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Abstract 
The successful integration of a Bayesian expert system with 
a commercially available geographic information system [GIS) 
(Genamap] is  described. The package mapped forest soils 
into five soil landscape classes by  utilizing a digital terrain 
model and vegetation map, as well as knowledge provided 
by  a soil scientist. It is concluded that the map produced by  
the expert system was as accurate as the map  drawn by  the 
soil scientist, within a 95 percent confidence interval. A n  
overall mapping accuracy of 69.8 percent was achieved for 
the soil maps produced by  the expert system, while the con- 
ventionally derived map had an accuracy of 73.6 percent. 

Introduction 
A geographic information system (GIS) is usually viewed as a 
"tool box" of commands for the input, analysis, storage, re- 
trieval, and display of spatially related data (Tomlin, 1987). 
Commercial GIs packages, as well as public domain GIs soft- 
ware, have a reasonably standard set of commands to under- 
take routine operations. For example, conceptually simple 
data operations such as overlay, buffering, attribute selection, 
and digitizing are available in virtually all GIs. However, 
many users are now wishing to integrate human or expert 
knowledge into their GIs analyses, for more sophisticated 
processing of their data. Expert systems, also known as 
knowledge-based systems, have been combined with GIS in a 
diverse range of applications: e.g., 

forest fire modeling (Davis et al., 1986), 
scheduling silvicultural practices in forests (Rauscher and 
Cooney, 1986), 
identification of homogeneous training areas for analysis of 
remotely sensed imagery (Goodenough et al., 1987), 
forest vegetation mapping (Skidmore, 1989c), 
forest soil mapping (Skidmore et al., 1991), 
digital terrain models (Mackay et al., 1992), and 
local government planning (Davis and McDonald, 1993). 

These applications may be characterized as being research 
orientated studies. The above studies have all indicated that 
expert systems allow the derivation of dependent GIS layers, 
and that the dependent GIs layers may not have been suc- 
cessfully derived using other methods. It is the use of expert 
(human) knowledge which allows the expert system to gener- 
ate results which are similar to those expected from a human 
expert (Forsyth, 1984). In general, such studies have not at- 
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tempted to rigorously quantify the accuracy of the expert 
system compared with the expert human. 

The aim of this study was to prove that expert systems 
may be incorporated into a GIS for operational use. In order 
to successfully implement an operational expert system with 
a GIs, we felt that a convenient interface between the user 
and the GIS must be developed, as well as prove that the 
expert system produces a map layer which has an accuracy 
comparable to the map produced by a human expert. Thus, 
specific objectives were to 

Construct an intuitive user interface for a commercial GIs, 
thereby allowing non-specialist users access to the technol- 
ogy: 
hgorously test the accuracy of the output from the expert 
system, and statistically compare the expert system map with 
a conventional map produced by a human expert; and 
Indicate whether the output from the expert system is of an 
accuracy that would be considered operational. 

It should be emphasized that the testing of the expert system 
was performed in a specific application domain; that is map- 
ping forest soils. Nevertheless, techniques presented here 
should be applicable to many other GIS applications, if the 
analyst has sufficient knowledge about the application, and 
the independent GIS data layers are available for input to the 
expert system. 

What Are Expert Systems? 
Expert systems are computer programs which use symbolic 
knowledge to simulate the behavior of human experts (Stock, 
1987), and they are a topical issue in the field of artificial in- 
telligence (AI). However, people working in the field of A1 
continue to be confused about what AI really is (Schank, 
1988). In other words, there are attempts to confer properties 
(or attributes) to a computer system under the guise of AI, 
but the practitioners find difficulty in defining these proper- 
ties! It is generally accepted that an expert system is useful 
when it reaches the same conclusion as an expert (Weiss and 
Kulikowski, 1984). But, as Halpern (1987) points out, one 
cannot define artificial intelligence (and, ips0 facto, an expert 
system) in terms of Turing's Test, which Halpern (1987) re- 
defines as " ... Can a computer be programmed so as to fool 
human beings, with some regularity, into thinking that it is 
another human being?" 

In this study, we view expert systems as comprising a 
knowledge base, an inference engine, and a user interface 
(Figure 1). The knowledge base contains facts and rules 
which the program uses to search for a solution to the prob- 
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Figure 1. Components of an Expert System. 

lem (Stock, 1987); in this case, to find the most likely forest 
soil occurring at a grid cell. The inference engine uses the 
knowledge base to infer logically valid conclusions, and to 
logically justify conclusions at the completion of the program 
(Davis and McDonald, 1993). In a conventional expert sys- 
tem, the user supplies input about the problem to the infer- 
ence engine (for example, the user may be prompted by a 
medical diagnostic expert system to state the temperature of 
a patient). Implementing a GIS-based expert system requires 
that the input to the program is derived from the cell (or pol- 
ygon) attributes of the GIs (Figure l). 

The expert system used in this study is a Bayesian im- 
plementation. The basis of the Bayes' inferencing algorithm 
is that knowledge about the likelihood of a hypothesis occur- 
ring, given a piece of evidence, may be thought of as a con- 
ditional probability. For example, a user may not be certain 
whether Eucalyptus sieberi always occurs on ridges - it may 
sometimes occur on midslopes. The knowledge may be ex- 
pressed as the user being 90 percent certain (i.e., probability 
= 0.9) that Eucalyptus sieberi occurs on ridges. In Figure 1 ,  
the knowledge base may be represented as a probability ma- 
trix (Skidmore, 1989b), as a modified frame (Skidmore et al., 
1992), or by using a mega-rule structure as described in the 
next section. 

Again, referring to Figure 1,  GIs data layers are conven- 
tional raster grid or overlaid polygon layers (Burrough, 
1986). Attributes of the raster cell or polygon are input to the 
expert system and matched with the information in the 
knowledge base. The expert system then infers the most 
likely class at a given cell, using Bayes' Theory to update the 

probability of the rule that the hypothesis (H,) occurs at a 
grid cell location given a piece of evidence (E,), i.e., 

P(E,IH,) is the a priori conditional probability estimated by 
the expert. P(HJ is the probability for the hypothesis (H,) 
that class S,  occurs at location (i,j) and is estimated by the 
expert. On iterating with the b = 2,  ..., k items of evidence 
from the GIS database, P(H,IE, ; b = 1) (i.e., the a posteriori 
probability of H, given E,, for b = 1) replaces P(H,) in Equa- 
tion l. P(E,) is the classical marginal probability, and is the 
probability of the evidence alone, or the probability that any 
cell has an item of evidence {E,] such as a southerly aspect. 
Bayes' Theorem provides a formula to calculate P(E,): i.e., 

thereby allowing P(E,) to be continually updated at runtime 
as P(H,) is updated. 

Two methods exist for linking the evidence with the hy- 
potheses. The first is forward chaining, where the inference 
works forward from the data (evidence) to the hypothesis. 
This is a data-driven process where, given some evidence, a 
hypothesis is inferred. The second method is simply the re- 
verse, and is called backwards chaining. The inferencing 
flows (back) from the hypothesis to the data. In other words, 
given a hypothesis, the expert system examines how much 
evidence there is to support the hypothesis. Backwards 
chaining is obviously a hypothesis-driven process. The 
expert system developed for this study used forward chain- 
ing with a complete enumeration of the data (i.e., a blind 
search terminated by running out of evidence). 

The Expert System Knowledge Base 
The knowledge base used in this implementation of the 
expert system consists of facts and rules. Facts describe fixed 
properties of the knowledge, while rules are used to deduct 
new facts from existing facts. In other words, a fact may be 
thought of as a type of passive knowledge which is inherent 
in the knowledge base, while the rules are active knowledge 
which are generated by the expert system. 

The expert system rules and facts were generated by an 
experienced soil scientist (P. Ryan), were determined 
through a knowledge of soil characteristics and the geomor- 
phic processes which contribute to the formation of the soil, 
and were also based on the intuition of the expert. The a 
priori probabilities were estimated from the approximate 
areal extent of each soil landscape unit across the area. 

The facts record the relation between soil-landscape 
classes and the environmental evidence. Each fact is ex- 
pressed as the probability of finding an item of evidence, 
given a hypothesis (soil-landscape unit), i.e., P(E,IH,) in 
Equation 1. Facts are formalized as follows: 

where the list of numbers in square brackets is assigned to 
the variable "probE2." For example, P(E,IH,) = 0.1, P(E,IH,) 
= 0.2, P(E,IH,) = 0.5, and so on. The knowledge about how 
to use these facts in the classification process is represented 
by a set of production rules. 

Each production rule comprises a label, condition, and 
action, with the following format: 

LABEL: if CONDITION 
then ACTION 

The LABEL: uniquely identifies each rule. If the CONDI- 
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Actions Description 

X and Y Perform the action X and the action Y 
using X to Y Save the value of X along with the satisfied con- 

dition for later use by procedure Y 
do Y Call the procedure Y 

read X from Y Read the value of X from file Y 
enter X Alloy the reasoning to use the rules in mega-rule 

X 
exit X Prevent the reasoning from using the rule in 

mega-rule X 
write X to Y Write the value of X to file Y 

TION is satisfied (i.e., true), then the ACTION is performed 
and the rule is said to have fired. For example, one of the 
rules is as follows: 

if evidence = 2 
then using probE2 to update-prob 

The CONDITION may contain Boolean operators "AND" 
and "OR," as well as inequalities (i.e., greater than [>I, less 
than [<I, equal to [=I ) .  The ACTION part of the rule dictates 
the processing that the expert system will undertake. Types 
of actions that the rule may take are detailed in Table 1. 

The rules may be grouped into mega-rules, in which the 
rules will only be checked if that mega-rule is active. The 
"enter" and "exit" actions (Table 1) are used to activate and 
deactivate the mega-rules, respectively. The use of mega- 
rules allows easier editing of the knowledge base, improves 
the response time of the system because irrelevant rules are 
not tested, and organizes knowledge around objects or topics 
of interest. 

Using a conventional forward chaining process, all rules 

would need to be evaluated for a given pixel. In other words, 
the number of grid cells would increase the number of com- 
putations in a linear manner. For example, if there are 100 
by 100 grid cells, ten-thousand passes through the rules 
would be required. For a set of 100 rules, one-million pattern 
matching operations would need to be performed. 

To speed up the algorithm, the action part of the pro- 
duction rule may create a new fact, which then triggers an- 
other rule. For example, 

fact (probE21,[70,20,40,50,60]) 
fact (probE22,[30,60,50,40,40]) 

rule-61: if evidence = 1 
then using probE21 to update-prob and 

assign evidence = evidence + 1 

rule-62: if evidence = 2 
then using probE22 to update-prob and 

assign evidence = evidence + 1 

The processing cycle may be interpreted as follows. 
When rule-61 is fired, the "assign" action increases the 
value of the "evidence" variable by 1. This causes rule-62 to 
fire. The "using" action in each rule saves the evidence 
value along with the probability value (that is probE21 and 
probE22) into an internal array. This array value is used later 
by a procedure called "update-prob," which calculates the 
value of each cell according to Equation 1. By encoding the 
knowledge base in  this manner, the set of rules is traversed 
only once, resulting in the execution time for the expert sys- 
tem being proportional to the number of rules. The actual 
implementation of this algorithm involves writing the evi- 
dence and probability values to an array maintained for each 
map layer. A class is assigned to each grid cell by pattern 
matching with the internal array variable. This is a much fas- 
ter process compared with the rule condition checking mech- 
anism. 
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Figure 2. Geomorphological model showing the five soil- 
landscape units recognized in this study (after Ryan, 
1992). 

LCMES 
The Land Classification and Mapping Expert System (LCMES) 
is an implementation of the Bayesian expert system initially 
described by Skidmore (1989b). LCMES consists of four main 
components: knowledge base, GIS, inference engine, and user 
interface. The user interacts with the system through a menu, 
using a mouse control interface (Plate 1). The main features 
of LCMES are 

the program has been implemented using the Genasys GIS, in- 
corporating the Genius user interface; 
the user can input, examine, and modify the relevant data; 
the user can combine the evidence stored in the GIS layers 
with the classification process; 
the user can store the classification results produced by the 
system in the GIS data base; 
the knowledge base may be modified through a text editor; 
and 
the resulting thematic map can be displayed through a 
graphic window, or it can be printed. 

It is possible to apply the expert system to most GIS 
problem domains. In the example cited below, the expert 
system mapped forest soils using terrain parameters derived 
from a digital elevation model, a forest overstory layer inter- 
preted from aerial photographs, and a knowledge base gener- 
ated by interviewing a soil scientist. Using the editing 
features of LCMES, it is possible to modify the knowledge 
base, while the GIS data layers may be added, deleted, or 
modified using the GIS. The application of the package is 
only limited by the imagination of users, availability of the 
GIS data layers, and knowledge about the variable being mod- 
eled. 

Testing the Accuracy of the Expert System 

Introduction 
In order to test the accuracy of the expert system, one soil 
map was produced by the expert system and one by a soil 
scientist using conventional methods. In this section, the der- 
ivation of the maps is described, and the statistical methods 
used to assess accuracy are detailed. 

Study Area 
Two catchments were selected to test the expert system. 
Both catchments are located 30 km inland on the far south 
coast of New South Wales (approximately 50 krn south west 
of the town of Eden). The catchments, named Geebung Creek 
(79 ha) and Peppermint (128 ha), respectively, were chosen 
because of a well established soil-landscape unit model de- 
veloped by Ryan (1993) which forms the basis of comparison 
with the expert system results. 

The vegetation is native dry schlerophyll forest, with a 
tall open structure that has a maximum height of approxi- 
mately 35 m. A complex mix of approximately eight com- 
mon eucalypt species intergrade to form the overstory. Both 
catchments occur on Wallagaraugh Adamellite, which was 
described by Beams (1980) as a coarse grained pink felsic 
adamellite/granite. The relatively homogeneous parent mate- 
rial results in soil development being strongly influenced by 
geomorphic processes related to slope evolution, which pro- 
duced a series of interrelated soil landscapes (Ryan, 1993). 

The study area has a moist mid-latitude climate with an 
average annual precipitation of 892 mm which falls uni- 
formly through the year. The mean temperatures range from 
a summer maximum of 27.3"C to a winter minimum of 3.1°C 
(Ryan, 1993). 

Application Domain and the Soil Landscape Model 
Skidmore et al. (1991) and Ryan (1993) describe a soil land- 
scape model for the two catchments. The classification of the 
units is based on air-photo interpretation and field visits, and 
uses the terminology of Parker (1991). The soil landscape 
model (Figure 2) has three major geomorphic environments: 

residual surfaces on the watersheds and broad hillcrests, 
transportational surfaces associated with steeper slopes and 
ridges, and 
depositional surfaces associated with the footslopes and val- 
ley floors. 

These geomorphic zones may be divided into five soil land- 
scape units as described by Skidmore et al. (1991) and Ryan 
(1993): residual crests and interfluves (RC), degraded mid- to 
upper slopes (DSI), degraded lower slopes (DSZ), aggraded 
well drained slopes (ASI), and aggraded slopes with re- 
stricted drainage ( ~ s ~ ) . T h e  relative position of these five soil- 
landscape units is shown in Figure 2. 

Data Layers 
The independent variables input to the expert system were 
constructed as a raster database within the Genasys GIS, with 
a 10-m grid cell size and projected to a UTM coordinate sys- 
tem. The independent variables are represented as the layers 
or themes at each grid cell in the GIS. The following layers 
were input to the GIS: 

Vegetation. Vegetation typing from aerial photographs and 
ground visits was completed by an experienced consultant us- 
ing the Baur (1965) forest classification system for New South 
Wales. The forest types were digitized from the aerial photo- 
graphs, and a vector-to-raster conversion was performed. In all, 
ten forest types were recognized over the area (Plate 2). 
Digital Elevation Model. Contours, high points, saddles, and 
streamlines were digitized from a 1:5000-scale topographic map, 
and were interpolated to the 10-m cell size using the SplinZH 
program developed by Hutchinson (1989). The use of this inter- 
polation model is described in detail in Skidmore (1989a) and 
Skidmore (1990). 
Soil Wetness Index. The CSIRO Centre for Catchment Hydrology 
allowed the use of the program TOPOG initially developed by 
O'Loughlin (1986). The model produces a map of relative satu- 
ration, using the gridded digital elevation model output by 
SplinZH (Hutchinson, 1989) (see Plate 3). Note that T is the 
transmissivity and b is the base flow or efflux assumed for the 
TOPOG model. 
Topographic Position. Gridded digital elevation model output 
by Splin2H (Hutchinson, 1989) was also used as input to a pro- 
gram developed by Skidmore (1990) to classify the topography 
into five classes: ridge, upper mid-slope, mid-slope, lower mid- 
slope, and gully (Plate 4). 

Slope. The slope data layer was calculated by using the second- 
order finite difference method implemented by Skidmore 
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(1989a). The slope classes were reclassed into areas of less than 
5", areas of 6 to loo, areas of 11 to 20°, and areas of greater than 
21" (Plate 5 ) .  

The topographic position and soil wetness layers were 
overlaid (combined) in order to increase the amount of 
expert knowledge that could be recorded for each soil land- 
scape unit. For example, a gully high in the catchment 
would be a dry gully, while a gully low in the catchment 
would be a wet gully. These different types of gullies were 
known to be associated with different soil types, and so spe- 
cific expert rules could be generated. 

Soil-Landscape Knowledge Base 
An example of the knowledge base developed for this appli- 
cation is shown in Appendix A for the five soil landscape 
unit classes, as well as for the three GIS layers (a combined 
soil wetness-topographic position layer, a slope gradient 
layer, and a forest overstory layer). The structure of the 
knowledge base is as described above in the section entitled 
The Expert System Knowledge Base. 

Soil Sampling and Accuracy Assessment 
To test the accuracy of the conventional soil map and the 
soil map derived by the expert system, soil pit profiles were 
described across the two catchments. For each soil pit, a 
field assessment of the soil landscape units was made based 
on the descriptions of Ryan (1993). It included depth of soil, 
degree of horizonization, the colors of the horizons, and field 
texture of the soils. 

The sampling design chosen was a stratified random 
sample, with the strata based on soil landscape units de- 
scribed by Ryan (1993). A stratified random sample has the 
advantage that sample units are distributed equitably over 
the area, and that small but important areas are included in 
the sample (Berry and Baker, 1968; Congalton, 1988). 

Hay (1979) concluded that a minimum sample size 
should be 50. He stated that " ... any sample size of less than 
50 will be an unsatisfactory guide to error rates". Congalton 
(1988) empirically simulated the effect of varying sample 
size on the estimated population parameters. He found 
highly variable population estimates, which appeared to de- 
pend on sample method as much as number of samples. 
Generally, simple random sampling gave the best results, re- 
quiring between 50 and 100 samples per category in order to 
approximate sample parameters in a stable manner. For these 
reasons, we selected a sample size of approximately 50 (actu- 
ally, 53 samples were finally recorded), with at least ten 
samples occurring in each of the five soil landscape units. 

These above studies by Hay (1979) and Congalton (1988) 
calculate sample size based on confidence limits or accep- 
tance testing. Thomas and Allcock (1984) described a 
method for calculating confidence intervals about a mapping 
accuracy statement, for a sample of a size specified by the 
user. Their technique is based on using binomial distribution 
theory. An assumption is that the minimum number of sam- 
ples should be greater than 50. The 99.9 percent confidence 
level (CL) for a map's accuracy is calculated as follows: 

where 

N = number of samples taken, 
p = number of samples that have been cor- 

rectly classified, 
q = 1 - p ,  

m = Np, 
s = -\/(Npq), 

en, = sl.\/N, and 
e, = sl-\/(2iV). 

To calculate the 99 and 95 percent confidence levels, the 
3 in Equation 2 can be replaced with 2.33 and 1.65, respec- 
tively. Note that this technique can be used on a class by 
class basis, or for the whole image. Assuming that 70 percent 
of the sample points would be assigned to the correct class, 
different numbers of samples may be substituted into the 
equation to investigate how the map accuracy changes with 
different confidence limits. For example, taking 50 samples 
with a 95 percent confidence limit, the map accuracy is 56 
percent. If the sample size is increased to 100, the map accu- 
racy only improves by 6 percent, to 61 percent. Thus, the in- 
crease in mapping accuracy, for a given confidence limit, is 
small, especially considering the huge field effort required. 

A grid system of 95-m squares in Geebung Creek catch- 
ment, and 125- by 110-m rectangles in the Peppermint catch- 
ment had been precision surveyed, as part of an earlier 
hydrological experiment. A random sample of grid coordi- 
nates was calculated within the catchments, and was plotted 
onto 1:5000-scale topographic maps superimposed with the 
grid. It is estimated that the points were located within i 3 
metres of the location recorded on the map. As discussed 
above, the grid resolution for the GIS was 10 metres, so the 
soil landscape unit class of each sample point could be justi- 
fiably assigned to the grid cell over which it occurs. 

Cohen (1960) and Bishop et al. (1975) defined a measure 
of overall agreement between image data and the reference 
(ground truth) data called Kappa or K. i.e., 

Note that p,, is the sum of the i th row and p,, is the sum of 
the i th column. p is the simple proportion obtained by di- 
viding the observed counts in the error matrix by the total 
number of observations N. 

They further defined the estimated asymptotic variance 
of K: i.e., 

where 0, and 6 ,  are as above and 

Q, = x p . ,  (p,. + p+.) and 8, = T p , ,  (p,+ + pa)'. 

K ranges in value from 0 (no association, that is, any agree- 
ment between the two images equals chance agreement) 
through to 1 (full association, there is perfect agreement be- 
tween the two images). K can also be negative, which signi- 
fies a less than chance agreement. Rosenfield and Fitzpatrick- 
Lins (1986) made the point that values for K (expressed as a 
percentage, i.e., K X  100) are less than the values for total 
percent correct (or mapping accuracy). 

To test for a statistically significant difference between 
two error matrices, Cohen (1960) proposed using the K val- 
ues (e.g., K,  and K,  representing maps 1 and 2, respectively) 
and their associated variance by evaluating the normal curve 
deviate: i.e., 

This test statistic may be applied to paired combinations 
of error matrices in order to ascertain whether the error ma- 
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Plate 6. Map of the Geebung Creek catchment pro- 
duced by the expert system and soil scientist. 

trices are significantly different. A null hypothesis can be set 
up to test whether the K values for the two maps differ: i.e., 

1 versus 

I The null hypothesis is rejected using the normal curve 
deviate statistic (z) for a = 0.05 if z, > 1.96 (i.e., z,= ,,, = 
1.96). Note that any other rejection region can be used, e.g., 
a = 0.01 or a = 0.001. 

Examples of the K statistic applied to remote sensing 
problems can be found in Congalton et a1. (1983) and Skid- 
more (1989b). Rosenfield and Fitzpatrick-Lins (1986) dis- 
cussed the Cohen (1960) K coefficient as a relation to a 
family of coefficients which correct for chance agreement be- 
tween two error matrices (or contingency tables). They com- 
mended the Cohen K coefficient statistic because it considers 
within-class correlation as well as overall image correlation. 
In other words, all cells in the error matrix are considered 
(Fung and LeDrew, 1988). 

Results 
Plates 6 and 7 show the maps of Geebung Creek and Pepper- 
mint catchments produced by the expert system and the soil 
scientist. These figures allow a visual comparison of the two 
techniques. 

Confusion matrices for the two catchments were calcu- 
lated for both the conventional map derived by the soil sci- 
entist, and for the expert system maps (Tables 1 to 4). The 
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confusion matrices for the conventional soil mapping were 
combined for both catchments (Table 5), as were the confu- 
sion matrices for the expert system (Table 6). The overall 
mapping accuracy is summarized in Table 7.  The overall 
mapping accuracy is the number of correctly mapped sample 
cells divided by the total number of cells sampled. 

The Thomas and Allcock (1984) method was used to de- 
termine the accuracy of the maps within 95 percent confi- 
dence intervals (Table 8). 

From Table 7 and 8, it can be seen that there is little dif- 
ference in the accuracy of the conventional map and the 
expert system. Using the Kappa ( K )  statistic (Cohen, 1960; 
Congalton et al., 1983), we tested whether there is a signifi- 
cant difference in the accuracy of the two maps. The com- 
puted test statistic is z = 0.44, which is less than the critical 
z value of z = 1.96 (for a 95 percent confidence interval). 
Thus, we accept the null hypothesis (H,) and conclude, with 
99 percent confidence, that there is no significant difference 
between the accuracy of the conventionally derived map and 
the map produced by the expert system. 

Discussion 
There are obvious visual differences between maps produced 
by the expert system and the conventional method, though 
statistically there is no difference between the two tech- 
niques. Why is this? The most likely answer is that the maps 
are equally accurate (if you believe the statistics) and that 
the error in the conventional map is introduced by the inter- 
preter. In other words, the map produced by the soil scien- 
tist looks accurate because it appears to have large 
homogeneous classes with smooth edges - in fact, it is in a 
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Plate 7. Map of the Peppermint catchment pro- 
duced by the expert system and soil scientist. 



[ABLE 1. CONFUSION MATRIX OF CONVENTIONAL SOIL MAP, GEEBUNG CREEK 
CATCHMENT 

Sample Points 

Soi l  Map  RC DS1 DSZ AS1 AS2 Total  

RC 4 4 
DS1  2 4 6 
DS2 2 3 5 
AS1  4 
AS2 1 3 4 

Total  6 6 4 4 3 2 3 

TABLE 2. CONFUSION MATRIX OF CONVENTIONAL SOIL MAP, PEPPERMINT 
CATCHMENT 

Sample Points 

Soi l  Map  RC DS1  DS2 AS1 AS2 Total 

RC 3 3 
DS1  1 4 1 2 1 9 
DS2 2 5 1 8 
AS1  1 4 5 
AS2 5 5 

Total 7 6 7 30 

Sample Points 

So i l  Map  RC DS1 DS2 AS1 AS2 Total  

RC 4 1 5 
DS1 4 1 5 
DS2 2 3 5 
AS1 2 3 5 
AS2 3 3 

Total 6 6 4 4 3 23 

Sample Points 

So i l  Map  RC DS1 DS2 AS1 AS2 Total 

RC 2 1 3 
DS1 5 1 1 7 
DS2 1 4 1 1 7 
AS1  2 3 5 
AS2 2 6 8 

Total 4 6 7 6 7 30 

map form which we are conditioned to perceive as accurate. 
However, error is introduced by the interpreter, such as gen- 
eralizing the polygon boundaries or transferring the analog 
line work on the aerial photographs to a digital vector format 
in the GIS. 

The 53 independent sample points show that the overall 
accuracy of the expert system is only slightly less than that 
of the conventional map, i.e., 69.8 percent as opposed to 
73.6 percent. Because the conventional map is considered 
operational by the Forestry Commission of New South 
Wales, and there is no statistical difference between the con- 
ventional map and the expert system, we conclude that the 
accuracy of the soil map produced by the expert system is 
also operational. 

Using the technique proposed by Thomas and Allcock 
(1984), there is 95 percent confidence that 60.6 percent of 

Sample Points 

Soi l  Map  RC DS1 DS2 AS1  AS2 Total 

RC 7 7 
DS1 3 8 1 2 1 15 
DS2 4 8 2 13 
AS1 1 8 9 
AS2 1 8 9 

Total 10 12 11 10 10 5 3 

TABLE 6. CONFUSION MATRIX OF THE EXPERT SYSTEM SOIL MAP, COMBINED 
GEEBUNG CREEK AND PEPPERMINT CATCHMENTS 

Sample Points 

So i l  Map  RC DS1 DS2 AS1 AS2 Total  

RC 6 2 8 
DS1 9 2 1 1 13 
DS2 3 7 1 11 
AS1 4 2 6 12 
AS2 9 9 

Total 10 11 10 10 5 3 

TABLE 7. THE OVERALL MAPPING ACCURACY (PERCENT) OF THE CONVENTIONAL 
AND EXPERT SYSTEM ANALYSES FOR THE GEEBUNG CREEK AND PEPPERMINT 

CATCHMENTS, AS WELL AS A COMBINED CONFUSION MATRIX FOR BOTH 
CATCHMENTS. 

Catchment 

Origin o f  Map  Geebung Creek Peppermint Combined 

Conventional 78.3 70 73.6 
Expert System 73.9 66.7 69.8 

TABLE 8. THE OVERALL MAPPING ACCURACY, WITHIN 95 PERCENT CONFIDENCE 
INTERVALS, OF THE COMBINED CONFUSION MATRIX FOR BOTH CATCHMENTS. 

Origin o f  Map  Combined Catchment 

Conventional 60.6 
Expert System 56.3 

the cells are correctly classified by the conventionally de- 
rived map, and 95 percent confidence that the accuracy of 
the expert system map is 56.3 percent. If a greater number of 
samples were obtained, the accuracy figure would of course 
rise. However, in order to establish confidence limits for 
each class, approximately 250 sample points would be re- 
quired. This is a huge sample, given the constraints of ac- 
cess, and the time required to describe soil pits, in  a remote 
natural forest. 

An objection to the expert system approach (and also to 
conventional soil mapping!) is that the result is categorical, 
ignoring the gradual variation and measurement error in en- 
vironmental data, especially with respect to soil. The crea- 
tion of categorical input data layers from essentially 
continuous surfaces creates problems when generating rules. 
For example, consider the aspect layer. The "northerly" class 
could be delineated from the "north-easterly" class when the 
aspect becomes greater than 45". An aspect of 5" is certainly 
more northerly than an aspect of 43"! Therefore, placing the 
input data into categories, coupled with the rather vague def- 
initions of the soil-landscape units, makes mapping of forest 
soils by any method difficult. 

Error may be introduced into a GIS by the input data be- 
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ing incorrect, or from errors inherent in the analysis proce- 
dure (~)  used to model the data (Burrough, 1986). With an 
expert system, erroneous data may be introduced by the in- 
put data layers, or through the rules in the knowledge base. 
For example, the terrain models (slope and gradient) gener- 
ated from a digital elevation model contain error, both as a 
result of incorrect x,y,z coordinates in the original digital ele- 
vation model, as well as a result of the assumptions of the 
algorithms used to calculate these terrain parameters (Skid- 
more, 1990). Heuvelink et al. (1989) developed techniques to 
propagate error in a GIS analysis by incorporating the error 
introduced by the GIs data layers, as well as the error from 
the regression models used in the analysis. 

A number of examples are apparent from this study 
where incorrect input data layers caused the wrong soil land- 
scape unit to be predicted by the expert system. The heath 
vegetation type is clearly associated with a particular soil 
type (ASZ) (compare Plate 2 with Plates 5 and 6). There is a 
large area of AS2 towards the north of the conventionally de- 
rived soil map which does not appear on the expert system 
map (Plate 6). The explanation is that the heath type was not 
distinguished on the aerial photographs (or on the ground), 
so the DS2 soil type was predicted by the expert system. The 
soil scientist actually walked over the area, and discovered 
the AS2 soil landscape unit, but could not explain the occur- 
rence of the soil in this location. 

Thus, it appears that the expert system does not yield a 
totally accurate map. But it is interesting that the expert sys- 
tem and the conventional maps have the same statistical ac- 
curacy, indicating that the errors inherent for either method 
must be of the same magnitude. 

Conclusion 
In this study, we have shown that there is statistically no dif- 
ference between the maps produced by an expert system 
linked to a GIs, and by an experienced soil scientist. The ac- 
curacy of the results generated by both methods is consid- 
ered to be acceptable for forest managers. An interface 
between the GIs and the expert system has been developed 
and is presented. When the acceptable mapping accuracies 
are considered in conjunction with the mapping accuracy re- 
sults, it is concluded that the expert system-GIS technology is 
operational. The successful integration of the expert system 
with a GIS, and the development of an interface, should en- 
courage the use of this technique for a range of applications. 
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Appendix 
An Example of a Knowledge Base 

! 
! Knowledge base for forest soil mapping 
! Note that an exclamation mark signifies a comment 

fact (prioriprob,[,[l5, 15, 20, 20, 201). 

I 

Soil wetness-topographical position 

! Abbreviations: 
! 
! topographical position: 
! G : Gully 
! L :Lower midslope 
! M:Midslope 
! U: Upper midslope 
! R: Ridge 
I 

! wetness: 
! V: Very Dry 
! D:Dry 
! M : Moist 
! W:Wet 
! 
! e.g. GVD = gully very dry 
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _ _ _ _ _ _ _ _ _ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ - - - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

! probabilities of soil wetness index 
! given classes. 
I 

fact(probE1,[40, 60, 20, 20, 301). ! GVD 
fact(probE2,[30, 50, 50, 40, 501). ! GD 
fact(probE3,[20, 40, 60, 50, 701). ! GM 
fact(probE4,[10, 40, 50, 40, 801). ! GW 
fact(probE5,[30, 60, 50, 40, 201). ! LVD 
fact(probE6,[30, 50, 60, 60, 301). ! LD 
fact(probE7,[20, 40, 70, 60, 401). ! LM 
fact(probE8,[10, 30, 60, 50, 601). ! LW 
fact(probE9,[40, 70, 50, 40, 201). ! MVD 
fact(probE10,[30, 60, 60, 60, 301). ! MD 
fact(probE11,[20, 50, 70, 60, 401). ! MM 
fact(probE12,[10, 30, 60, 40, 601). ! MW 
fact(probE13,[50, 70, 40, 30, 201). ! UVD 
fact(probE14,[50, 70, 40, 30, 201). ! UD 
fact(probE15,[40, 50, 70, 50, 401). ! UM 
fact(probE16,[30, 40, 60, 30, 601). ! UW 
fact(probE17,[60, 50, 20, 10, 101). ! RVD 
fact(probE18,[60, 50, 30, 10, 101). ! RD 
fact(probE19,[50, 50, 50, 20, 301). ! RM 
fact(probE20,[40, 40, 60, 30, 401). ! RW 
! 
! probabilities of gradient given classes. 
! 
fact(probE21,[70, 20, 35, 65, 701). ! <5 
fact(probE22,[30, 60, 50, 40, 401). ! 6-10 
fact(probE23,[40, 60, 30, 30, 301). ! 11-20 
fact(probE24,[30, 60, 50, 30, 201). ! >21 
! 
! probabilities of vegetation type given classes. 
! 
fact(probE25,[40, 60, 40, 30, 201). ! STAIBLS 

! Silvertop AshIBlue Leaved Stringybark 
fact(probE26,[30, 40, 50, 40, 201). ! YS 

! Yellow Stringybark 
fact(probE27,[20, 40, 50, 55, 301). ! YISTAIS 

! YertchukISTAlStringybark 
fact(probE28,[40, 50, 40, 30, 201). ! STAISIYS 

! STA/Stringybark/Yellow Stringybark 
fact(probE29,[10, 10, 20, 20, 201). ! H 

! Heath 
fact(probE30,[30, 40, 50, 30, 201). ! YSIMG 

! Yellow StringybarkIMonkey Gum 

! RULES 
I = = = = = = = = = =  



rule-1:if true 
then read nprData from infilel. 

rule-2:if true 
then assign layer = 0 and 

using prioriprob to update-prob and 
assign evidence = 1 and 
assign layer = 1. 

I ~~~~~~~~~~~~~~~~~~~ ............................................................. ---- 
layer-1:: 
I _-__-_ ................................................................... ----------- 
! soil wetness-topographical rules 
! 
rule-30: if layer > 1 or 

layer < 1 
then exit layer-1 

rule-31: if evidence = 1 
then using probEl to update-prob and 

assign evidence = evidence + 1. 

rule-32: if evidence = 2 
then using probE2 to update-prob and 

assign evidence = evidence + 1. 

rule-33: if evidence = 3 
then using probE3 to update-prob and 

assign evidence = evidence + 1. 

rule-34: if evidence = 4 
then using probE4 to update-prob and 

assign evidence = evidence + 1. 

rule-35: if evidence = 5 
then using probE5 to update-prob and 

assign evidence = evidence + 1. 

rule-36: if evidence = 6 
then using probE6 to update-prob and 

assign evidence = evidence + 1. 

rule-37: if evidence = 7 
then using probE7 to update-prob and 

assign evidence = evidence + 1. 

rule-38: if evidence = 8 
then using probE8 to update-prob and 

assign evidence = evidence + 1. 

rule-39: if evidence = 9 
then using probE9 to update-prob and 

assign evidence = evidence + 1. 

rule-40: if evidence = 10 
then using probElO to update-prob and 

assign evidence = evidence + 1. 

rule-41: if evidence = 11 
then using probEll to update-prob and 

assign evidence = evidence + 1. 

rule-42: if evidence = 12 
then using probE12 to update-prob and 

assign evidence = evidence + 1. 

rule-43: if evidence = 13 
then using probE13 to update-prob and 

assign evidence = evidence + 1. 

rule-44: if evidence = 14 
then using probE14 to update-prob and 

assign evidence = evidence + 1. 

rule-45: if evidence = 15 
then using probE15 to update-prob and 

assign evidence = evidence + 1. 

rule-46: if evidence = 16 
then using probE16 to update-prob and 

assign evidence = evidence + 1. 

rule-47: if evidence = 17 
then using probE17 to update-prob and 

assign evidence = evidence + 1. 

rule-48: if evidence = 18 
then using probE18 to update-prob and 

assign evidence = evidence + 1. 

rule-49: if evidence = 19 
then using probE19 to update-prob and 

assign evidence = evidence + 1. 

rule-50: if evidence = 20 
then using probE20 to update-prob and 

assign evidence = 1 and 
assign layer = layer + 1. 

I .................................................................................... 
layer-2:: 
I .................................................................................... 
! slope gradient rules 
! 
rule-60: if layer > 2 or 

layer < 2 
then exit layec2. 

rule-61: if evidence = 1 
then using probE21 to update-prob and 

assign evidence = evidence + 1. 

rule-62: if evidence = 2 
then using probEZ2 to update-prob and 

assign evidence = evidence + 1. 

rule-63: if evidence = 3 
then using probE23 to update-prob and 

assign evidence = evidence + 1. 

rule-64: if evidence = 4 
then using probE24 to update-prob and 

assign evidence = 1 and 
assign layer = layer + 1. 

! forest overstory rules 
! 
rule-70: if layer > 3 or 

layer < 3 
then exit l a y e r s .  

rule-71: if evidence = 1 
then using probE25 to update-prob and 

assign evidence = evidence + 1. 
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rule-72: if evidence = 2 
then  using probE26 to update-prob a n d  

assign evidence = evidence + 1. 

rule-73: if evidence = 3 
then  using probE27 to update-prob a n d  

assign evidence = evidence + 1. 
rule-74: if evidence = 4 

then  using probE28 to update-prob a n d  
assign evidence = evidence + 1. 

rule-75: if evidence = 5 
then using probE29 to update-prob a n d  

assign evidence = evidence + 1. 

rule-76: if evidence = 6 
t h e n  using probE30 to update-prob and 

assign evidence = evidence + 1 a n d  
assign layer = layer + 1. 

update-prob:: 
I ~~~~~~~~~ ------ _ _ _ _  ................................................................. 

rule-90: if layer > 3 
then  d o  update-prob a n d  

wri t  expClass to  out1 a n d  
write className to out2 a n d  
exit update-prob. 
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