
Vision-Based Image Processing of
Digitized Cadastral Maps

Liang-Hwei Lee and Tsu-Tse Su

Abstract
This paper presents an automatic method for processing dig-
itized images of cadastral maps. The method includes two
major algorithms: a segmentation and a Raster-to-Vector
conversion. Those algorithms use a simple data-list structure
for recording data created during single-pass, row-majority
scanning and line tracing. The segmentation algorithm ob-
tains the positions and sizes of symbols and characters, in
addition to completing map segmentation and proving useful
for pattern recognition. The Raster-to-Vector conversion a l p -
rithm obtains topological information necessary to relate ca-
dastral map spatial data to line start points, midpoints,
intersection points, and termination points. It consists of four
integrated sub-algorithms that remove noise, unify run-length
coordinates, and perform synchronous line approximations
and logical linkage of line breaks. Straight, angled, and
curved lines can then be completely reconstructed for dis-
play. Also presented are six indices that verify algorithm and
experimental results.

Introduction
Many conventional maps are not digitized, making them dif-
ficult to store and maintain, and they may also come from
different sources and may be drawn to different scales, mak-
ing them difficult to accurately measure and exchange. This
limits the amount of qualitative data that maps can express,
and complicates translation to the more useful digital data
needed for complex spatial analysis. As society changes,
non-digitized maps cannot satisfy versatile and modularized
requirements for access to spatial data. Therefore, the need
for digital maps is increasing, and they are replacing conven-
tional non-digitized maps(Peuquet, 1981; Musavi et al., 1988;
Nagasamy and Langrana, 1990).

Digital maps may be obtained in two ways: by normal
survey methods, or by conversion from non-digitized maps.
Conversion generally consists of digitization and vectoriza-
tion, processes that constitute major bottlenecks in the pro-
duction of digital maps.

Depending on the level of feature extraction obtained,
digitization and vectorization can be classified into the fol-
lowing types:

coding and compression: which thins and vectorizes bi-level
images directly and concentrates on coding and compression
of data needed for storage or communication (Ramachandran,
1980; Landy et al., 1985);
features extraction: which in addition to coding and com-
pressing data, concentrates on extracting some features -
mainly line segments -but not enough to provide detailed
recognition of symbols or characters (it considers them noise)

Department of Surveying and Mapping Engineering, Chung
Cheng Institute of Technology, Tashi, Tao-Yuan, 33509, Tai-
wan, Republic of China.

PE&RS May 1996

(Musavi et al., 1988; Nagasamy and Langrana, 1990; Kaneko,
1992); and
segmentation and recognition: which in addition to coding
and compressing data, labels all patterns such as symbols,
characters, and lines as topological features, recognizing that
they are not noise but features that must be extracted by pre-
cise location; this approach is capable of providing enough
information for detailed symbol and character recognition
(Wu, 1990; Yamada et al., 1991; Yamada et al., 1993).

Depending on whether or not thinning is performed, dig-
itization and vectorization can be classified into direct track-
ing and vectorization, such as the track-follow approach
(Yen, 1989) which is effective for curves but is only fit for
contour lines, and the run-length approach (Ramachandran,
1980) which, on the other hand, retains line widths and
needs only a single scan, leading to reduced storage require-
ments and better performance. The main problem with this
approach is production of zigzag features and variable line
widths, leading to difficulty in finding exact coordinates of
intersection points.

The other main digitization and vectorization approach
(Musavi et al., 1988; Wu, 1990), thinning-based vectoriza-
tion, produces one-pixel line widths, making it easier to
track the direction geometric relationships such as line start
points, midpoints, termination points, and intersection
points (Peuquet, 1981; Clarke, 1990).

To focus on processing images of cadastral maps, this
paper presents an automatic process suitable for computer
vision to recognize patterns on map. The process includes
two major algorithms. The first, segmentation, records the
positions and sizes of symbols and characters in a data-list
structure as segmentation is done. It has provisions for elimi-
nating noise and for clipping sub-images from source images
to facilitate more detailed recognition of symbols and charac-
ters.

The differences between this algorithm and similar ap-
proaches are that we update data-list variables instead of
classifying with complex statistics, and we use a single-pass
scan instead of extra labeling with a two-pass scan. The sec-
ond algorithm, raster-to-vector conversion, is similar in con-
cept to the segmentation algorithm, but the recorded data are
changed into cadastral map spatial data that express topolog-
ical relationships such as line start points, midpoints, inter-
section points, and termination points.

Four thinning-based algorithms that remove noise, unify
run-length coordinates, perform synchronous line approxima-
tions, and perform logical linkage of line-breaks are
embedded in the raster-to-vector conversion algorithm.
Straight, angled, and curved lines can then be completely re-

Photogrammetric Engineering & Remote Sensing,
Vol. 62, No. 5, May 1996, pp. 533-538.

0099-lll2/96/6205-533$3.00/0
0 1996 American Society for Photogrammetry

and Remote Sensing

Figure 1. O (center peg) symbol and run-length coding.

constructed for display. The difference between these algo-
rithms and similar approaches are

Noise Removal. Only line-tracing and detection of line start
points or termination points in the non-boundary regions of
an image are necessary. Our method does not require point-
to-point pixel searching or complex image calculation
through whole image.
Run-Length Coordinates Unification. This is an effective ap-
proach to resolving exact pixel coordinates of run-length seg-
ments, a difficult problem for most researchers
(Ramachandran, 1980; Wu, 1990).
Synchronous Line Approximation. Our approach does not re-
quire any complex fitting functions and does not need to ac-
quire points before fitting.
Logical Linkage of Line Breaks. Our method records where
the two points of a line break are, and doesn't actually per-
form linkage until any reconstruction for display has been
done.

All algorithms proposed in this paper use a simple data-
list structure to store the dynamic data produced during sin-
gle-pass, row-majority scanning and line-tracing. These
techniques have the advantage of being able to avoid sortings
and can simultaneously handle all lines in a single scan.
Therefore, performance speed-up and memory space-down
can be expected, making them appropriate for use on small
computers (Lumia et al., 1983; Ronse and Devijver, 1984;
~ a r h i c k and Shapiro, 1992). In addition, there'are four indi-
ces - coding, parameter-setting, noise immunity, and effect-
iveness - to assess all presented algorithms. In experimental
testing, our approach performed well.

Segmentation
Preprocessing must be performed in segmentation in order to
enhance gray-scale images into clear images and to divide a
gray-scale image into a two-level scale image. Because the
source-image histogram is zigzag, leading to uncertainty
about peaks and valleys and making it is difficult to decide
how to separate objects from background, enhancement must
be done before thresholding. The reason is that most objects

1 I 1 Leftmost X of orevious I Too-lefbnost X m ~ b a t e 1 Too-leftmost Y coordinate of 1 1

I Figure 2. Data structure of connected component. 1

Pointer

Figure 3. Line-tracing possibili-
ties.

in cadastral maps are line drawings, and, after enhancement,
the differences between the background and objects can be
ascertained more easily, because the gray-scale histogram be-
comes smoother, and peaks and valleys are seen more
clearly. Finding a better thresholding gate is then also easier.

Before segmentation, a rectangle size (height and width)
for marking symbols and characters must be determined. The
size depends on the largest and smallest symbols and charac-
ters used in the cadastral map and must be carefully chosen
to avoid covering other objects or covering part of an object.

row segment I of covered rectangle I covered rectangle

Data Structure
A cadastral map contains many connected components that
are composed of segments. Each segment is an elementary
unit that can be described by run-length coding (Figure 1).

The position of a symbol or character is marked when
any connected component is tracked during line tracing. The
marked information is stored in a data-list structure (Figure
2) which records the smallest covered rectangle.

Run-length coordinates from the previous row segment
must also be kept in this data structure and compared with
the current row segment to analyze situations that occur dur-
ing line tracing.

Algorithm
Line tracing involves three elements: (1) line growth start, (2)
line growth termination, and (3) line growth continuation.
When (1) occurs, a new list element must be inserted into
the list. When (2) occurs, a list element must be deleted from
the list and a decision must be made regarding differentia-
tion of what attribute (line or character or symbol) the con-
nected component can be. The decision depends on the
criterion described below: Let the connected component size
be T, the upper bound of symbol and character size be T I ,
and the lower bound of symbol and character size be T2.

Then,

Top-rightmost Y coord'ite kghtmost X of prewous

T < TI noise; T1 <= T <= T2 symbol or character;
T > T2 line.

Top-rightmost X mrdinate

When (3) occurs, a list element must be updated and a new
value used to completely cover connected components.

In Figure 3(a), Line A begins growing as the first row is
scanned, then stops growing. Line B begins growing when
the second row is scanned, and keeps growing as the third
row is scanned. Line C stops growing when the fourth row is
scanned, and so on.

In Figure 3(b), two segments in the first row lie atop seg-
ments in the second row, forming a merge case that must be
unified into one line, and the corresponding element must be
deleted from the data-list structure.

In Figure 3(c), one segment in the first row splits into
two segments in the second row, creating a new list element
for the right-hand line, and updating the the left-hand line.

Figure 4 is a partial data-list handling result that uses
the symbol in Figure 1 as an example to provide a more de-
tailed description of the segmentation algorithm. In Figure 1,
row 5 to row 6 and row 14 to row 15 show two splits where
the left-hand line keeps growing and the right-hand line is

row segment

May 1996 PE&RS

of covered rectangle of covered rectangle

1st-row scan 2nd-row scan 3rd-row scan

6th-row scan

19th-row scan

22nd-row scan 23rd-row scan 24th-row scan

Figure 4. Partial data-list handling result.

viewed as a newly created line. In Figure 1, row 1 2 to row
13 and row 19 to row 20 show two merges where two lines
are unified into one line. After progressive processing (i.e.,
insertion, deletion, and updating of list strings), the final
symbol coordinate output is in the top-leftmost corner (6,l)
and bottom-rightmost corner (29,24), and can be used to clip
off a sub-image 24 pixels wide and 24 pixels in high.

Noise-Removal
When extracting an object from an image using computer vi-
sion techniques, that object must exhibit the following
characteristics (Haralick and Shapiro, 1992):

Neighborhood Spatial Coherence. Extracted objects are in-
clined to cluster in the spatial domain.
Neighborhood Pixel Intensity Homogeneity. The gray differ-
ence between extracted objects must be small or none.

If anv obiect violates these characteristics. it is viewed as a ,

noise and must be removed.
Approaches to noise removal can be classified into two

types: (1) detecting lack of coherence and replacing the inco-
herent pixel, and (2) averaging or smoothing the pixel along
with others in its immediate neighborhood. Generally, Type
(1) locates a noise by determining a threshold before the
noise is removed. Type (2) doesn't care where the noise is
but needs to reduce the gray difference between pixels.

In segmentation, the Type (1) approach is used to re-
move noise because all non-background obiects besides svm- "
bols, characters, and lines are noise. After thinning, the Type
(1) approach is also used to remove the noise because some
vectorization can be affected by any remaining noise. To
summarize, the noise-removal approaches in this paper are
based on knowing what the noise is, where the noise is,
when the noise is removed, and how the noise is removed.

Raster-to-Vector Conversion
Two preprocessing topics are first presented in this section.
The first concerns line-thinning of cadastral map symbols,
characters, and noise clipped during segmentation. Thinning
keeps topological relationships and geometric attributes from
the source image, and lets the thinned objects preserve a
connection skeleton, one pixel wide and robust to rotation.
After thinning, some noise may be left so that recorded
points include unnecessary data.

The second topic is our noise-removal approach, which
detects whether the central pixel in the 8-neighborhood of a

PE&RS May 1996

3 by 3 window is a start point or a termination point. If a
start point or a termination point is detected, then it detects
whether there is another point in a larger search window. In
Figure 5(a), marked squares are start or termination pixels on
the image boundaries and not noise locations, so they are ig-
nored. In Figure 5(b), however, the marked squares are not
start or termination points on image boundaries; therefore
these points must be noise. Additionally, the central pixel in
the 8-neighborhood information about line direction can be
used to remove noise up to the next intersection. Our noise
removal approach does not consider every possible 3 by 3
window in a cadastral map, but, rather, is embedded in line-
tracing and operates in synchronization with it to improve
performance.

Noise removal can also be handled synchronously dur-
ing line tracing, but some noise might have been recorded in
the location that is an intersected pixel between noise and a
correct line; thus, that increments the vectorized data total.
Noise removal is done during preprocessing to avoid this po-
tential problem.

Data Structure
Two data-list structures are used in raster-to-vector conver-
sion. The first (Figure 6: the X direction is in the scan-line
direction; the Y direction is perpendicular to the X direction)
is used during line-tracing and synchronous line-approxima-
tion. The second (Figure 7) is used to record the vectorized
point coordinates along each line. Pixel classification then
decides which attribute (start, midpoint, termination, etc.)
the vectorized point is, but it can't acquire information about
how many points will be needed for approximation, and vec-
torized points along each line must also be recorded in serial
order. We use an array to handle these tasks, an approach
with some disadvantages: it is difficult to insert or delete dy-
namic data created during line-tracing, the largest space must
be reserved for lines but most lines need only a little space,
and sorting must be executed for vectorized points along
each line. If a list is used, it requires only enough space to
store the dynamic data created during line-tracing and
needn't sort any vectorized points along each line.

Algorithm
Raster-to-vector conversion is similar to the algorithm in seg-
mentation that uses tracing to track line-growth start, line-
growth continuation, and line-growth termination. In
addition, pixels are classified as start points, midpoints, in-
tersection points, and termination points. For the topological
reconstruction and display of these points in vectorized
form, each line must be recorded in serial linkage and as-
signed a line number.

(a) (b)

Figure 5. (a) Boundary vectorized pixels. (b) Non-boundary
noise pixels.

Pointer Leftmost X coordinate o i Start point X Start point Y coordinate
previous row segment coordimate of of approximation

approximation
Largest X coordinate Largest Y coordinate of

1 of direction 1 positive direction
 ine el Rightmost X coordinate I Largest X coordinate I Largest Y coordinate of

Pmbcr I of previous row segment of negative direction I negative dlrectlon
Termination point X I Terminallon polnt Y
coordinate of coordinate of
approximation approximation

Figure 6. Data structure of line tracing and approxima-
tion.

The greatest difficulty in run-length coding during row-
majority, scanning, and line tracing is a segment that is par-
allel to the X-axis. The segment may have many
X-coordinates, so it is difficult to decide where the exact
pixel coordinate on the segment is. The longer a segment is,
the greater the shift can be. In Ramachandran's (1980) run-
length approach, the line width is variable and the intersec-
tion point coordinates are not exact. Wu's (1990) approach
takes half the length of the segment as the X-coordinate loca-
tion, which means the longer the segment the longer the er-
ror.

We propose an approach that tracks the relationship be-
tween the previous row and the current row of a thin image
in order to analyze where the exact pixel coordinate is. After
thinning, one-pixel line width is reserved and two criteria
must be considered: i.e., whether the previous row segment
is larger or smaller than the current one. In Figure 8, the X-
coordinate may occur in any non-overlap line growth (A or B
for example) or any overlap line growth between two rows
(C or D for example) because only a one-pixel connection be-
tween two rows can occur in the 8-neighborhood line-trac-
ing.

The unification of X coordinates consists of calculating
the exact pixel positions and deciding on line direction by
analyzing two overlapping row segments. Care must be
taken, however, to be sure that the termination coordinates
of the longer segment are also recorded in order to avoid ig-
noring this segment in topological reconstruction.

Synchronous Line Approximation
Synchronous line approximation consists of selecting critical
curve points to approximate the curve by linking segments
point-by-point between each pair of points. The principle of
critical-point selection is choosing the points as
representative as possible and maintaining the shape of a
curve with the smallest possible number of critical points.
Related research can be classified into two main types: (1)
angle or corner detection schemes (Rosenfeld and Weszka,
1975; Freeman et al., 1977; Teh and Chin, 1989), and (2)
piecewise linear polygonal approximation. Synchronous line
approximation belongs to the second type and is embedded
in line-tracing in order to avoid having to wait until all
points have been acquired (Rarner, 1972; Freeman et al.,
1977; Williams, 1978; Pavlidis, 1982; Wall and Danielsson,
1984; Roberge, 1985; Wu, 1990).

In Figure g(a), we use the line segment SC to approxi-

I Figure 7. Line output data structure. I
Pointer

Figure 8. Thin line rela-
tionships between two
rows.

mate the curve SC. The pixels of curve SC can appear on
both sides of line segment SC, so the largest distance from
the curve to the line segment SC is P and the largest on the
other side of the line segment is N. First, we track to the
next pixel T and use a distance threshold to decide whether
P and N must be updated. We continue tracking to the next
pixel, or record the critical point and select a new start pixel
for the next approximation. In Figure 9@), the length of line
segment SC is 1, and vectors a=(a,,a,), b=(b,,b,) and X are
the possible curve pixels. The distance d can be calculated
by using the following formula:

L i e number

Synchronous LineBreak Logical Linkage
During segmentation, a marked rectangle may cover a line if
a large area of noise is situated near the line. This might
cause the line to be cut during noise removal. To compen-
sate for line breaks created during segmentation, synchro-
nous line-break logical linkage is proposed (Pratt, 1991).

Synchronous line-break logical linkage is similar to the
noise-removal algorithm. The difference is that the former
detects whether any pair of points is located inside the de-
tection search window and the latter detects where non-
boundary noise pixels are. If only one start or termination
point is in the detection search window, we view this start
or termination point as noise which might be removed dur-
ing noise removal. Otherwise, a line-break logical linkage
must be taken by recording the pair of points in the detec-
tion search window.

Synchronous line-break logical linkage is also embedded
in line tracing to detect where break points are and to output
their coordinates to the vectorized data file provided for re-
construction and display. The advantage of this approach is
that synchronous processing and logical linkage need not
spend any time on line connection. Therefore, this approach
is better than the conventional approach which needs com-
plex calculations and detects all the pixels in a cadastral
map.

Vectorized X coordinate
Vectorized Y coordinate

Experimental Result
Figures 10 to 2 1 show results obtained from a 512 by 512 by
8 (width, height, and bitslpixel) image executed on an

kgure 9. (a) Synchronous line a p
proximation. (b) Distance calcula- I tion.

I

May 1996 PE&RS

80486DX personal computer. Except for the time required for
edge enhancement and thresholding, segmentation took
about 6 seconds. Noise removal took about 1 2 seconds and
raster-to-vector conversion, except for the time required for
thinning, took about 9 seconds, both acceptable performance
results.

Table 1 shows the size comparison of the three files of
Figure 20 used to store 4-byte vectorized data (X, Y coordi-
nates). The total bytes ratio is 262144:8000:560 (about 470:
14:1), a great reduction in storage space required
(approximation means that only critical points are recorded;
non-approximation means that each pixel of every line is
stored).

Discussion and Conclusions
To assess an algorithm, six indices - (1) speed, (2) memory
requirement, (3) coding, (4) parameter setting, (5) noise im-
munity, and (6) effectiveness - are generally considered in
digital image processing. The major algorithms proposed in
this paper are segmentation, raster-to-vector conversion,
noise removal, synchronous line approximation, and syn-

I 1 Figure 10. Source image. 1

Figure 14. After segmenta-
tion.

I Figure 18. Curves with
noise.

PE&RS May 1996

TABLE 1. FILE SIZE COMPARISON

Types Pixels Recorded BytesJPixels Total Bytes

Raster data format 512x512 1 262144
Vector (non-approximation) 2000 2 x 2 8000
Vector (approximation) 140 2 x 2 560

chronous line-break logical linkage. All are implemented
with row-majority scanning and line tracing, and they all use
a data-list structure to store dynamically created data, thus
reducing memory requirements and avoiding sorting. These
algorithms are only run-length coding integrated with list in-
sertion, deletion, and update operations. To summarize the
advantages of our approach, it can be concluded fiom indi-
ces (I), (2), and (3) that all algorithms provide a concise ap-
proach to processing digitized images of cadastral maps.

Segmentation uses two thresholding values: the upper
and lower bounds of symbol and character size. Noise re-
moval and synchronous line-break logical linkage use one
thresholding value: the upper bound of symbol and character

Figure 11. After edge en-
hancement.

F~gure 19. Curves after Figure 20. Vectorized
noise removal. points.

Figure 12. After bi-leveling.

Figure 15. After thinning.

Figure 13. After pattern
clipping.

Figure 16. After noise re-
moval.

Figure 17. Vectorized
points.

Figure 21. Larger thres-
holding gate.

size. Synchronous line-approximation uses one thresholding
value: the line-approximation distance tolerance. It can be
concluded from index (4) that each algorithm uses few para-
meters and the corresponding criteria are certain of physical
meaning. Although segmentation can cause some line breaks,
synchronous line-break logical linkage is provided to com-
pensate, and it can be concluded from index (5) that line
breaks can be reduced or even unaffected by noise removal
and clipping of symbols and character.

Difficulty separating intersections between symbols,
characters, and lines remains. Another problem is that most
existing cadastral maps were created by manual drawing,
and some symbols and characters are connected to each
other. Some Chinese characters, such as 7, $+, and &, (dry-
land, woodland, and pond) to mention a ew, can be sepa-
rated but those elements need be viewed as Chinese
characters for pattern recognition.

It can be concluded from index (6) that all algorithms
can be executed effectively and can provide more informa-
tion for pattern recognition. Therefore, using computer vision
techniques, all algorithms can provide a feasible solution to
automating digitization of cadastral maps.

References

Clarke, K.C., 1990. Analysis and Computer Cartography. Prentice
Hall, Englewood Cliffs, New Jersey, pp. 177-203.

Freeman, H., and L.S. Davis, 1977. A corner-finding algorithm for
chain-coded curves, IEEE Transaction on Computers, C-26(2):
297-303.

Haralick, R.M., and L.G. Shapiro, 1992. Computer and Robot Vision,
Volume 1, Addision-Wesley Publishing Company, pp. 303-333.

Kaneko, T., 1992. Line structure extraction from line-drawing im-
ages, Pattern Recognition, 25(9):963-973.

Landy, M.S., and Y. Cohen, 1985. Vectorgraph coding: efficient cod-
ing of line drawings, Computer Vision, Graphics, and Image
Processing, 30(3):331-334.

Lumia, R., L. Shapiro, and 0 . Zuniga, 1983. A new components for
virtual memory computers, Computer Vision, Graphics and Im-
age Processing, 22 (2):287-300.

Musavi, M.T., M.V. Shirvaikar, E. Ramanathan, and A.R. Nekonei,
1988. A vision based method to automate map processing, Pat-
tern Recognition, 21(4):319-326.

Nagasamy, V., and A.N. Langrana, 1990. Engineering drawing proc-

essing and vectorization system, Computer Vision, Graphics,
and Image Processing, 49[2):379-397.

Pavlidis, T., 1982. Algorithms for Graphics and Image Processing,
Computer Science Press, Potomac, Maryland.

Peuquet, D., 1981. An examination of techniques for reformatting
digital cartographic datalpart 1: The raster-to-vector process,
Cartographica, 18(1):34-48.

Pratt, W.K., 1991. Digital Image Processing, Wiley Interscience Publi-
cation, pp. 612-614.

Ramachandran, K., 1980. Coding method for vector representation of
engineering drawings, Proceeding of the IEEE, 68(7):813-817.

Ramer, U., 1972. An iterative procedure for the polygonal approxi-
mation of plane curves, Computer Vision, Graphics, and Image
Processing, 1(2):244-256.

Roberge, J., 1985. A data reduction algorithm for planar curves, Com-
puter Vision, Graphics and Image Processing, 29(2):168-195.

Ronse, C., and P.A. Devijver, 1984. Connected Components in Binary
Images: The Detection Problem, Research Studies, Letchworth,
Herts, England.

Rosenfeld, A., and J.S. Weszka, 1975. An improved method of angle
detection on digital curves, IEEE Transactions on Computers, C-
24(9):940-941.

Teh, C.H., and R.T. Chin, 1989. On the detection of dominant points
on digital curves, IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-11 (8):859-872.

Wall, K., and P.E. Danielsson, 1984. A fast sequential method for po-
lygonal approximation of digitized curves, Computer Vision,
Graphics and Image Processing, 28(2):220-227.

Williams, C.M., 1978. An efficient algorithm for the piecewise linear
approximatation of planar curves, Computer Vision, Graphics
and Image Processing, 8(2):286-293.

Wu, Tse-Chen, 1990. The Automatic Processing of Computerized Ca-
dastral Map, M.S. Thesis, Institute of Computer Science and

.

Electronic Engineering, National Central University, Chung-Li,
Taiwan, R.O.C.

Yamada, H., K. Yamamoto, T. Saito, and S. Matsui, 1991. Map:rnulti-
angled parallelism for feature extraction from topographic maps,
Pattern Recognition, 24(6):479488.

Yamada, H., K. Yamamoto, and K. Hosokawa, 1993. Directional
mathematical morphology and reformalized Hough transforma-
tion for the analysis of topographic maps, IEEE Tmnsactions on
Pattern Analysis and Machine Intelligence, PAMI-15(4) :380-387.

Yen, Hei-Jin, 1989. Automatic DTM Generation by Contour Lines
Digitization, M.S. Thesis, Department of Resource Management,
Defence Management College, Chung-Ho, Taiwan, R.O.C.

(Received 2 1 February 1995; accepted 1 7 July 1995; revised 29 Au-
gust 1995)

Would You Like to See Your
Company's Image

on the Cover of PE&RS?

