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Abstract shows different slopes with an ordinal scale such as flat, 
As  the availability of digital spatial data, other than from re- middle, and steep. Remote sensing images, on the other 
mote sensing, increases, it becomes increasingly important to hand, record radiance of surface targets with a ratio scale. 
develop algorithms to handle both remote sensing and other From a user's point of view, it is difficult to use all these 

spatial data. F~~ purposes, common~y used re- digital data together because they have different levels of re- 

mote sensing algorithms such as the maximum-likelihood liability~ and 
classifier and the minimum-distance classifier can only be Developing algorithms that are capable of handling both 

used to deal with spatial data ofinten.al and ratio remote sensing and other spatial data has been an active re- 
They are not applicable to spatial data of nominal or ordinal "arch area, referred to as multisource data integration 
scale as exemplified by  data digitized from a categorical (NCGIA, 1989). A number of data integration strategies have 

map. Bayesian theory mathematical t h e o v  of  evidence, and been proposed (e%.. Corr et a]., 1989; Cibula and ~ y q u i s t .  
artificial neural networks, on the other hand, are capable of 1987; kiarble and Peuquett 1983; Hutchinson, 1982). How- 
handling data with any  measurement scale. In this paper, we ever? none of these strategies can data at ''' 
introduce an evidential reasoning and a back-propagation measurement scales. Recent works have demonstrated the 

feed-fOmard neural network algorithm and evaluate their value of mathematical theory of evidence for land-cover clas- 

plications to classification problems. A multisource data set sification using data at many measurement scales ( ~ e e  et a]., 
including Landsat Thematic Mapper, aeromagnetic, radio- 1987; Chung and Moon, 1991; peddle, 1993; ~ a n g  and 
metric, and gravity data has been used in the classification Civco, 1994). As demonstrated in land-cover classification of 
of four rock types in  Melville Peninsula, Northwest Territo- remote sensing and topographic data such as slope and as- 
ries, Canada. The highest overall accuracy of 96.0 percent pect (Benedikttson et al., 1993), neural network techniques 
and average accuracy of 92.1 percent were achieved with the data at measurement data pre- 
neural network algorithm while the evidential reasoning processing such as normalization sometimes needs to be 
method produced an overa1I accuracy of 94.7 percent and done. Peddle et al. (1994) compared evidential reasoning 
average accuracy of 89,3 percent. ~h~ evidential reasoning with two neural network algorithms for land cover classifica- 
method resulted in  three highest individual class accuracies tion of SPOT multispectral data and topographic variables. 
out of the four classes. They reported that neural network algorithms produced bet- 

ter overall classification accuracies than did the evidential 
reasoning method. Difficulties were encountered, however, in 

Introduction classifying ecological land systems when a neural network 
As the amount of digital data increases, it is desirable to use algorithm was applied to digital map data such as forest 

to simultaneously remotely sensed data of cover maps, digital elevation data, slope and aspect, and soil 
different resolutions and other spatial data, including digital data ((-hen et al., 1993; G~~~ et al,, 1994). 
maps at different measurement scales. Spatial data from dif- In this paper, we first review some commonly used clas- 
ferent sources have different accuracies and measurement sification methods as for integrated analysis of multi- 
scales. Their accuracies are dependent on methods of data source spatial data, ~ h ~ i ~  limitations are briefly examined. 
collection, manipulation, interpretation, and presentation. We then introduce the evidential reasoning and neural net- 

the of a not only on its work methods used in this research. F i n d y ,  we concentrate 
contents and scale, but on how the original map on the application and assessment of the two methods for ge- 
data were acquired, processed, and converted into digital ological mapping. 
forms. The accuracies of remotely sensed data depend 
largely on their spatial and radiometric resolutions. The 
measurement scale of spatial data varies from nominal and 
ordinal to interval and ratio (Robinson et al., 1984). For ex- 
ample, maps showing land-cover types or geological struc- 
tures present data at a nominal scale while a slope-class map 
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Classification: A Technique for Environmental Assessment and 
Natural Resources Management 
Classification is a process of abstraction and generalization 
from data collected about certain phenomena to improve our 
understanding. It is an important component of integrated 
analysis of multisource spatial data (Gong, 1994). It involves 
grouping individual measurements and labeling each group 
as a class according to certain rules of similarity in the meas- 
urement space. For spatial data collected about our environ- 
ment and natural resources, classification serves for reducing 
the level of complexity in spatial data and making it easier 
for environmental planners, resources managers, and deci- 
sion-makers to understand, use, and communicate about 
such data. To achieve this goal, we first qualitatively observe 
and quantitatively measure the spatial phenomena with 
available instruments. As a result, we obtain descriptions 
and measurements about every individual target of interest. 
These descriptions and measurements constitute a set of dis- 
criminant variables, often called features or pieces of evi- 
dence. 

The question is, given a set of features or pieces of evi- 
dence, denoted by X = {x,, x,, ..., x,), observed or measured 
with different methods from the object space, how can a 
computer be used to decide which class, among a set of k 
classes {C,, C,, ..., C,}, is the most appropriate one to which 
X should be classified. More specifically, two questions can 
be asked: 

to which particular class does a target of interest belong? 
That is, to classify each target into only one class; and 
to what extent does a target belong to a class? That is, to al- 
low partial membership in each class. 

The second type of decision is more quantitative and in 
many circumstances more realistic than the first type. An- 
swering the first question, however, is what we traditionally 
do in classification. Knowing the answer to the second ques- 
tion, we can easily solve the first question by comparing the 
partial membership values. The second type of decision 
making is a more recent subject that involves the determina- ' 
tion and use of partial memberships to help determine class 
uncertainties and ambiguities in class definitions (e.g., Za- 
deh, 1965; Shafer, 1976; Bezdek et al., 1984; Liu and Bur- 
rough, 1987). 

To help answer these two questions, some classification 
concepts used in remote sensing are useful. Image classifica- 
tion algorithms can be divided into two groups based either 
on whether a training process is needed or on whether a par- 
ametric model is used (Swain and Davis, 1978). If training is 
required, the classification is a supervised one. Otherwise, it 
is unsupervised. If a parametric model is required, the algo- 
rithm is called a parametric one. Otherwise, it is non-para- 
metric. We therefore can categorize classification algorithms 
into four groups: 

supervised parametric classifier, 
unsupervised parametric classifier, 
supervised non-parametric classifier, and 
unsupervised non-parametric classifier. 

For instance, the commonly used maximum-likelihood clas- 
sifier (MLC) is a supervised parametric classifier; the k-means 
clustering and the ISODATA clustering algorithms are unsu- 
pervised parametric classifiers (Richards, 1986); the non-par- 
ametric Bayesian algorithm is a supervised non-parametric 
classifier (Gong and Dunlop, 1991; Skidmore and Turner, 
1988); and a histogram-based clustering is an unsupervised 
non-parametric classifier (Richards, 1986). 

While each type of classifier has its own advantages, 
their use in integrated analysis of multisource spatial data is 
limited by one or more factors, including class probability 
distribution, form of knowledge and procedure for classifica- 

tion, algorithm complexity, and data characteristics such as 
measurement scale, resolution, and dimensionality. For ex- 
ample, the MLC assumes that the class probability distribu- 
tion is multivariate normal. Many clustering algorithms and 
the MLC can be applied only to data at ratio and interval 
measurement scales. Singularities of covariance matrices 
stemming from the use of multiple resolution data restrict 
the use of the MLC. Non-parametric classifiers may allow 
only a small number of features or a small number of sam- 
ples to be classified due to the limitations of computer mem- 
ory or computation. Some algorithms require a priori class 
probabilities as a form of classification knowledge known be- 
fore classification. Such knowledge, however, is often diffi- 
cult to obtain. Therefore, alternative algorithms must be 
developed to circumvent these problems. 

Classification Based on Evidential Theory 
Let a vector X = (x,, x,, ..., x,) denote a set of observations or 
measurements made at a particular location. X is a set of fea- 
tures or n pieces of evidence. Classification can be consid- 
ered as a multivalued mapping, T: E + ZC, that associates 
each element X in E with a set of elements in ZC. E is the 
feature space, also called observation space or evidence 
space, C = {C,, C,, ..., C,) is the class space whose elements 
are mutually exclusive, and is the universe of discourse or 
the frame of discernment, i.e., the set that contains all possi- 
ble sets consisting of elements in C and the empty set @. 

To realize the mapping: T: E + ZC, in classification it is 
often simplified to: I': E 4 C. We use C instead of Z C  because 
our interest is focused on the individual elements in C, i.e., 
the case of singleton hypotheses. For example, our purpose 
usually is to find the probabilities of each individual class in 
C = {Urban, Agriculture, Forest, Water): P(U), P(A), P(F), 
and P(W), but we are not interested in knowing P({U, A]), P 
({A, F, W]), ..., etc. 

In evidential theory (Shafer, 1976), a basic probability 
assignment (BPA) of C, denoted by m: C + [ O ,  11, is defined 
as 

where f is the mapping function from a subspace of E to C, A 
is a subset of C which is called a focal element, and p(x,) is 
the probability density of x, in a subspace of E. The "BPA" is 
also referred to as a mass function to distinguish it from the 
probability distribution. 

A mass function has the following property: 

m(A) = 1 m(@) = 0. 
A C C  

The probability distribution of C can be estimated by the 
mass function. Because the precise probability distribution of 
C may not be known exactly, in evidential theory, bounds of 
probability distribution are defined. The lower and upper 
probability of a subset B of C are denoted as B's belief meas- 
ure Bel,(B) and plausibility measure Pls,(B), respectively. 
They can be determined from the mass function as follows: 

Bel,(B) = m(A) 
A C B  

Generally, Bel,(B) # Pls,(B) and, therefore, somewhere in 
the belief interval [Bel,(B), Pls,(B)] lies the true probability 
of B. In evidential theory, Bel,(B) indicates the amount of 
belief committed to B based on the given piece of evidence, 
while Pls,(B) represents the maximum extent to which the 
current evidence allows one to believe A. 

If m, and m, are two mass functions of C induced by 
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TABLE 1. BASIC PROBABILITY ASSIGNMENT VALUES FOR A SET OF EVIDENCE FROM 

TWO SPECTRAL BANDS FOR THE CLASSIFICATION OF FOUR CLASSES 

Urban Agriculture Forest Water 
(u) (A1 (F) (Wl 

Band 1 0.2 0.3 0.3 0.1 
Band 2 0.1 0.3 0.4 0.0 

two mapping, I',: El -+ C and T,: E, -+ C, where El and E, 
are independent sources of evidence, then the combined 
mass function, denoted by m, @ m,, can be calculated using 
Dempster's rule of combination: i.e., 

where the combination operator "@" is called "orthogonal 
sum," D C C and D # @, and m, @ m, (a) = 0. Using the 
orthogonal summation, one can update the beliefs and plau- 
sibilities in space C with additional sources of evidence. If a 
piece of evidence from a third source is given, we can treat 
m, @ m, as m, or m, and apply m, in the same manner as 
we combine m, and m,. Because operator "@" is commuta- 
tive and associative, the order of applying the orthogonal 
summation does not affect the final results. 

A number of applications of the evidential theory can be 
found in expert system development (e.g., Gordon and Shor- 
tliffe, 1985; Shafer and Logan, 1987; Kruse et al., 1991) and 
the applications of knowledge-based systems to image analy- 
sis (Goldberg et al., 1985; Srinivasan and Richards, 1990; 
Kontoes et al., 1993). 

To illustrate the orthogonal sum, consider data hom two 
spectral bands as two independent sources for classification. 
The "BPA" values from the mass functions are listed in Table 
1. None of the row-wise sums in Table 1 equals 1. The resid- 
ual, [l-m(U) - m(A) - m(F) - m(W1, treated as the degree 
of ignorance, is denoted by I. To calculate m, @ m,(D), 
where D c C = {U, A, F, WJ, we illustrate the procedure us- 
ing Table 2. Table 2 is divided into two parts, the top part is 
used for calculating the mass product and the second part is 
devoted to the orthogonal sum and the beliefs and plausibili- 
ties. 

A requirement for use of evidential theory is that evi- 

dence sources are independent of each other (Shafer, 1976). 
This independence is, however, not solely a statistical one. 
Two highly correlated sources of data may seem redundant 
in a statistical sense but can improve our confidence of the 
classification results obtained from evidential reasoning. For 
the sake of simplicity and the lack of a way of verifying evi- 
dential independence, researchers often use all sources avail- 
able (Lee et al., 1987; An et al., 1992; Peddle, 1993). 
Alternatives to reducing statistical dependencies are (1) to 
treat each individual source, E,, as a component in  a sub- 
space of E rather than an independent source, and (2) to de- 
correlate multisource data through principal component 
analysis or factor analysis (Durrand and Kerr, 1989). 

To apply the evidential theory to a classification prob- 
lem, the following steps are needed: 

(1) determine the probability distribution p,,(x,) of C, for each 
evidential source E, (note that this is different &om algo- 
rithms based on Bayes theory in which construction of a 
mapping between the entire feature space E to an individual 
class C, is usually required]. Each band of an image or a 
digital map can be considered as an individual evidential 
source. F& example, the histogram of the "ith" image can 
be used to a~~roximate a ~robabilitv distribution denoted . L 
by p,(DN), where DN E (0, 1, ..., 255) for an 8-bit image; 

(2) determine the mass function of each class C,, j = 1, ..., k, for 
each evidential source E, (Yen, 1989): i.e., 

where f(DN) = C, defines a mapping between value DN in 
evidential source E, and class C,. If C, is a singleon class, 
m,(C,) = p,](DN); 

(3) combine the mass functions from two evidential sources us- 
ing Equation 4. This formula can be used iteratively, one 
source at a time, until "BPA" values from all sources are 
combined; 

(4) determine the belief interval for each class C,. Assuming 
that the combined mass function, m, has been obtained 
from Step 3, the belief interval can be calculated using 
Equations 2 and 3; and 

(5) base the classification of a set of evidence or observations 
and measurements, X = (x,, x,, ..., x,], on either the total 
belief or the total plausibility (Lee et al., 1987). 

Different from classification algorithms based on Bayes 
theory (see Gong and Dunlop, 1991), algorithms based on ev- 
idential theory are restricted neither by the dimension of the 
spatial data nor by the number of data sources. Therefore, a 

Band 1 U 
Band 2 0.2 

PE&RS Map lS<lG 515 



non-parametric model can be employed with no dimension- 
ality limitation. Because the lack of certain data sources only 
reduces the number of times that Equation 4 is employed, to 
some extent the evidential reasoning algorithm is tolerant to 
incomplete data coverage. Moreover, the evidential reasoning 
algorithm does not differentiate the a priori and a posteriori 
probabilities. It does not require any a priori probabilities to 
be known explicitly. Therefore, the evidential reasoning algo- 
rithm has fewer limitations as compared with the Bayesian 
algorithms. 

Classification Using a Feed.Forward Neural Network 
A network of elemental processors arranged and connected 
in a feed-forward manner reminiscent of biological neural 
nets can be used to classify a set of observations, X = [x,, x,, 
..., x,lT from n different sources, and label it into a class C, E 
C = {C,, C,, ..., C,}. Rumelhart et al. (1986) developed a gen- 
eralized delta rule (GDR) for supervised training of a neural 
network based on error back propagation. 

The architecture of a layered net with feed forward capa- 
bility is shown in Figure 1. The basic elements are nodes 
"0" and links "+". Nodes are arranged in layers and each 
of them is a processing element. Each input node accepts a 
single value which corresponds to an element in X. Each 
node generates an output value. Depending on the layer in 
which a node is located, its output may be used as the input 
for all nodes in the next layer. The links between nodes in 
successive layers are weight coefficients. The number of hid- 
den layers can be greater than 1. In the output layer, each 
node corresponding to a single class in C generates the mem- 
bership value v, of that class. For example, o,, is the link be- 
tween two nodes from layer i to its successive layer j. Each 
node, except those in the input layer, is an arithmetic unit. It 
takes the inputs from all the nodes of its previous layer and 
uses the linear combination of those input values as its net 
input. For a node in layer j, the net input is 

The output of the node in layer j is 

where f is an activation function that often takes the form of 
a sigmoidal function, 

where 0, serves as a threshold or bias. This function allows 
for each node to react to an input differently. Some nodes 
may be easily activated or fired to generate a high output 
value when Q, is large. On the contrary, when 8, is small, a 
node will have a slower response to the input u,. This is con- 
sidered occurring in the human neural system where neu- 
rons are activated by different levels of stimuli. 

Such a feed-forward network requires a single set of 
weights and biases that will satisfy all the input-output pairs 
presented to it. The input is a set of observations and the 
outputs are the desirable class membership values V, = {v,,, 
v,,, ..., v,,). The process of obtaining the weights and biases 
is network learning, which is essentially the same as super- 
vised training. During network training, elements in a set of 
observations XI,  = {x,,, x,,, ..., x ,,,,,) correspond to the nodes 
in the input layer. For the given input XI, ,  we require that 
the network adjust the set of weights in all the connecting 
links and also all the thresholds in the nodes such that the 
desired outputs can be obtained. Once this adjustment has 
been accomplished by the network, another pair of XI, and V, 
is presented and the network is asked to learn that associa- 
tion also. In general, the output from the net 0, = {o,,) will 

output 

i 
Input 
Layer 

j 
Hidden 
Layer 

k 
Output 
Layer 

/ Figure 1. The structure of a feed fotward neural network. I 

not be the same as the desirable values V,,. For each X , ,  the 
squared error is 

where k is the number of classes and the average system er- 
ror is 

where n t is the number of training pairs. 
The adjustment of weights and thresholds is accom- 

plished by repetitively feeding the network with the X and V 
pairs in sequence and constantly modifying the weights and 
thresholds using the generalized delta rule (GDR). With GDR, 
the correct set of weights is obtained by varying the weights 
in a manner calculated to reduce the error E, as rapidly as 
possible. In general, different results will be obtained be- 
tween the use of E, and E during the training based on error 
back propagation (Pao, 1989). 

The convergence of E ,  with improved values of weights 
and thresholds is achieved by taking incremental changes 
that are proportional to the partial derivatives from Equation 
6. For weight adjustment, this is done by modifying weights 
with an increment proportional to -aE,law,,, i.e., with an ad- 
justment of p(-dE,/dolj). Starting at the output layer, GDR 
propagates the "error" backward to earlier layers. Thresholds 
8, are learned in the same manner as are the weights. Param- 
eter p is a small positive number experimentally determined 
and usually fixed during each training process. Our experi- 
ences suggest that large differences in range from one data 
source to another make it harder for us to select p. When the 
input data are converted to the range of [O, 11, it is easier to 
find an appropriate p so as to make the network learn faster. 
Data range conversion can be achieved by finding the maxi- 
mum and minimum in each channel and applying the fol- 
lowing linear transformation to the original data: 

new data value = 

(original data - minimum)/(maximum - minimum). 

This is similar to data normalization as suggested in Azimi- 
Sadjadi et al. (1993) and Freeman and Skapura (1991). De- 
tails on the learning algorithm can be found in various texts 
(e.g., Pao, 1989; Freeman and Skapura, 1991). Although a 
three-layer network can form arbitrarily complex decision 
regions, sometimes difficult learning tasks can be simplified 
by increasing the number of internal layers (Pao, 1989). On 
the other hand, were too many layers in a network or too 
many nodes in a layer used, the network would require 
much more computation and might lose the ability to gener- 
alize. Because feed-forward network nodes in the same layer 
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are independent of each other, they can be implemented in 
parallel processing. 

Algorithms similar to the one explained above have been 
applied to land-cover classification of remote sensing data 
only (Hepner et al., 1990; Civco, 1993; Dreyer, 1993). Other 
neural network algorithms have also been developed and ap- 
plied to remote sensing image classification (e.g., Benediktt- 
son et al., 1993; Salu and Tilton, 1993). A detailed review is 
found in Sui (1994). 

Discussion of the Algorithms 
In classification, expert knowledge on the spatial location of 
classes is used to train the algorithms. To do so, we trans- 
form this type of knowledge into a computer system. The 
processes of collecting and encoding expert knowledge are 
referred to as knowledge acquisition and knowledge repre- 
sentation, respectively. While various complex computer 
structures for knowledge representation may be used, rela- 
tively simple procedures are often employed such as the use 
of parametric statistical models (Swain and Davis, 1978; Jen- 
sen, 1986; Richards, 1986) or non-parametric look-up tables 
(Duda and Hart, 1973). 

Training in the Evidential Reasoning Algorithm 
Moon (1990) intuitively assigned probabilities based on 
expert knowledge and suggested that a more systematic and 
quantitative approach be established. Shi (1994) used a com- 
bination of both parametric and non-parametric modeling in 
the construction of mass functions. He proposed the follow- 
ing methods: 

Occurrence-Frequency Table. Occurrence frequency densities 
can be estimated for data that are obtained from any measure- 
ment scales. For data at nominal or ordinal measurement 
scales, this is the only method that can be used. The fre- 
quency table is built with its row entries being the values of 
what a data source mav have and each of its columns corre- 
sponding to a class; a i d  
Normal Distribution Model. Similar to MLC, a normal distri- 
bution model can be built for each class for those data 
sources that are acquired at the interval and ratio scales. 

If the occurrence-frequency table method is applied to 
data at interval and/or ratio measurement scales, certain in- 
terpolation or extrapolation methods can be used to adjust 
the occurrence table to fill some of the gaps in the feature 
space caused by under-sampling in training samples. When 
training samples are too few or do not exist, one may use 
fuzzy set theory to establish mass functions. With fuzzy set 
theory (Zadeh, 1965), expert knowledge can be encoded us- 
ing fuzzy membership functions (Liu and Burrough, 1986; 
Mulder and Corns, 1993; Zhu and Band, 1994). To do so, 
one needs to determine the fuzzy membership function on 
each source E,, i = 1 ,  2, ..., n for each C,, , = 1 ,  2, ..., k. 
Thus, a total of n by k membership functions need to be 
found. Fuzzy membership functions can then be normalized 
or transformed using other methods so as to meet the requi- 
rements of mass functions. It should be noted that one of the 
advantages of evidential theory is that it allows training to be 
conducted in hierarchical classification problems. This facet, 
however, will not be explored here. 

Training in the Neural Network Algorithm 
In contrast to the evidential theory based algorithm, the GDR 
training process in the neural network algorithm encodes 
knowledge through its weights and thresholds associated 
with each node on the net. Explicit modeling of data sources 
is not required in the neural network method. In addition, 
there is no need to treat the data sources independently (Be- 
nediktsson et al., 1993). 

The training process is computationally intensive, how- 
ever. It requires many training samples and many iterations 
and it is usually terminated when the system error calculated 
from Equation 6 is smaller than a preset value. We can mon- 
itor the progress of training periodically by applying feed-for- 
ward calculation through the network to classlfy the training 
samples as well as some independent test samples. System 
errors calculated for the training samples and testing samples 
can be plotted against the number of iterations for the pur- 
pose of checking the performance of the network. 

Uncertainty Measures 
An advantage of the use of evidential theory as compared to 
the use of probability is its ability to express ignorance. The 
commitment of belief to a subset B does not force the re- 
maining belief to be committed to its complement, i.e., 
Bel,(B) + Bel,,,(B) 5 1. The amount of belief committed to 
neither B nor B's complement is the degree of ignorance. 

For neural network techniques, uncertainty about a clas- 
sification result can only be obtained when the first type of 
classification, as discussed in the section on Classification, is 
to be made. For example, for a given vector X, with eviden- 
tial reasoning we can measure the uncertainties in member- 
ship degrees of individual classes in C. With neural network 
methods, only when X is classified into a particular class can 
the uncertainty involved in that class be determined. 

Experiments 
To illustrate the classification algorithms based on evidential 
theory and neural networks for integrated analysis of multi- 
source data, we selected a data set for geological mapping in 
Melville Peninsula, Northwest Territories, Canada. The algo- 
rithms have been implemented using C programming lan- 
guage on SUN Workstations in the Remote Sensing 
Laboratory of the Department of Geomatics Engineering, The 
University of Calgary. 

Study Site and Multisource Spatial Data 
The study site is a 12- by 12-km area centered at approxi- 
mately 68'32' N and 82'43' W. This area, located west of Hall 
Lake on Melville Peninsula in the northeast Arctic of Can- 
ada, has relatively large areas of unweathered outcrop and 
relatively little vegetation. It has been studied for predicting 
geological units from Landsat Thematic Mapper (TM) and ge- 
ophysical data (Chung et al., 1993). 

The multisource spatial data set used in this study was 
processed and provided by the Geological Survey of Canada. 
It includes Landsat TM, gamma-ray spectrometer, magnetom- 
eter, and gravity anomaly data. While the TM data contain in- 
formation primarily about the surface, the other three types 
of data reveal properties of rock materials for up to 1 m, 1 
km, and 10 km below the surface, respectively. The radio- 
metric data from the gamma-ray spectrometer were originally 
acquired along flight lines at a spacing of 5 km, with a sam- 
pling frequency of approximately 130 m along each flight 
line. Four types of gamma-ray radiometric data were ob- 
tained, including total exposure, potassium, uranium, and 
thorium. The data were subsequently resampled to 500- by 
500-m grids. The aeromagnetic data were originally acquired 
along flight lines at a spacing of 1 km with a sampling fre- 
quency of approximately 80 m. The data were subsequently 
resampled to 200- by 200-m grids. The gravity data were 
originally acquired from ground stations of approximately 10 
kmL. They were resampled to 2- by 2-km grids. In addition, a 
surficial geology map was digitized for geological mapping 
purposes. 

All the different sources of data were geometrically 
transformed to the UTM coordinate system and resampled to 
the TM image pixel size of 30 m by 30 m. It should be noted 
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that resampling of data from a coarser resolution to a finer 
one does not increase the information level. Although it may 
increase the amount of computation, resampling simplifies 
the application of various classification algorithms. The data 
set containing 13 channels can thus be used as input to the 
two algorithms. Figure 2 shows the Landsat TM Band 7 im- 
age of 400 by 400 pixels (Figure Za), the potassium-radiomet- 
ric image (Figure 2b), the aeromagnetic data (Figure 2c), and 
the gravity anomaly data (Figure 2d). A map of outcrop areas 
of four different types of geological classes was derived by 
intersecting the digitized surficial geology map and a vegeta- 
tion index map from the Landsat TM data (Chung et al., 
1993). The four geological classes of outcrops are (1) Tonalite 
gneiss, (2) Prince Albert group, (3) Hall Lake plutonic com- 
plex, and (4) Ordovician carbonates (see Table 3). 

TABLE 3. TOTAL NUMBER OF SAMPLES FOR EACH GEOLOGICAL CLASS AND 

PERCENTAGES USED FOR TRAINING 

Geological Total Number 
Class of Samples 

1. Tonalite gneiss 468 
2. Prince Albert 

group 583 
3. Hall Lake 

plutonic complex 3678 
4. Ordovician 

carbonates 101 

Samples Used 
for Training 

the Evidential 
Algorithm (%I 

10.3 (22.4)* 

Samples for 
Training the 
Neural Net- 
work (%) 

13.0 

Total Samples1 
Overall % 4830 10.6 (25.7)* 10.6 

Training and Testing the Algorithms 
Samples for training and testing were selected from com- 
pletely non-vegetated areas as indicated by low vegetation 
indices calculated from the red and near-infrared bands of 
the Landsat TM data (Chung et al., 1993). The total number 
of sample pixels for training and testing is listed in Table 3 
for each class. From the total samples of each class, training 
samples were randomly selected at a specific percentage and 

*Percentage of the second set of training samples in bracket 

all the remaining samples were used as test samples. This 
ensured that training and test samples were not overlapping. 
In doing so, we expected that this would cause less bias and 
more representative estimation of classification accuracies. 
After each classification, we compared the classification re- 

(c) (dl 

Figure 2. Part of the multi-source spatial data set used in this study. The data 
are centered around approximately 68'32' N and 82'43' W. The size of the area 
is 12 km by 12 km, corresponding to 400 by 400 Landsat Thematic Mapper pix- 
els. (a) Top left - TM Band 7 image. (b) Top right - Potassium-radiometric image. 
(c) Bottom left - aeromagnetic data. (d) Bottom right - gravity anomaly data. 

May 1996 PE&RS 



sults with the test samples to generate a confusion matrix 
based on which classification accuracies were assessed (Story 
and Congalton, 1986). 

For the evidential reasoning method, two sets of training 
samples were selected. The percentages of training samples 
for each class are listed in Table 3. The first set of training 
samples contains approximately 10.6 percent of the total 
sample, and the percentage for each class is listed in Table 3 
without brackets. The percentages in the brackets represent 
the second set of training samples, which account for ap- 
proximately 25.7 percent of the total sample. The idea was to 
test the sensitivity of the evidential reasoning algorithm 
against the size of training samples. Generally, we prefer us- 
ing training samples that are small in size, provided that the 
training samples are representative. 

For the neural network algorithm, approximately 10.6 
percent of the total sample (Table 3) was randomly selected 
for training. After the training of the neural network, the en- 
tire data set was used as input to the neural network and the 
output was compared with the remaining 89.4 percent of to- 
tal samples to generate the confusion matrix. 

Test of the Evidential Reasoning Algorithm 
Parametric models and lookup tables can be used to estimate 
"BPA" during supervised training. While the data set used in 
this study does not have any restriction on the use of either 
method, a lookup table for each channel of data was consid- 
ered essential because of its simplicity. It was subsequently 
realized that, because the surface radiance variability in the 
TM bands was very large with respect to each geological 
class, the use of lookup tables with TM bands caused much 
confusion among classes. We tried to apply a Gaussian 
model to the seven TM bands. Therefore, a combination of 
Gaussian parametric models associated with the TM bands 
and lookup tables with the rest of the channels was tested 
also. Based on the two different ways of "BPA" construction 
and the use of two sets of training samples, we obtained four 
sets of classification results. The confusion matrices for these 
four classifications were generated (Tables 4 through 7). Ta- 
bles 4 and 5 correspond to the classification results obtained 
by constructing the "BPA" from the 10.6 percent training 
sample set with 

TABLE 4. CLASSIFICATION RESULTS OBTAINED USING THE EVIDENTIAL REASONING 
ALGORITHM WITH THE COMBINATION OF PARAMETRIC MDELS AND LOOKUP TABLES 

OBTA~NED FROM THE 10% TRAINING SAMPLES 

C l a s s i f i c a t i o n  
Producer's 

Class 1 2 3 4 Accuracy 

1 303 23 94 72.1% 
2 9 427 88 81.5% 
3 43 3230 7 98.5% 
4 9 7 78 83.0% 

93.5% 
83.8% 

0.828 
0.000183 

Overa l l  
Average 
Kappa Coeff icient 
Variance o f  Kappa 

TABLE 5. CLASSIFICATION RESULTS OBTAINED USING THE EVIDENTIAL REASONING 
ALGORITHM WITH THE LOOKUP TABLES OBTA~NED FROM THE 10% TRAINING 

SAMPLES 

C l a s s i f i c a t i o n  
Producer's 

Class 1 2 3 4 Accuracy 

1 104 2 36 278 24.8% 
2 43 76 59 346 14.5% 
3 20 10 3131 118 95.5% 
4 52 14 3 25 26.6% 

77.3% 
40.4% 

0.459 
0.000712 

Overal l  
Average 
Kappa Coefficient 
Variance of Kappa 

TABLE 6. CLASSIFICATION RESULTS OBTAINED USING THE EVIDENTIAL REASONING 
ALGORITHM WITH THE COMBINATION OF PARAMETRIC MODELS AND LOOKUP TABLES 

mOM THE 25.7% TRAINING SAMPLES 

C l a s s i f i c a t i o n  
Producer's 

CIass 1 2 3 4 Accuracy 

the results obtained with a combinat ion o f  the Gaussian 
m o d e l  a n d  lookup tables s h o w n  in Table 4, and 
the results obtained f r o m  the use o f  lookup  tables o n l y  
s h o w n  in Table 5. 

Tables 6 and 7 correspond to the classification results ob- 
~~~~~e tained by constructing the "BPA" from the 25.7 percent train- Kappa CoeEmt 

ing set with Variance o f  Kappa 

the  results obta ined f r o m  a combinat ion o f  the Gaussian 
m o d e l  and l o o k u p  tables presented in Table 6 ,  a n d  
the  results obtained f r o m  lookup tables o n l y  s h o w n  in Table 
7. 

All confusion tables are arranged with the classified clas- 
ses as column entries and the test classes as row entries. The 
off-diagonal elements along a row indicate the number of test 
samples in that class omitted by the classification algorithm. 
We derived a producer's accuracy for each row and used it 
as an accuracy measure for each individual class (Story and 
Congalton, 1986). We also calculated the Kappa coefficient 
and its variance from each confusion table. The Kappa coeffi- 
cient is an overall classification accuracy measure that ex- 
cludes chance agreement (Cohen, 1960). The variances and 
the Kappa coefficients calculated from two confusion matri- 
ces were used to derive a Z-value for testing if two classifica- 
tion accuracies are significantly different (Fleiss et al., 1969). 
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TABLE 7. CLASSIFICATION RESULTS OBTAINED USING THE EVIDENTIAL REASONING 
ALGORITHM WITH THE LOOKUP TABLES FROM THE 25.7% TRAINING SAMPLES 

C l a s s i f i c a t i o n  
Producer's 

Class 1 2 3 4 Accuracy 

Overal l  
Average 
Kappa Coefficient 
Variance of Kappa 
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Iteration ( x 100) 

Figure 3. The training convergence rate of the neural net- 
work. 

A Z-value of greater than 1.96 indicates that the difference 
between two classification accuracies is statistically signifi- 
cant at the confidence level of 0.95 probability. 

Test of the Neural Network Algorithm 
The neural network algorithm based on error back propaga- 
tion using the GDR was adapted from Pao (1989). Three lay- 
ers were used to construct the network for the classification. 
The number of nodes in the input layer was 13, correspond- 
ing to the 13 channels of the multisource data set. There 
were four nodes in the output layer each corresponding to a 
geological class. Input data were linearly converted to the 
range of [0, 11. 

In the training data, each input vector originally has a 
class assigned to it as the desirable output. This class has to 
be converted to a vector through binary one-of-n-coding for 
use with the neural network algorithm. For example, if the 
desirable class is geological class 2. The output vector re- 
quired by the network should be [O, 1, 0, 01, assuming that 
the second output node corresponds to the second class. As 
can be seen from Equation 5, it takes a longer time for a net- 
work to generate binary outputs such as [O, 1, 0, 01. To speed 
up the training process, we used [0.003, 0.99, 0.003, 0.0031 
instead. At the classification stage, the decision on the classi- 
fication of the input vector is made based on the highest 
value in the output vector. 

The number of nodes in the hidden layer has to be de- 
termined empirically. We started with 100 nodes to test the 
training convergence and subsequently reduced to 26 nodes, 
which is two times the input nodes, and the network con- 
verged well. With the network structure of 13 input nodes, 
26 hidden nodes, and four output nodes, less than 500 itera- 
tions were required to reach a low level of system error, 
0.02, for the training data, and the trend had stabilized since 
then (Figure 3). We terminated the training process after 
5000 iterations. The weights and thresholds obtained were 
applied to classify the entire data set. The test results are 
summarized in Table 8. 

Discussions 
From Table 3, we can immediately find out the imbalance of 
population among the four classes. Class 3 accounts for over 
75 percent of the total population. While classes 1 and 2 
each have about 10 percent of the overall population, the 
population of class 4 is very small. Were the overall classifi- 

cation of our primary concern, as in some classification tasks 
such as land-cover or land-use classifications, class 4 would 
not attract much of our attention because of its small popula- 
tion. In geological mapping, however, a class with a small 
population may contain more valuable mineral deposits than 
would other classes. The importance of a geological class 
should therefore not be decided based on its size. This im- 
plies that the average of individual class accuracies is per- 
haps more important than an overall classification accuracy 
for the purpose of this study. 

By comparing Tables 4 and 6 with Tables 5 and 7, we 
can see that for the evidential reasoning the use of a combi- 
nation of parametric models and lookup tables in construct- 
ing the "BPA" has produced considerably more accurate 
results than has the use of lookup tables only. This is partic- 
ularly true for classes 1,  2, and 4. Class 3, with the largest 
population among the four classes, has been classified very 
well, because the lowest accuracy for this class even reaches 
95.5 percent in Table 5. It seems that the first training strat- 
egy is superior to the second one. 

As we compare Figure 4a and Figure 4b, however, Fig- 
ure 4b looks surprisingly more heterogeneous than does Fig- 
ure 4a. The noisy appearance of Figure 4b results from the 
strong influence of TM images because all the other types of 
data have a much coarser spatial resolution. The non-nor- 
mality and large variability for each class, as characterized 
by the TM image, probably contribute very little to the actual 
discrimination of one class from another. The "BPA" func- 
tions obtained by applying the lookup table method to the 
TM bands have magnitudes comparable to those obtained 
from the other types of data. This led to the variability from 
the TM data being carried through the iterative orthogonal 
summation to the end product as manifested in Figure 4b. 
On the other hand, the large variability caused the large stan- 
dard deviations in the geologidal classes which led to low 
magnitudes in the resultant "BPA" functions modeled by the 
Gaussian distribution. Consequently, the low "BPA" values 
from Gaussian models have been buried by "BPA" values 
from other data types through the iterative orthogonal sum- 
mation. This resulted in Figure 4a being less noisy. The 
higher classification accuracies in  Figure 4a should be inter- 
preted as an indication that the TM images contributed little 
to this particular geological classification. From the above 
discussion, it is clear that the lookup table method for con- 
structing "BPA" functions is sensitive to data variation and 
vulnerable to noise. If certain data types are noisy, the use of 
a parametric model may suppress the noise level. Therefore, 
a combination of the parametric modeling approach with the 
lookup table method can be an effective tool in constructing 
"BPA" functions. - -- 

Because the dominance of class 3, the increase of train- 

TABLE 8. CLASSIFICATION RESULTS OBTAINED USING THE NEURAL N ~ O R K  
ALGORITHM 

C l a s s i f i c a t i o n  
Producer's 

Class 1 2 3 4 Accuracy 

Overall 
Average 
Kappa Coefficient* 
Variance of Kappa 

*The Kappa Coefficient of 0.894 represents a statistically significant 
improvement at 0.95 probability confidence level over the 0.861 cal- 
culated from Table 6. 
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Figure 4. Evidential reasoning classification results from the entire data set. (a) 
Left -the basic probability assignments are obtained using a combination of para- 
metric modeling and lookup tables, i.e., Gauss~an distribution models have been 
used for the seven TM channels and lookup tables have been applied to the re- 
maining channels of the data set. (b) Right - the basic probability assignments are 
obtained solely from lookup tables for all the channels. Black - Tonalite gneiss; 

ing sample size from approximately 10 percent to approxi- 
mately 25 percent of the total samples has not led to a 
significant improvement in the overall accuracies (1.2 per- 
cent difference between Tables 4 and 6, and 0.3 percent dif- 
ference between Tables 5 and 7). Larger differences, however, 
are observable among the average accuracies. For example, the 
increase in training sample size has resulted in an average ac- 
curacy improvement of 5.5 percent between Tables 4 and 6. 
When comparing each individual class in Tables 4 and 6, we 
can see that, except for a 2.7 percent drop in class 2, there are 
accuracy improvements for three of the classes, especially for 
classes 1 and 4, as the training sample sizes increase. How- 
ever, when Tables 5 and 7 are compared class by class, clas- 
ses 1 and 2 have 5.2 percent and 3.8 percent drops in 
accuracy, respectively. We suspect again that it is the noisi- 
ness of the TM data that affects the improvement of accuracies 
with these classes. We have attempted to increase further the 
training sample sizes to 75 percent of the total sample but no 
significant accuracy improvements were achieved. 

Comparing the classification results (Tables 4 and 6) ob- 
tained from the evidential reasoning with those from the 
neural network algorithm (Table 8), we can see that the best 
overall accuracy of 96.0 percent and the best average accu- 
racv of 92.1 ~ercent  have been achieved with the neural net- - - 

wo;k algoritim. When a similar number of training samples 
was used (Table 4 versus Table 8), accuracy improvements 
by the neural network are 2.5 percent and 8.3 percent, re- 
suectivelv, for the overall and average accuracies. When the 
chance akeement is removed by cokparing the Kappa coeffi- 
cients in Tables 4 and 8, the accuracy improvement is 0.066. 
The accuracy improvement by the neural-network algorithm 
in comparison with the evidential reasoning algorithm is sta- 
tistically significant at the 0.95 probability confidence level. 
When we compare Tables 6 and 8, there is only a 1.3 per- 
cent overall accuracy improvement achieved with the neural 
network algorithm over the evidential reasoning algorithm. 
The average accuracy improvement is 2.8 percent. The accu- 
racy improvement measured by Kappa coefficient of 0.033, 
however, is still significant at the 0.95 probability confidence 
level. 
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As the producer's accuracies of individual classes are 
examined among Tables 4, 6, and 8, with the exception of 
class 1 (98.5 percent in Table 8), the best accuracies for 
classes 2 (81.5 percent in Table 4), 3 (98.5 percent in Table 
6), and 4 (98.4 percent in Table 6) have all been achieved 
with the evidential reasoning. When Figure 5 is compared 
with Figure 4, we can see that the classification results ob- 
tained from the neural network are very unique. On the one 
hand, the classification results in Figure 5 contain much less 
noise as compared with Figure 4b. This indicates that the 
neural network algorithm is less sensitive to noise than is the 
lookup table method used with the evidential reasoning. On 
the other hand, the class boundaries in Figure 5 look more 

Figure 5. Classification results from the 
neural network algorithm. Black - Tonal- 
ite gneiss; Dark Grey - Prince Albert 
group; Light Grey - Hall Lake plutonic 
complex; and White - Ordovician 
carbonates. 



natural and similar to the geological map made manually 
than do those in Figure 4a. It seems that the neural network 
method is more adaptive and more powerful in generaliza- 
tion than the evidential reasoning method. 

From a computation point of view, the neural network 
algorithm consumed more time during the training stage than 
the time required by the entire classification with the eviden- 
tial reasoning method. However, the evidential reasoning 
method requires more intervention. For instance, it requires 
one to find out how the variability of each data source may 
affect the specific classification task. Much time needs to be 
spent on learning how to construct the "BPA" functions. In 
fact, this is the most critical step involved in the use of the 
evidential reasoning algorithm. In this experiment, we spent 
more time in testing the evidential reasoning algorithm than 
we did in applying the neural network algorithm. 

Summary and Conciusions 
A long term goal of our studies is to develop algorithms for 
integrated analysis of spatial data from multiple sources. 
This study was to compare evidential reasoning with error 
back-propagation feed-forward neural network methods for 
classification of multisource spatial data. The evidential rea- 
soning and the neural network methods were tested using a 
data set composed of Landsat TM data, gamma ray radiomet- 
ric data, aeromagnetic data, and gravity anomaly data ac- 
quired from an area in Melville Peninsula, Northwest Terri- 
tories, Canada. The data set was used to classify four 
geological classes. 

With the evidential reasoning algorithm, we used the 
lookup table method and Gaussian model to construct 
"BPAS." "BPAS" based on lookup tables from all data sources 
generated poor classification results. Much better results 
were achieved when Gaussian modeling was used to con- 
struct "BPAs" for the Landsat TM data while lookup tables 
were used for the remaining data sources. The improvements 
for average accuracies exceeded 40 percent with the applica- 
tion of Gaussian modeling to the Landsat data. We believe 
that the Landsat TM data contribute marginally to the classifi- 
cation of the four geological classes. The evidential reasoning 
method based on the lookup tables is sensitive to data noise 
and large data variability. The experiment suggests that para- 
metric modeling can be used to complement the table lookup 
method. Other methods such as texture analysis and filtering 
that can be used to preprocess the noisy data may also prove 
helpful. 

The results indicate that selection of an appropriate 
training strategy is most critical for successful use of eviden- 
tial reasoning methods. Because selecting training strategies 
is essentially a task of knowledge acquisition and encoding, 
we believe that knowledge acquisition and encoding play an 
equivalently important role in expert system-based decision 
making. 

With a small proportion of training samples (10.6 per- 
cent, and the smallest contained only seven samples for one 
class!), the evidential reasoning method generated reasonable 
results with an overall accuracy of 93.5 percent and an aver- 
age accuracy of 83.8 percent. An overall accuracy of 94.7 
percent and average accuracy of 89.3 percent were achieved 
when the training samples accounted for approximately a 
quarter of the total sample population. 

The best overall accuracy of 96.0 percent and average 
accuracy of 92.1 percent were achieved using a single-hid- 
den-layer neural network. Based on Kappa coefficients calcu- 
lated, the overall accuracy of neural network classification is 
significantly higher than those accuracies obtained with the 
evidential reasoning algorithm. The network structure con- 
tained 13, 26, and 4 nodes in the input, hidden, and output 
layers, respectively. The neural network, however, only gen- 

erated one of the four highest accuracies for individual clas- 
ses when compared with the evidential reasoning algorithm. 
Because accurate classifications for certain individual classes 
are highly desirable in geological mapping, evidential reason- 
ing and neural network algorithms may complement each 
other. Our experience indicates that the neural network 
method requires less analyst intervention and is easier to run 
than is the evidential reasoning algorithm. We also found 
that the neural network generated results more compatible 
with the geological map made manually. Therefore, we con- 
clude that neural networks are more adaptive to noise and 
data variability. 
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