding box are calculated and the feature de- shows the combined view of spectral and edge evidence. In 
scription is stored within a persistent feature store, known as this figure, the darker pixels indicate a high probability of a 
a feature database (FDB). In essence, this is the "spatial data- wheat paddock boundary. In essence, we are using Baysian 
base" component of the GIs. The mapping from an image evidence pooling (Pearl, 1988). The domain represents the a 
view to features is not straightforward due to the presence of priori probability of the hypothesis (goal) and evidence from 
uncertainty. There is a decision point where the spatial ex- various sources are used to update the hypothesis: i.e., 
tent of a feature must be determined from the "fuzzy" image 

N 
view. Although uncertainty is still required, it must become O(H l el,  eL, ..., eN) = O(H) I1 L(ek l H) 
feature based, as opposed to pixel based. For example, con- k=l 

sider the mapping of a four-band view representing the a 
posteriori probabilities of a maximum-likelihood classifica- where O(H) is the a priori odds; L(ekI H) is the likelihood of 
tion onto a database of features. To form regions, a single evidence & given Hypothesis H; and 0 (HI el, eZ,  e3, ..., en) is 
label must be assigned to each pixel (in this case, the maxi- the a posteriori odds, given the sources of evidence el, eZ,  ..., 
mum a posteriori value of the four bands). One method to en. The odds of a hypothesis H are defined as P(H)IP( lH) ,  
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(a) (b) 
Figure 3. (a) An extract showing the a posteriori probablllties of wheat. The darker the plxel, the greater the probability of 
wheat. (b) An extract of the same area show~ng edge strength. The darker the pixel, the greater the edge strength. (c) Com- 
blned evidence created by the lntersectlon of two probabilistic sources of informat~on: In this case, edge and region boundary 
ev~dence. 

and the likelihood of a hypothesis H given evidence e is de- 
fined as P(e I H)lP(e I l H ) .  This principle is used in an algo- 
rithm similar in nature to Milgram's convergent evidence 
technique (Milgram and Kahl, 1979). The algorithm can be 
summarized as follows: (1) threshold spectral a posteriori 
probabilities at T, (2) group pixels into regions, (3) determine 
the region boundary, (4) evaluate the intersection of the re- 
gion boundary and the edge evidence using Equation 1 
above, (5) retain region and exit if the a posteriori odds are 
sufficiently high, and (6) increment T and repeat. 

Feature attributes such as shape and size can be used as 
an additional source of (derived) evidence. For example, con- 
sider a region with an attached probability P (wheat pad- 
dock). A size descriptor for wheat paddocks can be used to 
obtain the conditional probability of wheat paddocks given 
the size of the current region. This conditional evidence is 
viewed as an independent source of information and is used 
to update the probability of the region. 

Figure 4 shows a frame describing the extraction tech- 
niques used for identifying wheat paddocks from Landsat TM 
imagery. The frame header indicates that this particular se- 
quence of extraction techniques is relevant only within a 
limited context as specified by the query and the domain. A 
Canny edge detection of band 4 provides the necessary edge 
evidence. (Band 4 was selected because it is the best discri- 
minant for vegetation and because a multispectral edge de- 
tection was not available.) A Mahalanobis distance metric 
and a training set for wheat paddocks, stored in  a descriptor 
slot of the current frame, are used to map the multispectral 
data onto a posteriori probabilities. This information is com- 
bined using the algorithm described above, and the resulting 
regions are stored in the feature database. 

Results 
Figure 5 shows the results of applying the frame shown in 
Figure 4 to a TM scene of a section of the West Australian 
wheat belt. Wheat regions are shown hatched and overlaid 
on a false color composite of bands 3, 4, and 5. Much of the 
area (particularly in the top and bottom right part of the ex- 
tract) suffers from salt damage, resulting in a reduced crop, 
especially in the valley floors. 

Figure 6 demonstrates how a number of spatial represen- 
tations of the same feature can be obtained by manipulating 
formation constraints. Figure 6a shows a close up of region 
"A" in Figure 5, which was formed by identifying regions 
with a probability of wheat higher than 0.7 as hatched. In 
Figure 6b, this constraint has been increased to 0.8. This 
form of analysis can be used to determine upper and lower 
bounds for the spatial extents of a feature. The difference be- 
tween the two, in this case, indicates areas of crop damage 
caused by salination. By using a fairly unconstrained ap- 
proach, the regions produced approximate to the paddock 
boundaries, and hence are useful for cadastral type opera- 
tions. By tightening the constraints, the regions give a more 
true indication of the actual area of cover attributable to the 
various ground conditions, and are more useful, for example, 
in determining estimates of crop yield. At run time, one is 
selected in preference based on the type of analysis to be 
performed. 

Figure 7 again shows a situation where two distinct spa- 
tial representations have been formed from a single image. 
Figure 7a shows how a classification misrepresents roads 
(shown as a series of small fragmented dark regions running 
through the largest gray region). In some cases, the repre- 
sented width of the road is three pixels wide, or 90 metres at 
the scale of Landsat TM. The actual width of roads in this 
area is around 10 to 15 metres. In Figure 7b, pixels lying on 
or near the road that are not part of a neighboring feature are 
reclassified, and the road is represented more faithfully as a 
series of vectors, shown as a pair of parallel dark lines. A 
more detailed discussion of this work is presented in Flack 
et al. (1994). Both the pixels in Figure 7a and the arcs and 
nodes in Figure 7b are part of the description of the same 
road features. For most work within a GIS, the representation 
shown by Figure 7b will be chosen over Figure 7a because it 
has the property of connectedness. 

Conclusions 
An extended GIS has been developed that encompasses an 
image interpretation system. The binding between the images 
and features of interest is delayed until run time, and this 
approach gives more flexibility in scene interpretation than 
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Figure 4. A graphical overview of a part of 
the feature-type frame showing the meth- 
ods used for the extraction of wheat pad- 
docks from Landsat TM data of Western 
Australia. 

is currently available when using image processing as a pre- 
cursor to the GIS. The results presented demonstrate the 
adaptable behavior of the system when presented with differ- 
ent types of queries. By using a variety of independent image 
processing tools and combining the results, the accuracy 
(and usefulness) of the resulting interpretation is improved. 

One aspect of knowledge still missing from the system 
described is that of image selection. Various features are dif- 
ferentiated most accurately from specific image sources or at 
specific times in the year. For example, images captured at 
full crop may give the best results when looking for wheat 
paddocks. Knowledge of this type should be used to impose 

(a) 
(b) 

Figure 6. (a) Close up showing wheat region "A" of Fig- 
ure 5. (b) Feature "A" extracted with the constraint of re- 
taining areas whose probability of wheat is greater than 
0.8, given multiple sources of evidence. 

Figure 5. Wheat coverage overlaid on a false color composite of bands 
3, 4, and 5 Landsat TM of the West Australian wheat belt. 

an order on the frames so that the images most likely to give 
good results are used first (and as the default). 

The use of a knowledge base presupposes that expert 
knowledge is available and can be gathered at an appropriate 
level of detail for the tasks to be carried out. The initial costs 
involved in configuring a knowledge base are high, and this 
must be justified by considering the number of non-expert 
users to whom the system becomes useful as a result of this 
effort. 

The use of GIS for all manner of spatially oriented prob- 
lems is increasing, as is the desire to have access to up-to- 
date remote sensing data. It is this reason, along with the 
trend for GIS to be used by non-experts, that motivates the 
work described here. 

There is, of course, more work to do. Specifically, we 
are keen to build some automated means of query evaluation 
into the system that can modify expert rules in the light of 
user feedback. We are presently investigating the tracking of 
recognized features between temporally sequenced images as 
a means of monitoring land-use change. 
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