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Abstract 
This paper presents an automatic method for processing dig- 
itized images of cadastral maps. The method includes two 
major algorithms: a segmentation and a Raster-to-Vector 
conversion. Those algorithms use a simple data-list structure 
for recording data created during single-pass, row-majority 
scanning and line tracing. The segmentation algorithm ob- 
tains the positions and sizes of symbols and characters, in  
addition to completing map segmentation and proving useful 
for pattern recognition. The Raster-to-Vector conversion a l p -  
rithm obtains topological information necessary to relate ca- 
dastral map spatial data to line start points, midpoints, 
intersection points, and termination points. It consists of four 
integrated sub-algorithms that remove noise, unify run-length 
coordinates, and perform synchronous line approximations 
and logical linkage of line breaks. Straight, angled, and 
curved lines can then be completely reconstructed for dis- 
play. Also presented are six indices that verify algorithm and 
experimental results. 

Introduction 
Many conventional maps are not digitized, making them dif- 
ficult to store and maintain, and they may also come from 
different sources and may be drawn to different scales, mak- 
ing them difficult to accurately measure and exchange. This 
limits the amount of qualitative data that maps can express, 
and complicates translation to the more useful digital data 
needed for complex spatial analysis. As society changes, 
non-digitized maps cannot satisfy versatile and modularized 
requirements for access to spatial data. Therefore, the need 
for digital maps is increasing, and they are replacing conven- 
tional non-digitized maps(Peuquet, 1981; Musavi et al., 1988; 
Nagasamy and Langrana, 1990). 

Digital maps may be obtained in two ways: by normal 
survey methods, or by conversion from non-digitized maps. 
Conversion generally consists of digitization and vectoriza- 
tion, processes that constitute major bottlenecks in the pro- 
duction of digital maps. 

Depending on the level of feature extraction obtained, 
digitization and vectorization can be classified into the fol- 
lowing types: 

coding and compression: which thins and vectorizes bi-level 
images directly and concentrates on coding and compression 
of data needed for storage or communication (Ramachandran, 
1980; Landy et al., 1985); 
features extraction: which in addition to coding and com- 
pressing data, concentrates on extracting some features - 
mainly line segments -but not enough to provide detailed 
recognition of symbols or characters (it considers them noise) 
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(Musavi et al., 1988; Nagasamy and Langrana, 1990; Kaneko, 
1992); and 
segmentation and recognition: which in addition to coding 
and compressing data, labels all patterns such as symbols, 
characters, and lines as topological features, recognizing that 
they are not noise but features that must be extracted by pre- 
cise location; this approach is capable of providing enough 
information for detailed symbol and character recognition 
(Wu, 1990; Yamada et al., 1991; Yamada et al.,  1993). 

Depending on whether or not thinning is performed, dig- 
itization and vectorization can be classified into direct track- 
ing and vectorization, such as the track-follow approach 
(Yen, 1989) which is effective for curves but is only fit for 
contour lines, and the run-length approach (Ramachandran, 
1980) which, on the other hand, retains line widths and 
needs only a single scan, leading to reduced storage require- 
ments and better performance. The main problem with this 
approach is production of zigzag features and variable line 
widths, leading to difficulty in finding exact coordinates of 
intersection points. 

The other main digitization and vectorization approach 
(Musavi et al., 1988; Wu, 1990), thinning-based vectoriza- 
tion, produces one-pixel line widths, making it easier to 
track the direction geometric relationships such as line start 
points, midpoints, termination points, and intersection 
points (Peuquet, 1981; Clarke, 1990). 

To focus on processing images of cadastral maps, this 
paper presents an automatic process suitable for computer 
vision to recognize patterns on map. The process includes 
two major algorithms. The first, segmentation, records the 
positions and sizes of symbols and characters in a data-list 
structure as segmentation is done. It has provisions for elimi- 
nating noise and for clipping sub-images from source images 
to facilitate more detailed recognition of symbols and charac- 
ters. 

The differences between this algorithm and similar ap- 
proaches are that we update data-list variables instead of 
classifying with complex statistics, and we use a single-pass 
scan instead of extra labeling with a two-pass scan. The sec- 
ond algorithm, raster-to-vector conversion, is similar in con- 
cept to the segmentation algorithm, but the recorded data are 
changed into cadastral map spatial data that express topolog- 
ical relationships such as line start points, midpoints, inter- 
section points, and termination points. 

Four thinning-based algorithms that remove noise, unify 
run-length coordinates, perform synchronous line approxima- 
tions, and perform logical linkage of line-breaks are 
embedded in the raster-to-vector conversion algorithm. 
Straight, angled, and curved lines can then be completely re- 
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Figure 1. O (center peg) symbol and run-length coding. 

constructed for display. The difference between these algo- 
rithms and similar approaches are 

Noise Removal. Only line-tracing and detection of line start 
points or termination points in the non-boundary regions of 
an image are necessary. Our method does not require point- 
to-point pixel searching or complex image calculation 
through whole image. 
Run-Length Coordinates Unification. This is an effective ap- 
proach to resolving exact pixel coordinates of run-length seg- 
ments, a difficult problem for most researchers 
(Ramachandran, 1980; Wu, 1990). 
Synchronous Line Approximation. Our approach does not re- 
quire any complex fitting functions and does not need to ac- 
quire points before fitting. 
Logical Linkage of Line Breaks. Our method records where 
the two points of a line break are, and doesn't actually per- 
form linkage until any reconstruction for display has been 
done. 

All algorithms proposed in this paper use a simple data- 
list structure to store the dynamic data produced during sin- 
gle-pass, row-majority scanning and line-tracing. These 
techniques have the advantage of being able to avoid sortings 
and can simultaneously handle all lines in a single scan. 
Therefore, performance speed-up and memory space-down 
can be expected, making them appropriate for use on small 
computers (Lumia et al., 1983; Ronse and Devijver, 1984; 
~ a r h i c k  and Shapiro, 1992). In addition, there'are four indi- 
ces - coding, parameter-setting, noise immunity, and effect- 
iveness - to assess all presented algorithms. In experimental 
testing, our approach performed well. 

Segmentation 
Preprocessing must be performed in segmentation in order to 
enhance gray-scale images into clear images and to divide a 
gray-scale image into a two-level scale image. Because the 
source-image histogram is zigzag, leading to uncertainty 
about peaks and valleys and making it is difficult to decide 
how to separate objects from background, enhancement must 
be done before thresholding. The reason is that most objects 
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I Figure 2. Data structure of connected component. 1 
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Figure 3. Line-tracing possibili- 
ties. 

in cadastral maps are line drawings, and, after enhancement, 
the differences between the background and objects can be 
ascertained more easily, because the gray-scale histogram be- 
comes smoother, and peaks and valleys are seen more 
clearly. Finding a better thresholding gate is then also easier. 

Before segmentation, a rectangle size (height and width) 
for marking symbols and characters must be determined. The 
size depends on the largest and smallest symbols and charac- 
ters used in the cadastral map and must be carefully chosen 
to avoid covering other objects or covering part of an object. 

row segment I of covered rectangle I covered rectangle 

Data Structure 
A cadastral map contains many connected components that 
are composed of segments. Each segment is an elementary 
unit that can be described by run-length coding (Figure 1). 

The position of a symbol or character is marked when 
any connected component is tracked during line tracing. The 
marked information is stored in a data-list structure (Figure 
2) which records the smallest covered rectangle. 

Run-length coordinates from the previous row segment 
must also be kept in this data structure and compared with 
the current row segment to analyze situations that occur dur- 
ing line tracing. 

Algorithm 
Line tracing involves three elements: (1) line growth start, (2) 
line growth termination, and (3) line growth continuation. 
When (1) occurs, a new list element must be inserted into 
the list. When (2) occurs, a list element must be deleted from 
the list and a decision must be made regarding differentia- 
tion of what attribute (line or character or symbol) the con- 
nected component can be. The decision depends on the 
criterion described below: Let the connected component size 
be T, the upper bound of symbol and character size be T I ,  
and the lower bound of symbol and character size be T2. 

Then, 

Top-rightmost Y coord'ite kghtmost X of prewous 

T < TI noise; T1 <= T <= T2 symbol or character; 
T > T2 line. 

Top-rightmost X mrdinate 

When (3) occurs, a list element must be updated and a new 
value used to completely cover connected components. 

In Figure 3(a), Line A begins growing as the first row is 
scanned, then stops growing. Line B begins growing when 
the second row is scanned, and keeps growing as the third 
row is scanned. Line C stops growing when the fourth row is 
scanned, and so on. 

In Figure 3(b), two segments in the first row lie atop seg- 
ments in the second row, forming a merge case that must be 
unified into one line, and the corresponding element must be 
deleted from the data-list structure. 

In Figure 3(c), one segment in the first row splits into 
two segments in the second row, creating a new list element 
for the right-hand line, and updating the the left-hand line. 

Figure 4 is a partial data-list handling result that uses 
the symbol in Figure 1 as an example to provide a more de- 
tailed description of the segmentation algorithm. In Figure 1, 
row 5 to row 6 and row 14 to row 15 show two splits where 
the left-hand line keeps growing and the right-hand line is 

row segment 
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1st-row scan 2nd-row scan 3rd-row scan 

6th-row scan 

19th-row scan 

22nd-row scan 23rd-row scan 24th-row scan 

Figure 4. Partial data-list handling result. 

viewed as a newly created line. In Figure 1, row 1 2  to row 
13 and row 19 to row 20 show two merges where two lines 
are unified into one line. After progressive processing (i.e., 
insertion, deletion, and updating of list strings), the final 
symbol coordinate output is in the top-leftmost corner (6,l) 
and bottom-rightmost corner (29,24), and can be used to clip 
off a sub-image 24 pixels wide and 24 pixels in high. 

Noise-Removal 
When extracting an object from an image using computer vi- 
sion techniques, that object must exhibit the following 
characteristics (Haralick and Shapiro, 1992): 

Neighborhood Spatial Coherence. Extracted objects are in- 
clined to cluster in the spatial domain. 
Neighborhood Pixel Intensity Homogeneity. The gray differ- 
ence between extracted objects must be small or none. 

If anv obiect violates these characteristics. it is viewed as a ,  

noise and must be removed. 
Approaches to noise removal can be classified into two 

types: (1) detecting lack of coherence and replacing the inco- 
herent pixel, and (2) averaging or smoothing the pixel along 
with others in its immediate neighborhood. Generally, Type 
(1) locates a noise by determining a threshold before the 
noise is removed. Type (2) doesn't care where the noise is 
but needs to reduce the gray difference between pixels. 

In segmentation, the Type (1) approach is used to re- 
move noise because all non-background obiects besides svm- " 
bols, characters, and lines are noise. After thinning, the Type 
(1) approach is also used to remove the noise because some 
vectorization can be affected by any remaining noise. To 
summarize, the noise-removal approaches in this paper are 
based on knowing what the noise is, where the noise is, 
when the noise is removed, and how the noise is removed. 

Raster-to-Vector Conversion 
Two preprocessing topics are first presented in this section. 
The first concerns line-thinning of cadastral map symbols, 
characters, and noise clipped during segmentation. Thinning 
keeps topological relationships and geometric attributes from 
the source image, and lets the thinned objects preserve a 
connection skeleton, one pixel wide and robust to rotation. 
After thinning, some noise may be left so that recorded 
points include unnecessary data. 

The second topic is our noise-removal approach, which 
detects whether the central pixel in the 8-neighborhood of a 
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3 by 3 window is a start point or a termination point. If a 
start point or a termination point is detected, then it detects 
whether there is another point in a larger search window. In 
Figure 5(a), marked squares are start or termination pixels on 
the image boundaries and not noise locations, so they are ig- 
nored. In Figure 5(b), however, the marked squares are not 
start or termination points on image boundaries; therefore 
these points must be noise. Additionally, the central pixel in 
the 8-neighborhood information about line direction can be 
used to remove noise up to the next intersection. Our noise 
removal approach does not consider every possible 3 by 3 
window in a cadastral map, but, rather, is embedded in  line- 
tracing and operates in synchronization with it to improve 
performance. 

Noise removal can also be handled synchronously dur- 
ing line tracing, but some noise might have been recorded in 
the location that is an intersected pixel between noise and a 
correct line; thus, that increments the vectorized data total. 
Noise removal is done during preprocessing to avoid this po- 
tential problem. 

Data Structure 
Two data-list structures are used in raster-to-vector conver- 
sion. The first (Figure 6: the X direction is in the scan-line 
direction; the Y direction is perpendicular to the X direction) 
is used during line-tracing and synchronous line-approxima- 
tion. The second (Figure 7) is used to record the vectorized 
point coordinates along each line. Pixel classification then 
decides which attribute (start, midpoint, termination, etc.) 
the vectorized point is, but it can't acquire information about 
how many points will be needed for approximation, and vec- 
torized points along each line must also be recorded in serial 
order. We use an array to handle these tasks, an approach 
with some disadvantages: it is difficult to insert or delete dy- 
namic data created during line-tracing, the  largest space must 
be reserved for lines but most lines need only a little space, 
and sorting must be executed for vectorized points along 
each line. If a list is used, it requires only enough space to 
store the dynamic data created during line-tracing and 
needn't sort any vectorized points along each line. 

Algorithm 
Raster-to-vector conversion is similar to the algorithm in seg- 
mentation that uses tracing to track line-growth start, line- 
growth continuation, and line-growth termination. In 
addition, pixels are classified as start points, midpoints, in- 
tersection points, and termination points. For the topological 
reconstruction and display of these points in vectorized 
form, each line must be recorded in  serial linkage and as- 
signed a line number. 

(a) (b) 

Figure 5. (a) Boundary vectorized pixels. (b) Non-boundary 
noise pixels. 
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Figure 6. Data structure of line tracing and approxima- 
tion. 

The greatest difficulty in run-length coding during row- 
majority, scanning, and line tracing is a segment that is par- 
allel to the X-axis. The segment may have many 
X-coordinates, so it is difficult to decide where the exact 
pixel coordinate on the segment is. The longer a segment is, 
the greater the shift can be. In Ramachandran's (1980) run- 
length approach, the line width is variable and the intersec- 
tion point coordinates are not exact. Wu's (1990) approach 
takes half the length of the segment as the X-coordinate loca- 
tion, which means the longer the segment the longer the er- 
ror. 

We propose an approach that tracks the relationship be- 
tween the previous row and the current row of a thin image 
in order to analyze where the exact pixel coordinate is. After 
thinning, one-pixel line width is reserved and two criteria 
must be considered: i.e., whether the previous row segment 
is larger or smaller than the current one. In Figure 8, the X- 
coordinate may occur in any non-overlap line growth (A or B 
for example) or any overlap line growth between two rows 
(C or D for example) because only a one-pixel connection be- 
tween two rows can occur in the 8-neighborhood line-trac- 
ing. 

The unification of X coordinates consists of calculating 
the exact pixel positions and deciding on line direction by 
analyzing two overlapping row segments. Care must be 
taken, however, to be sure that the termination coordinates 
of the longer segment are also recorded in order to avoid ig- 
noring this segment in topological reconstruction. 

Synchronous Line Approximation 
Synchronous line approximation consists of selecting critical 
curve points to approximate the curve by linking segments 
point-by-point between each pair of points. The principle of 
critical-point selection is choosing the points as 
representative as possible and maintaining the shape of a 
curve with the smallest possible number of critical points. 
Related research can be classified into two main types: (1) 
angle or corner detection schemes (Rosenfeld and Weszka, 
1975; Freeman et al., 1977; Teh and Chin, 1989), and (2) 
piecewise linear polygonal approximation. Synchronous line 
approximation belongs to the second type and is embedded 
in  line-tracing in order to avoid having to wait until all 
points have been acquired (Rarner, 1972; Freeman et al., 
1977; Williams, 1978; Pavlidis, 1982; Wall and Danielsson, 
1984; Roberge, 1985; Wu, 1990). 

In Figure g(a), we use the line segment SC to approxi- 

I Figure 7. Line output data structure. I 
Pointer 

Figure 8. Thin line rela- 
tionships between two 
rows. 

mate the curve SC. The pixels of curve SC can appear on 
both sides of line segment SC, so the largest distance from 
the curve to the line segment SC is P and the largest on the 
other side of the line segment is N. First, we track to the 
next pixel T and use a distance threshold to decide whether 
P and N must be updated. We continue tracking to the next 
pixel, or record the critical point and select a new start pixel 
for the next approximation. In Figure 9@), the length of line 
segment SC is 1, and vectors a=(a,,a,), b=(b,,b,) and X are 
the possible curve pixels. The distance d can be calculated 
by using the following formula: 

L i e  number 

Synchronous LineBreak Logical Linkage 
During segmentation, a marked rectangle may cover a line if 
a large area of noise is situated near the line. This might 
cause the line to be cut during noise removal. To compen- 
sate for line breaks created during segmentation, synchro- 
nous line-break logical linkage is proposed (Pratt, 1991). 

Synchronous line-break logical linkage is similar to the 
noise-removal algorithm. The difference is that the former 
detects whether any pair of points is located inside the de- 
tection search window and the latter detects where non- 
boundary noise pixels are. If only one start or termination 
point is in the detection search window, we view this start 
or termination point as noise which might be removed dur- 
ing noise removal. Otherwise, a line-break logical linkage 
must be taken by recording the pair of points in the detec- 
tion search window. 

Synchronous line-break logical linkage is also embedded 
in line tracing to detect where break points are and to output 
their coordinates to the vectorized data file provided for re- 
construction and display. The advantage of this approach is 
that synchronous processing and logical linkage need not 
spend any time on line connection. Therefore, this approach 
is better than the conventional approach which needs com- 
plex calculations and detects all the pixels in a cadastral 
map. 

Vectorized X coordinate 
Vectorized Y coordinate 

Experimental Result 
Figures 10 to 2 1  show results obtained from a 512 by 512 by 
8 (width, height, and bitslpixel) image executed on an 

kgure 9. (a) Synchronous line a p  
proximation. (b) Distance calcula- I tion. 

I 
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80486DX personal computer. Except for the time required for 
edge enhancement and thresholding, segmentation took 
about 6 seconds. Noise removal took about 1 2  seconds and 
raster-to-vector conversion, except for the time required for 
thinning, took about 9 seconds, both acceptable performance 
results. 

Table 1 shows the size comparison of the three files of 
Figure 20 used to store 4-byte vectorized data (X, Y coordi- 
nates). The total bytes ratio is 262144:8000:560 (about 470: 
14:1), a great reduction in storage space required 
(approximation means that only critical points are recorded; 
non-approximation means that each pixel of every line is 
stored). 

Discussion and Conclusions 
To assess an algorithm, six indices - (1) speed, (2) memory 
requirement, (3) coding, (4) parameter setting, (5) noise im- 
munity, and (6) effectiveness - are generally considered in 
digital image processing. The major algorithms proposed in 
this paper are segmentation, raster-to-vector conversion, 
noise removal, synchronous line approximation, and syn- 

I 1 Figure 10. Source image. 1 

Figure 14. After segmenta- 
tion. 

I Figure 18. Curves with 
noise. 
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TABLE 1. FILE SIZE COMPARISON 

Types Pixels Recorded BytesJPixels Total Bytes 

Raster data format 512x512 1 262144 
Vector (non-approximation) 2000 2 x 2  8000 
Vector (approximation) 140 2 x 2  560 

chronous line-break logical linkage. All are implemented 
with row-majority scanning and line tracing, and they all use 
a data-list structure to store dynamically created data, thus 
reducing memory requirements and avoiding sorting. These 
algorithms are only run-length coding integrated with list in- 
sertion, deletion, and update operations. To summarize the 
advantages of our approach, it can be concluded fiom indi- 
ces (I), (2), and (3) that all algorithms provide a concise ap- 
proach to processing digitized images of cadastral maps. 

Segmentation uses two thresholding values: the upper 
and lower bounds of symbol and character size. Noise re- 
moval and synchronous line-break logical linkage use one 
thresholding value: the upper bound of symbol and character 

Figure 11. After edge en- 
hancement. 

F~gure 19. Curves after Figure 20. Vectorized 
noise removal. points. 

Figure 12. After bi-leveling. 

Figure 15. After thinning. 

Figure 13. After pattern 
clipping. 

Figure 16. After noise re- 
moval. 

Figure 17. Vectorized 
points. 

Figure 21. Larger thres- 
holding gate. 



size. Synchronous line-approximation uses one thresholding 
value: the line-approximation distance tolerance. It can be 
concluded from index (4) that each algorithm uses few para- 
meters and the corresponding criteria are certain of physical 
meaning. Although segmentation can cause some line breaks, 
synchronous line-break logical linkage is provided to com- 
pensate, and it can be concluded from index (5) that line 
breaks can be reduced or even unaffected by noise removal 
and clipping of symbols and character. 

Difficulty separating intersections between symbols, 
characters, and lines remains. Another problem is that most 
existing cadastral maps were created by manual drawing, 
and some symbols and characters are connected to each 
other. Some Chinese characters, such as 7, $+, and &, (dry- 
land, woodland, and pond) to mention a ew, can be sepa- 
rated but those elements need be viewed as Chinese 
characters for pattern recognition. 

It can be concluded from index (6) that all algorithms 
can be executed effectively and can provide more informa- 
tion for pattern recognition. Therefore, using computer vision 
techniques, all algorithms can provide a feasible solution to 
automating digitization of cadastral maps. 
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