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Abstract ses, the classification procedures generally used to produce a 

~ ~ t i f i ~ i ~ l  neural networks are attractive for use in the classi- land-cover map are "hard" techniques which force allocation 
fication of land cover from remotely sensed data. In common to One class. Moreover, depending on the nature of the mix- 
with other classification approaches, artificial neural net- ture and its composite spectral response, the allocated class 

works are used typically to derive a "hard" classification, need not even be one of the pixel's component classes 

with each case (e.g., pixel) allocated to a single class. How- 1987). 

ever, this may  not always be appropriate, especially i f  mixed The proportion of mixed pixels generally increases with 
pixels are abundant in the data set. This paper investigates a coarsening of the spatial resolution of the sensing system 
the potential to derive information on the land-cover compo- (Townshend and Justice, 1981; Crap~er ,  1984). Consequently, 
sition of mixed pixels from an artificial neural network clas- the effects of the mixed pixel problem may be felt most 
sification. The approach was based on relating the activation strongly when reso- 

level of artificial neural network output units, which indicate lution data sets. Unfortunate1~, many regi0na1 global 
the strength of class membership, to land-cover composition, scales studies are often constrained to the use of relatively 
Two case studies are discussed which illustrate that the coarse spatial resolution sensor data. At regional to global 
vation level of the artificial neural outputs them- scales, however, existing land-cover data sets are known to 

selves were not strongly related to pixel composition. be of poor quality, and remote sensing is the only feasible 
However, re-scaling the activation levels, to remove the bias approach for land-cover mapping (Townshend et ~ l . 1  lggl; 

towards very high and low strengths of class membership im- DeFries and Townshend, 1994). For instance, maps of tropi- 
posed by the unit activation function, produced measures cal vegetation are required to assess the role of land-cover 

that were strongly related to the land-cover composition of change, particularly deforestation$ On the global 
mixed pixels. In both case studies, significant correlations (Wisniewski and Sampson, 1993). The available land-cover 
(a11 r > 0.8) between the re-scaled activation level of an out- data sets, however, vary considerably and, consequently, es- 
put unit and the percentage cover of the class associated timates of phenomena such as deforestation vary markedly 
with the unit were obtained. (Grainger, 1993; Curran and Foody, 1994), limiting our un- 

derstanding of the carbon cycle. Although remote sensing 

Introduction has considerable potential for mapping tropical land cover, 

Remotely sensed data have been used to map land cover at a the only practical sensing Use is the AVHRR 

range of spatial and temporal scales. The accuracy and value which has a relatively coarse spatial resolution, 1.1 km at 
of the derived land-cover maps are dependent on a range of best. The large proportion of mixed pixels in AVHRR data can 

factors related to the data sets and methods used. ~ h ~ ~ ,  for lead to significant errors in the estimation of forest extent 

example, the accuracy of maps derived from conventional and its change over time et ~ l .2  lggl; SkO1e and 

supervised image classification techniques is a function of Tucker* lgg3; Curran and FOOdyj lgg4). 

factors related to the training, allocation, and testing stages of "hard" image techniques 

the classification (e.g., Swain, 1978; Thomas et al., 1987). may therefore provide a poor representation of the distribu- 
conventional image classification techniques assume that tion of land cover and be a poor base for the estimation of 

all the pixels within the image are pure, that is, that they the areal extent of land-cover classes. In some applications it 

represent an area of homogeneous cover of a single land- is therefore desirable to unmix pixels into their component 

cover class. This assumption is often untenable with pixels Parts. A range mixture have been devel- 

of mixed land-cover composition abundant in an image. oped for this task (e.g., Clark and Canas, 1993; Holben and 
These land-cover class mixes may arise horn the gradual in- Shimabukuro, 1993; Settle and Drake, 1993). Of these, linear 
tergradation of continuous land-cover classes (Csaplovics, mixture models are the most widely used. These, however, 

1992; Foody et al., 1992) or, perhaps more commonly, as a be as the 
consequence of the relationship between the sensor's spatial ten including normally distributed data as we11 as linear 
resolution and the fabric of the landscape (Irons et a]., 1985; mixing, are often untenable. One simple alternative approach 
Campbell, 1987). Irrespective of their origin, mixed pixels which is widely available, and may be appropriate when the 
are a major problem in land-cover mapping applications. For aim is to map land cover, is to "soften" the classification 

example, while a mixed pixel must contain at least two clas- 
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output. A softened classification output would indicate the 
strength of class membership a pixel had to each class, not 
just the code of the class with which it had the highest 
strength of membership. For each pixel, the strengths of class 
membership derived in the classification may be related to 
its land-cover composition (Fisher and Pathirana, 1990; 
Foody et al., 1992). Fuzzy classification techniques are at- 
tractive here as the concept of a pixel having a degree of 
membership to all classes is fundamental to fuzzy-sets-based 
techniques (Bosserman and Ragade, 1982; Klir and Folger, 
1988). However, it is possible to soften other classifiers, in- 
cluding, for instance, the widely available maximum-likeli- 
hood classification (Wang, 1990; Foody et al., 1992; Maselli 
et al., 1994). Whatever the technique used, the basic aim is 
to relate the land-cover composition of pixels to measures of 
the strength of class membership derived from the classifica- 
tion. Ideally, the measures of the strength of class member- 
ship would reflect the land-cover composition of a pixel. 
Thus, the output for a pure pixel, representing an area of ho- 
mogeneous cover of one land-cover class, should be a very 
high strength of membership to the actual class of member- 
ship and negligible strength of membership to other classes. 
Alternatively, in the output for a mixed pixel the strengths of 
class membership derived should reflect the relative coverage 
of the land-cover classes in the area represented by the pixel. 

A major problem with the fuzzy-sets and probabilistic 
methods is that they are slow and computationally demand- 
ing. For analyzing large data sets and rapid processing, 
which will be vital in the EOS era when a data rate in the 
order of 1Tb per day is expected from the EOS sensors alone 
(Gershon and Miller, 1993), alternative techniques are re- 
quired. One particularly attractive approach is the use of ar- 
tificial neural networks. These are non-parametric techniques 
which have been shown to generally be capable of classify- 
ing data as or more accurately than conventional classifiers 
(Benediktsson et al., 1990; Foody et al., 1995). Furthermore, 
although there may be problems associated with training an 
artificial neural network, particularly in relation to over- 
training and training time (Benediktsson et al., 1993; Harn- 
merstrom, 1993), an artificial neural network, once trained, 
may classify data extremely rapidly as the classification pro- 
cess may be reduced to the solution of a large number of ex- 
tremely simple calculations which may be performed in 
parallel (Aleksander and Morton, 1990; Schalkoff, 1992). Ar- 
tificial neural networks have, however, traditionally been 
used to provide a hard classification (e.g., Kanellopoulos et 
al., 1992). The aim of this paper is to assess the potential to 
derive information on the land-cover composition of mixed 
pixels from measures of the strength of class membership 
that may be derived from an artificial neural network classifi- 
cation. 

Artificial Neural Network Classification 
Although artificial neural networks have a wide range of po- 
tential applications in remote sensing, their main use has 
been for image classification. Of the range of network types 
and architectures (Davalo and Naim, 1991; Schalkoff, 1992), 
classification has generally been achieved with a basic lay- 
ered, feedforward network architecture (Schalkoff, 1992). 
Such networks may be envisaged as comprising a set of sim- 
ple processing units arranged in layers, with each unit in a 
layer connected by a weighted channel to every unit in the 
next layer (Figure 1). The number of units and layers in  the 
artificial neural network are determined by factors relating, 
in part, to the nature of the remotely sensed data and desired 
classification, with an input unit for every discriminating 
variable and an output unit associated with each class in the 
classification. Typically, the output from the network is a 
hard classification, with only the code (i.e., nominal value) 

of the predicted class of membership indicated for each 
pixel. 

To derive a measure of the strength of class membership, 
and thus soften the output of the classification, it is impor- 
tant not to treat the artificial neural network as a black box 
that simply transforms input data into a class allocation, but, 
rather, focus on the way data are processed in  the network. 
Each unit in the network consists of a number of input chan- 
nels, an activation function and an output channel which 
may be connected to other units in the network. Signals im- 
pinging on a unit's inputs are multiplied by the weight of the 
inter-connecting channel and are summed to derive the net 
input (net,) to the unit 

where w, is the weight of the interconnection channel to unit 
j from unit (or input) i, o, is the output of unit i (or external 
input i), and n is the number of connections to unit j (Figure 
1). This net input is then transformed by the activation func- 
tion to produce an output (0,) for the unit (Rumelhart et al., 
1986; Aleksander and Morton, 1990; Schalkoff, 1992). There 
are a range of activation functions that may be used but typi- 
cally a sigmoid activation function such as 

where A is a gain parameter, which is often set to 1,  and a 
bias weight are often used (Schalkoff, 1992). 

The values for the weighted channels between units are 
not set by the analyst for the task at hand but rather deter- 
mined by the network itself during training. The latter in- 
volves the network attempting to learn the correct output for 
the training data. Conventionally, a backpropagation learning 
algorithm (Rumelhart et a]., 1986; Aleksander and Morton, 
1990) is used which iteratively minimizes an error function 
over the network outputs and a set of target outputs, taken 
from a training data set. Training begins with the entry of the 
training data to the network, in which the weights connect- 
ing network units were set randomly. These data flow for- 
ward through the network to the output units. Here the 
network error, the difference between the desired and actual 
network output, is computed. This error is then fed back- 
ward through the network towards the input layer, with the 
weights connecting units changed in proportion to the error. 
The whole process is then repeated many times until the er- 
ror rate is minimized or reaches an acceptable level, which 
may be a very time consuming process. Conventionally, the 
overall output error is defined as half the overall sum-of-the- 
squares of the output errors, which, for the pth training pat- 
tern, is 

where tpl is the desired output, o,, is the actual network out- 
put of unit j, and m is the number of units in the output 
layer of the network. The accumulated error after one com- 
plete pass of the training set, the total epoch error, is 

where r is the total number of training patterns. 
On each iteration, backpropagation recursively computes 

the gradient or change in error with respect to each weight, 
aElaw, in  the network, and these values are used to modify 
the weights between network units. The weights are changed 
by 
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Figure 1. Classification of remotely sensed data by an artificial neural network. The 
input data typically comprises a set of multispectral data, although it may also in- 
clude, for instance, measures of image texture or ancillary data, and there is one in- 
put unit for each variable. In the output layer of the network there is one unit for each 
class in the classification. The number of hidden units and layers may be hard to de- 
termine, with the decision typically based on the results of trial investigations. Each 
unit in the network receives signals which it sums before passing through a function 
(J") to determine the output from the unit, which may form part of the input of other 
network units. Two artificial neural networks were used in this paper. This  figure is 
based on the network used for the analysis of the ATM data of the Swansea test site. 
It is a four-layered network with three units in the input layer (one for each waveband 
used), three units in the output layer (one associated with each class), and 12 hidden 
units divided equally between two hidden layers. For the analysis of the Landsat Mss 
data of the Ghanaian test site, a three-layered network comprising one input unit, two 
hidden units, and two output units was used. 

where APwli is the change for the weight which connects the 
jth unit with its it" incoming connection, p is a constant that 
defines the learning rate, E,,, is the computed error, and o,,, is 
the value of the ith incoming connection; often, the previous 
weight change is also used to add momentum to learning. 
For training by epoch, an overall correction to a weight is 
made after each presentation of all the training data and is 

The calculation of the error, E,,, varies for output and hidden 
units. Because the desired output is known for the training 
data, the error for the output units may, assuming the use of 
a sigmoid activation function with A = 1, be calculated from 

whereas for a hidden unit, whose outputs are connected to k 
other units, the error is defined in proportion to the sum of 
the errors of all k units as modified by the weights connect- 
ing these units by 
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Once the error has declined to an acceptable level, 
which is often determined subjectively, training ceases and 
the network is ready for the classification of cases of un- 
known class membership. In the classification each case is 
allocated to the class associated with the output unit with 
the highest activation level (i.e., the class associated with the 
output unit with the largest 0,). Further details on artificial 
neural network learning may be found in Rumelhart et al. 
(1986), Aleksander and Morton (1990), and Schalkoff (1992). 

By outputting solely the code of the class associated 
with the unit in the output layer with the highest activation 
level, information on the magnitude of the activation level of 
the output units is wasted in the same way that maximum- 
likelihood classification is wasteful of information by dis- 
carding the probability of class membership (Wang, 1990; 
Foody et al., 1992). The activation level of an output unit, 
however, indicates the strength of membership of a pixel to 
the class associated with the output unit. Typically, the acti- 
vation level of a unit lies on a scale from 0 to 1 which re- 
flects the variation from extremely low to extremely high 
strength of membership to the class associated with the out- 



Figure 2. ATM image acquired in the 605 to 625-nm waveband for the test site adjacent to 
the University of Wales Swansea. The approximate location of the test site is highlighted by 
the box. 

put unit. The aim of this paper is to determine if the magni- 
tude of the output unit activation levels may be related to 
the land-cover composition of mixed pixels. 

Data and Methods 
Two test sites and data sets which provided different mix- 
ture problems were used. First, airborne thematic mapper 
(ATM) data acquired in 11 wavebands by a Daedalus 1268 
sensor with a spatial resolution of approximately 1.5 m along 
a north-south flight line over the University of Wales Swan- 
sea were used. To simplify the analysis, only a subset of the 
wavebands recorded were used, and attention was focused 
on a 0.05-km2 area adjacent to the University campus (Figure 
2). Because ATM data have generally been found to be three- 
dimensional in character for a range of land covers, with the 
main dimensions relating to reflectance in the visible, near 
infrared, and middle infrared wavelengths (Townshend, 
1984; Weaver, 1987), only the data acquired in three such 
wavebands were used. These were the data acquired in the 
605 to 625-nm, 695 to 750-nm, and 1550 to 1750-nm wave- 
bands. 

The test site was comprised mainly of three land-cover 
classes: trees, grass, and asphalt (car park). All other classes 
(e.g., buildings, cars) were excluded from the analysis. For 
the purpose of this investigation, all the pixels in this image 
were assumed to be pure, that is, to comprise a homogene- 
ous cover of one class. On the basis of this assumption, the 
image was classified into the three classes, and the class allo- 
cation was found to be correct for a sample of 30 pixels. 
This classification was used as the reference data in the eval- 
uation of the relationship between the artificial neural net- 
work output unit activation levels and the land-cover compo- 
sition of pixels in a coarser spatial resolution image. For the 
purpose of this paper, the coarser spatial resolution image 
was simulated by degrading spatially the original ATM image 
with an 11 by 11 low-pass (mean) filter. This spatially de- 

graded image was taken to represent an image of the same 
region as the original image but with a coarser spatial resolu- 
tion; in reality, the degraded image is only an approximation 
of a coarse spatial resolution image. For each pixel in the 
spatially deeaded image, it was possible to determine the 
proportion of each of the three land-cover classes it con- 
tained from the classification of the spatially undegraded 
data. Although not ideal, the use of a classification of fine 
spatial resolution data to evaluate the performance of classifi- 
cations of coarse spatial resolution data has been used in 
other studies (e.g., Iverson et al., 1989; Spanner et al., 1989). 
From the spatially degraded image, the DN of 50 pixels in 
each of the three wavebands and their corresponding land- 
cover composition data were extracted. At least five of these 
pixels were located in regions that were of homogeneous 
cover of each land-cover class. These 15 pure pixels were 
used to train the artificial neural network. 

The second data set was an approximately 2200-kmz ex- 
tract from a cloud-free Landsat MSS image of southern 
Ghana, West Africa (Figure 3). Moist evergreen and moist 
semi-deciduous forest predominate in this region (Hall and 
Swaine, 1981; Whitmore, 1990) and are bordered typically 
by savanna, much of which is used for agro-forestry and agri- 
culture. The boundary between the forest and savanna was 
abrupt and may have been sharpened by fire within the sa- 
vanna (Hall and Swaine, 1981). To simplify the analysis, 
only the data in the 800- to 1100-nm waveband (near infra- 
red) were used. The data in this waveband only were se- 
lected because, relative to the data acquired in the other 
wavebands, the effects of atmospheric attenuation were mini- 
mized and the contrast between forest and non-forest was 
high (Malingreau ef al., 1989). 

As with the analyses of the data for the Swansea test 
site, the original image was degraded spatially to simulate a 
coarse spatial resolution data set. The land-cover composi- 
tion of the pixels in this simulated coarse spatial resolution 
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training pixels were found to be correctly classified by the 
data set could then be derived from a classification of the artificial neural network. Furthermore, for each pixel the ac- 
original, undegraded spatially, image. Because the character- tivation level of the artificial neural network output unit as- 
istics of the Landsat MSS sensor and imagery are relatively sociated with the actual class of membership was very high, 
well-known, it was possible to derive a more realistic simu- while those of the other output units were negligible (Table 
lated coarse spatial resolution image than with the imagery 1). For these pure pixels, the artificial neural network was 
of the ATM data of the %vansea test site. The Landsat MSs therefore able to provide a very accurate and hard classifica- 
image had been resampled to 57-m pixel size with a cubic tion, with high activation levels associated only with the ac- 
convolution resampling algorithm. It was then degraded to tual class of membership. For a mixed pixel, however, it may 
simulate imagery with a spatial resolution of 1 .2  km, aPProx- be anticipated that the magnitude of the activation level of 
imately that of NoAA AVHRR data, using a filtering approach an output unit would be related to the coverage of the asso- 
similar to that described by Justice et al. (1989) which pro- ciated land-cover class in the pixel. 
vides a set of co-registered imagery that may be considered The DN for the 35 pixels of variable land-cover composi- 
identical in all aspects except spatial resolution. For each tion were then input to the artificial neural network, and the 
pixel in the simulated coarse spatial resolution image, the activation levels of the output units were derived. Because 
percentage which was forest covered was derived from a for- the land-cover composition of each of these pixels was 
est/non-forest classification of the original, undegraded spa- known, the relationship between the magnitude of the activa- 
tially, Landsat MSS image. In the absence of accurate ground tion level of the output unit associated with a class and the 
data, the forest cover estimates derived in this way were percentage cover of that class could be derived. These rela- 
used as the reference data, although, as with the analyses of tionships are shown in Figme 4, which show that the output 
the ATM data set, they are themselves only an approxima- unit activation levels were typically high or low with little 
tion. In total, 89 pixels were sampled from the simulated variation between the extremes. Thus, for each class the acti- 
coarse spatial resolution image and their DN were extracted vation level of the unit associated with it in the output layer 
for the analysis. The DN of 1 2  pixels located at each end of was typically close to 1 if the pixel comprised 50 percent or 
the forest cover continuum were used to train the artificial more of that class or was otherwise close to 0. These results 
neural network. The remaining 65 pixels had variable forest 
cover and were used to assess the relationship between the 
activation level of the artificial neural network output unit TABLE 1. ACTIVATION LEVELS OF THE ARTIFICIAL NEURAL NETWORK OUTPUT UNITS 
associated with forest and the percentage of the pixel forest FOR THE CLASSIFICATION OF THE 15 PURE PIXELS USED TO TRAIN THE ANALYSIS. 
covered. 

The analyses were performed with a fully connected Actual Activation level of output unit associated with: 
Class Trees Grass Asphalt feed-forward artificial neural network. The Quickprop learn- 

ing algorithm, a variant of the backpropagation learning 0.999218 0.000552 0.000205 
technique outlined above, was used as it may speed-up net- 0.999555 0.000192 0.000299 
work learning and has been shown to be superior to back- Trees 0.999509 0.000241 0.000268 

propagation in some situations (Fahlman, 1988). Relatively 0.999491 0.000244 0.000276 
rapid training is achieved with Quickprop as information 0.999558 0.000186 0.000307 

0.000403 0.999477 0.000264 computed during the previous training epoch, particularly 0.000397 0.999438 0.000293 
the previous error derivative (dEldw(,+,,), is used. With Quick- G~~~~ 0.000396 0.999434 0.000296 
prop, the weight update is achieved by 0.000398 0.999450 0.000286 

0.000397 0.999443 0.000291 
(aE/a~,~,) .Aw~~+,~ o.000383 o.oo0307 0.999444 

Aw'" = (dE/dw,,-,,) - (dE/dwJ (9) 0.000386 0.000293 0.999459 
Asphalt 0.000395 0.000265 0.999485 

where t indicates the iteration number (Fahlman, 1988). 0.000393 0.000287 0.999451 
0.000392 0.000293 0.999441 

The artificial neural network architecture for each analy- 
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Flgure 3. Extract of the Landsat MSS Image acquired in 
the 800 to 1100-nm waveband showing trop~cal forest, in 
darker tone, in southern Ghana. 

sis was derived from a series of trial investigations. For the 
analyses of the ATM data, a four-layered network was used. 
This had three input units, one for each of the wavebands 
used, and three output units, one for each class (Figure I). 
The two hidden layers each comprised six units. For the anal- 
yses of the Landsat MSS data, a simpler architecture was 
used, comprising just one input unit, two output units, and 
one hidden layer made up of two units. The parameters for 
the learning rate, decay, and maximum growth factor were 
set at 0.5, 4.0, and 1.75, respectively, which are within the 
range of values often used (Fahlman, 1988; NCS, 1992: Pau- 
gam-Moisy, 1993). Both networks were left to run for 700 iter- 
ations, although the error rate in each analysis had stabilized 
much earlier. 

Results and Discussion 
With the ATM data, the artificial neural network was trained 
using the five selected pure pixels of each class. The quality 
of the trained network was evaluated by determining the ac- 
curacy with which it could classify the training data; al- 
though this will give an inflated estimate of inter-class sepa- 
rability (Swain, 1978), it will provide a guide to the ability of 
the network to discriminate between the three classes. All 15 
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Figure 4. Relationship between the percentage cover of a 
class in the area represented by a pixel and the activa- 
tion level of the artificial neural network output unit asso- 
ciated with that class. 

indicate a fairly hard analysis and only a limited potential to 
derive information on the land-cover composition of mixed 
pixels from the activation level of the artificial neural net- 
work output units. 

The activation level of an output unit is a function of 
the net input to it (net,) and the unit's activation function. 
Here the latter was a conventional sigmoid activation func- 
tion (Equation 2). This activation function aims to encourage 
the output from a unit towards 0 or 1 (Aleksander and Mor- 
ton, 1990; Schalkoff, 1992). Although this was useful in 
training the network, because the training set was composed 
of pure pixels and the network was attempting to unambigu- 
ously learn the training data, it provides a distinctly non-lin- 
ear measure of the strength of class membership. The output 
unit activation levels could, however, be re-scaled to remove 
the bias towards very low and high values imposed by the 
unit activation function. This was achieved here by deriving 
the net input (net,) to the output units, by re-writing Equa- 
tion 2, and relating this measure to the land-cover composi- 
tion of the pixels. These re-scaled activation levels could be 
considered equivalent to the output that would have been 
derived if the output unit activation function had been 
switched, after training, to a linear function, with the only 
difference being that the activation function would act to re- 
scale the values to lie on a o to 1 scale. 

The relationship between the re-scaled output unit acti- 
vation levels and the land-cover composition of the pixels 
was assessed. The re-scaled activation levels were found to 
be more strongly related to the land-cover composition than 
the original network outputs (Figure 5); with Spearman rank 
correlations of 0.923, 0.836, and 0.808 observed for the rela- 
tionships between the percentage cover of a class and re- 
scaled activation level of the unit associated with that class 
for the trees, grass, and asphalt classes, respectively (all the 
correlations were significant at the 99 percent level of confi- 
dence). Moreover, these results compare favorably to those 
derived using other approaches to unmixing the land-cover 
composition of pixels (Foody and Cox, 1994). 

The results of the analysis of the ATM data indicated 
some potential for the estimation of the land-cover composi- 
tion from an artificial neural network classification if atten- 
tion focused on the re-scaled activation levels. This was 
investigated further for the simpler, but more practical, two- 
class situation with the Landsat MSS data. Furthermore, the 
approach used to spatially degrade the Landsat M s s  imagery 
provided a better simulation of a coarse spatial resolution 
image than that used on the ATM data. 
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Figure 5. Relationship between the percent- 
age cover of a class in the area represented 
by a pixel and the re-scaled activation level 
of the artificial neural network output unit as- 
sociated with that class. 
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The artificial neural network for the analysis of the spa- 
tially degraded Landsat MSS data was trained using the 1 2  
pure forest pixels and 1 2  pure non-forest pixels. Once 
trained, the remaining 65 pixels sampled from the data were 
input to the artificial neural network, and the activation level 
of the output units for each pixel was derived. The activa- 
tion level of the output unit associated with the forest class 
was then related to the percentage forest cover for each pixel 
(Figure 6). As with the results from the analyses of the ATM 
data set, although more apparent in this simpler situation, 
the output was relatively hard, with the activation level of 
output units close to 1 if the pixel contained more than 50 
percent forest cover, or else close to 0. 

To compensate for the bias towards high and low activa- 
tion levels imposed by the unit activation function, the acti- 
vation levels derived from the unit associated with the forest 
class were re-scaled. As with the ATM data set, the re-scaled 
activation levels equated to the net input into the output unit 
associated with the forest class, derived from Equation 2. 
The re-scaled activation levels derived showed a strong posi- 
tive relationship with the percentage of the pixel area that 
was forested (Figure 7). Because the relationship was linear 
and based on a relatively large sample, its strength was eval- the data [e.g., some assume normally distributed data, linear uated with a linear correlation. The correlation coefficient mixing, etc.), may require large training sets, and may be 
obtained, r = 0.94, was significant at the 99 percent level of computationally slow and demanding. of the range of alter- 
confidence. Furthermore, given the simplicity of this mixture native approaches that could be used, neural net- 
problem, two classes and one waveband of data, it should be works have been shown to have considerable potential, 
noted that the relationship between the re-scaled activation Although, in classification applications, artificial neural 
level of the output unit associated with the forest class and networks have typically been used to derive a conventional 
the percentage forest was stronger than that between image hard allocation, it is, as with other classifiers, possible to 
tone (DN) and percentage forest cover (r = -0.91). soften the classification output. Thus, instead of simply allo- 

These results indicate the potential to derive accurate es- cating each pixel to the class associated with the most highly 
timates of the land-cover composition of mixed pixels from activated unit in the output layer, the magnitude 
an artificial neural network classification and indicate future of the activation level for all output units could be derived. 
avenues of research. The output unit activation levels could, This information would indicate the strength of class mem- 
for instance, be used to indicate the quality of classification bership a pixel has to all the classes and may be related to 
allocation on a per-case basis, and so indicate uncertainty in the land-cover composition of the pixel. The potential of us- 
the classification which may be beneficial to some later users ing the activation level of artificial neural network output 
of the classification. Different results may be obtained from units to unmix the land-cover composition of mixed pixels 
the use of other unit activation functions, and this is cur- was investigated with reference to two case studies. 
rently under investigation. However, activation functions In both case studies, an artificial neural network was 
such as the sigmoid are beneficial in training the artificial trained on a set of pure pixels as in a conventional statistical 

network. It therefore generally be most a ~ ~ r o ~ r i -  supervised classification; training on mixed pixels may also ate to use an activation function such as the sigmoid but to be beneficial (Foody, 1995) but this was not investigated 
re-scale the output unit activation levels to remove the bias here. For each pixel in an independent testing set, the activa- 
towards high Or low The use of such an approach tion level of all the network output units was derived and re- 
in the two case studies discussed above provided outputs 
which were strongly correlated with the land-cover composi- 
tion of mixed pixels. 

Summary and Conclusions. 
Mixed pixels may be a major problem in some analyses of 
remotely sensed data. A land-cover classification, for exam- 
ple, assumes pixels to be pure and allocates each pixel to a 
single class. Clearly, a mixed pixel cannot be usefully repre- 
sented by such a classification, resulting in a poor model of 
the spatial distribution of the land-cover classes and errone- 
ous estimates of land-cover class extent. 

A number of approaches have been developed to resolve 
the mixed pixel problem. The image classification could, for 
example, be softened. This would involve outputting meas- 
ures of the strength of class membership each pixel has to 
each class instead of only the code of the most likely class of 
membership. These measures of the strength of class mem- 
bership may then be related to the land-cover composition of 
the pixel. Alternatively, the analyst may elect to unmix the 
composition of pixels with a spectral mixture model. With 
both of these approaches, however, the techniques widely 
used make a number of often untenable assumptions about 
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lated to  the  land-cover composition of the  pixels. In  both 
investigations the  original activation levels derived were 
only poorly related to  the  land-cover composition of the  pix- 
els, wi th  a fairly hard class allocation apparent; generally, if 
a class covered more than  half the  pixel's area, the  activation 
level of the  output  uni t  associated wi th  that  class w a s  high 
a n d  that  for other output  uni ts  was  low. This  type of output  
from t h e  artificial neural  network was  favored through the  
u s e  of t h e  sigmoid unit activation function. However, by  re- 
scaling t h e  activation levels of the  output  units,  i t  was  possi- 
ble to  derive data  that were strongly correlated wi th  the  
land-cover composition of mixed pixels. Using the  uni t  acti- 
vation function to re-scale the  activation levels, to a value 
equating to the  net  input  to  each output  uni t ,  a measure of 
the  strength of class membership that was  strongly correlated 
to  the  land-cover composition of the  pixels was  produced. In  
both case studies, significant correlations (all 130.8) between 
the  percentage cover of a class in a mixed pixel a n d  the  re- 
scaled activation level of the  output  un i t  associated wi th  t h e  
class were obtained. 
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