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Abstract 
Our approaches in  this project emphasized mainly the tech- 
nical aspects of the land-systems classification problem with 
neural networks. Using digital elevation, its derivatives, and 
forest cover data as input, we constructed neural networks to 
classify 27 land-system classes at Duck Mountain, Manitoba, 
Canada. Training and testing of those neural networks were 
done using an existing land-systems map prepared through 
airphoto interpretation and field studies. Two types of data 
structure were evaluated: polygon and raster forms. Both 
types of data sets contained the elevation, slope, aspect, 
dominant forest species and corresponding crown closures, 
and more general site information on cover type, subtype, 
site, cutting class, and crown closure. Because the data were 
obtained from different sources with different scales of meas- 
urement, we developed several methods to encode those data 
into suitable formats for use by  the neural networks. With 
the polygon-based data set, a number of neural network 
structures and different data encoding methods were tested, 
and the best overall classification accuracy was only 26.8 
percent in agreement with the existing map. 

The elevation and the forest-cover data were converted 
into a raster data set with 50-m by 50-m grid cell units. More 
experiments were done with this data set. Results indicate 
that a random sampling strategy for training sample selec- 
tion led to better classification results than a contiguous 
sampling method. Approximately 10 percent of the total 
samples were sufficient for network training. The best overall 
classification accuracy was 52.0 percent when the neural 
network classification result was compared with the existing 
map. We developed a method to estimate classification un- 
certainties based on neural network outputs obtained from 
evezy mapping unit. 

Introduction 
Mapping ecosystems plays an important role in understand- 
ing ecosystem processes and relating these to spatial scales. 
It has been widely recognized that a hierarchical approach to 
ecosystems mapping is necessary although levels in a hierar- 
chy and nomenclature vary in different countries (ECOMAP, 
1993; Klijn and Udo de Haes, 1994). While ecological maps 
at broad spatial scales such as ecoregions and ecodistricts are 
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mostly available, maps at more detailed spatial scales have 
rarely been made. Designing ecosystem classification 
schemes at small scales such as landscape and land-unit lev- 
els requires a great deal of effort for detailed data collection 
and analysis (e.g., Kojima, 1991; Ohno, 1991; Podani and 
Feoli, 1991; Ross et al., 1992). 

A land system is a unit of land that is mappable at 1: 
50,000 scale and distinguishable based on surface form, ma- 
terials, and hydrology. In the Canadian ecological land sys- 
tem (Wiken, 1985), it corresponds to the ecosection level. A 
land system can be further divided into forest ecosystem as- 
sociations with additional information about plant associa- 
tion and soil series (Pedocan Land Evaluation Ltd., 1988). 
Because forest cover is often a clue to materials and hydrol- 
ogy, it can be used in land-systems classification. Classifying 
an area into various ecological land systems is usually done 
using airphoto interpretation and ground observations. It is 
time-consuming and requires a large amount of expert 
knowledge to derive land-system classes based on data from 
multisource such as terrain and land cover. Therefore, efforts 
have been directed to improve the efficiency of ecological 
land classification using computer-based digital analysis 
techniques (Jones, 1993). For example, forest ecosystems 
classification has been attempted using a knowledge-based 
approach (Mulder and Corns, 1993). With this technique, 
expert knowledge must be explicitly acquired and repre- 
sented in a knowledge base (e.g., Corns and h a s ,  1986). 
However, not only is expert knowledge acquisition difficult 
and time-consuming, but the computer representation of 
expert knowledge is also difficult because expert knowledge 
is often ambiguous and imprecise (Wells, 1992). 

Artificial neural network technology is an alternative to 
constructing a computer system for land systems classifica- 
tion. In such a system, only a set of example data containing 
the input data and the output classes determined by experts 
is required (Civco, 1993; Hepner et al., 1990). Expert knowl- 
edge does not need to be explicitly acquired. With the learn- 
ing and adaptive capability of a neural network algorithm, 
empirical relations between land-systems classes and input 
data from multisource can be automatically established. It 
may then be possible to use these relations to conduct land- 
systems classification. Those empirical relations themselves 
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may be used in the construction of knowledge-based sys- 
tems. Outputs from a neural network represent the levels of 
similarity between the characteristics of a mapping unit and 
those of various land-systems classes. They may be used to 
estimate classification uncertainties. 

The objective of this study was to test the feasibility of 
applying a back-propagation, feed-forward neural network al- 
gorithm to land-systems mapping using digital elevation and 
forest-cover data. Our emphasis was on the evaluation of the 
algorithm with various network configurations against input 
data of different formats with different levels of preprocess- 
ing. In addition, we developed a method to estimate uncer- 
tainties in land-systems classification using neural network 
outputs. 

The Neural Network Algorithm 
A supervised feed-forward neural network was tested in this 
study. It is capable of classifying data from multiple sources 
with different levels of measurement scale. This capability 
cannot be easily accomplished using standard classification 
techniques (Gong, 1996). A supervised classification method 
requires classifier training with samples of known classes. 
Neural network training is achieved by using a generalized 
delta rule (GDR) (Rumelhart et al., 1986). 

The basic elements of a network are nodes and links. 
Nodes are arranged in layers and linked between two succes- 
sive layers. Each input node accepts a single value corre- 
sponding to an element in an input vector. For land-systems 
classification, an element in the input vector may be the ele- 
vation, aspect, or species crown closure, etc. Each output 
node corresponds to a class. The value of an output node 
can be considered as the possibility of a class. Possibilities 
for all "n" land-systems classes can be arranged in an output 
vector, P = [p , ,  p,, ..., p,]. The layers between the input and 
output layers are hidden layers. The number of hidden lay- 
ers ranges from one to many, although one is usually enough 
(Lippmann, 1987; Pao, 1989). The outputs of nodes in one 
layer are passed to those in the next layer through links that 
amplify, attenuate, or inhibit such outputs through weighting 
factors. In the feed-forward neural network model, the input 
to each node in the hidden layer, or the output layer, is the 
weighted sum of outputs from the nodes of the preceding 
layer. The output of a node is calculated from an activation 
function that usually takes the form of a sigmoid. 

During neural network training, both the inputs and the 
outputs are known. The inputs are a set of attribute values 
and the outputs are classes of different land systems. The net 
starts with a random set of weights, taking one input vector 
at a time and evaluating the output in a feed-forward man- 
ner. When presented with an input vector, the net is asked 
to adjust its weights in all the connecting links and biases in 
all nodes to generate the desired outputs. The adjustment of 
weights and biases is accomplished by repetitively feeding 
the net with vector pairs of inputs and outputs and con- 
stantly modifying the weights and biases using GDR. In fact, 
it is required that the net finds a single set of weights and 
biases that will satisfy all the input-output vector pairs pre- 
sented to it. 

For each training sample, the error between the desired 
outputs and the actual network outputs is calculated. With 
GDR, weights are gradually modified such that the error can 
be reduced as rapidly as possible. This is done by taking in- 
cremental changes that are proportional to the partial deriva- 
tives of the root-mean-square error with either the weights or 
biases. Starting at the output layer, GDR propagates the "er- 
ror" backward to previous layers, a process known as error 
back-propagation. This procedure is repeated for all the 
training samples until either the network outputs for each 
training sample are very close to the desirable values or the 

error stabilizes. To construct a neural network, one needs to 
select representative training samples and to specify the 
number of hidden layers, the number of nodes in each hid- 
den layer, a learning rate controlling the speed of weight or 
bias change, and a momentum coefficient controlling the 
proportion of weights or biases to be preserved from a previ- 
ous iteration of network training. These parameters are usu- 
ally determined empirically. 

After network training, a set of final weights and a bias 
for each node will be obtained. With each set of input fea- 
tures, a feed-forward calculation is used to obtain the output 
values, each of which corresponds to a specific land-systems 
class. Details about the feed-forward network with the error 
back-propagation learning algorithm are found in Rumelhart 
et al. (1986), Eberhart and Dobbins (1990), or Pao (1989). A 
C program has been written to implement this algorithm. 

Classification Decision Rule and Uncertainty Modeling 
During neural network classification, each set of inputs cor- 
responding to a mapping unit (e.g., a polygon or a grid cell) 
results in an output vector, P. The neural network assigns a 
class to the mapping unit according to a maximum possibil- 
ity rule, 

assign class k, if p, = maxlp,, p,, ..., p,} 

i.e., the land-system class for the polygon or the grid cell is 
the class that has the greatest possibility value among all the 
possibility values in P. 

Obviously, the level of uncertainty in each classification 
decision varies from one polygon (or grid cell) to another. 
Knowledge about data uncertainty is useful to end users and 
decision makers (Hunter and Goodchild, 1995; Gong and 
Chen, 1992; Gong et al., 1995). In particular, classification 
uncertainties can help the map makers to identify potential 
problems in original data and the classification scheme de- 
sign. While these are outside the scope of this paper, we 
present a method for estimating classification uncertainties. 

Intuitively, the uncertainty is related to the maximum 
possibility, p,. We may use 1 - p, to represent the uncer- 
tainty for the polygon or grid cell under consideration. When 
p, approaches 1, the uncertainty level is low. However, some 
of the remaining possibilities may also be large. From our ex- 
perience, there usually exist two to three possibility outputs 
in P that are greater than 0.01. Sometimes, both the first and 
the second ,greatest possibilities are greater than 0.5. For ex- 
ample, if both the first and the second highest possibilities 
are close to 0.7. There is a large chance that the class having 
the second highest possibility is the correct classification. 
Under such circumstances, the low uncertainty level calcu- 
lated by 1 - p, seems to be less desirable. Therefore, we in- 

cluded the normalized maximum possibility, p, / 2 pi ,  as a 
i=l 

modifying factor in the calculation of the uncertainty level. 
The uncertainty factor is defined as follows: 

This largely increases the level of uncertainty when several 
high possibilities are generated by the network for a polygon 
or grid cell. 

Study Site and Data Preparation 
The study site, covering approximately 240 square kilome- 
tres, is located partly inside and partly outside the Duck 
Mountain Provincial Forest, Manitoba, Canada. Ecological 
land classification of the same area was conducted using air- 
photo analysis and ground checked by Pedocan Land Evalua- 
tion Ltd. (1988). Twenty-seven land-systems classes were 
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Glaciofluvial Ridged 
Outwash & Beaches 

Fluvial Fans 

Bogs 

Fluvial-Duned 

Fluvial Morainal 

General Class Class Code 

Morainal M1 25 

Morainal-Lacustrine ML1 2 6 
ML2 27 
ML3 28 

Lacustrine-Morainal LM1 22 
LM2 23 
LM3 24 

Stream Channels S A 2 
SB 3 
SI 1 

FR1 20 
FRZ 2 1 
FB 1 12 
FB2 13 

F1 9 
F2 10 
F3 11 

B1 5 
B2 6 
B 3 7 
B4 8 

FD1 14 
FD2 15 

FM1 16 
FM2 17 
FM3 18 
FM4 19 

mapped (Table 1). There exists a large tract of farmland and 
some water bodies on the map which were excluded from 
the classification in this study. 

Two digital data sources, a digital contour line map and 
a forest-cover map, were available as input. The first domi- 
nant species is shown in Plate 1. UTM grids in kilometre 
units are also shown in Plate 1. The contour line map was 
digitized based on 25-foot contour intervals from 1:50,000- 
scale National Topographic Series maps. The digitized con- 
tour map, the forest map, and the Pedocan map (Plate 2) of 
the Duck Mountain area were provided by the Manitoba Dis- 
trict Office, Canadian Forest Service. 

In order to apply the neural network algorithm for land- 
systems classification, the original data were overlaid to form 
a polygon database and rasterized into a grid file. Both data 
sets were used in this study. 

The Polygon Data Set 
Elevation units were converted from feet to metres for the 
DEM. The contour lines were then interpolated into 50-metre 
interval because an interval of 25 feet would have led to a 
database that was too large for subsequent analysis such as 
building the triangular irregular network (TIN) and polygon 
overlay. The TIN was established based on the interpolated 
digital contour map. Slope and aspect information were cre- 
ated for each triangle in the TIN. The elevation, slope, aspect, 
forest cover, and the ecological land-classification map were 
overlaid together, resulting in a total of 36,107 polygons. The 
slope has been classified into ten classes corresponding to 0°, 
0" - lo , lo - 3", 3" - 5O, 5" - 7", 7' - go, 9" - 11°, 11" - 15", 15" - 
Zoo, 20" - 25", respectively. Less than 80 polygons having 
slopes steeper than 25" were set to the last slope class. The 
average for each slope range was used as the slope for a poly- 

I 

Plate 1. Forest-cover 
map with crown closure 
of the first dominant for- 
est species. 

' 1 
I 

I 

I 
Plate 2. The Pedocan 
land-systems classifica- 
tion map. 

gon. The aspect was categorized into northeast (NE), south- 
east (sE), southwest (sw), northwest (NW), and flat (FL). The 
polygon data set consisted of one polygon layer and one ta- 
ble summarizing all the attribute data and the land-systems 
class of each polygon. Several examples of the attribute data 
are shown in Table 2. 
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Corresponding to each polygon in the overlaid layer was 
a list of variables including Elevation, Slope and Aspect, 
three tree species (Spl,  Sp2, and Sp3) and their correspond- 
ing percentage crown closures (PI, P2, and P3), a five-digit 
type aggregate (Cover), and the expert derived ecological 
land-system class (Land System). The elevation is in metres, 
ranging from 400 to 850 m. For each polygon there are at 
most three tree species. They are dominant species in a for- 
est stand recorded with their crown closures in the original 
forest-cover maps. Eight tree species were found in the study 
area as dominant species in various forest stands (Table 3). 
The five digits under "Cover" aggregated the cover type, sub- 
type, site, cutting class, and crown closure of a polygon area, 
respectively. Cover type has four broad categories: softwood, 
softwood-hardwood, hardwood-softwood, and hardwood. 
Subtype indicates species composition under the cover type. 
It is determined by the proportion of basal area of 2 to 3 
main species to the total basal area of all species for a stand. 
Site classifies land moisture regime into seven classes based 
on indicator species. Cutting class was grouped into six clas- 
ses based on merchantable volume per hectare and forest 
growth conditions. Crown closure was classified based on 
forest coverage derived from aerial photographs (Manitoba 
Forestry Branch, undated). 

The Raster Data Set 
From the TIN, grids with 50-m intervals in both the x and y 
directions were produced. The elevation z at each grid cor- 
ner with known (x, y) coordinates was determined through 
linear interpolation (Figure 1). From the digital forest-cover 
map, the crown closures for each tree species or the values 
for each of the five cover types were separated into individ- 
ual layers. Each of those layers was rasterized using the same 
grid system as in the TIN. 

A surface normal vector was generated for each grid 
from two elevation gradients along the x and y directions, re- 
spectively. Slope, a, and aspect, 9, at the grid cell were de- 
rived from the elevation gradients, V, and V,: i.e., 

a = arctan ( V: + V ) ,  \i 
cp = arctan (V, / V,) 

where V, = az / ax and V, = dz  1 ay. The exact angle of 9 is 
determined by the signs of V, and V,. 

No classification or post-processing was applied to the 
calculated slope values in degrees. The aspect was catego- 
rized into northeast (NE), southeast (SE), southwest (SW), 
northwest (NW), and flat (FL) (Plate 3). A flat surface cell was 
assigned a value of 400 to distinguish it from the north di- 
rection of aspect. 

The Pedocan map was also rasterized. The raster data 
contained 17 grid layers including the elevation, slope, as- 
pect, crown closure for eight tree species, the five cover type 
digits, and the land-systems class. 

Data Encoding 
A neural net works better with data ranging between 0 and 
1. This requires that some of the numerical data [e.g., Eleva- 

TABLE 3. MAJOR FOREST SPECIES IN THE DUCK MOUNTAIN STUDY SITE 

Species Code 

Black Spruce BS 
White Spruce WS 
Jack Pine Jp 
Balsam Fir BF 
Balsam Poplar BA 
Trembling Aspen TA 
Tamarack Larch TL 
White Birch WB 

tion in Table 2) be compressed or stretched while the the- 
matic data such as aspect be encoded in a numerical range 
between 0 and 1. A linear compression program was used to 
find the maximum and minimum values of any input varia- 
ble and linearly compress or stretch all the variable values to 
the range of 0 and 1. During network training, each output 
node must have a value. This could be done by assigning 1 
to the node corresponding to the land-system class and 0's to 
the rest of the nodes. 

An overview of the major procedures and various data 
components is shown in Figure 2. The upper half highlights 
data preprocessing, data ranges, and procedures used to de- 
rive the two types of data sets, while the lower half shows 
procedures used in neural network training and testing. 

Aspect Coding 
Two types of coding were applied to aspect for both the 
polygon and the raster data sets. The first type of coding, 
Method 1 (Table 6), is shown in Table 4. The aspect was 
coded using four nodes in the input layer. The encoding 
method allowed more aspects such as N, E, S, and W to be 
represented. 

The second type of aspect coding, Method 2 (Table 6), 
required only one input node. This was done based on a sta- 
tistical analysis of aspect distribution. The occurrence fre- 
quency of each aspect with respect to each class, f (i, j), can 
be enumerated from training samples. i stands for a particu- 
lar aspect and j denotes a land class. For each aspect, the 
distribution of frequencies of all classes was related to the 
level of discriminant power of the aspect. If the frequencies 
were evenly distributed among all the classes, it implied that 
a low standard deviation would be generated from those fre- 
quencies. This aspect would have little discriminant power 
in terms of separating the classes. If the distribution of fre- 
quencies varied largely from one aspect class to another, this 

TABLE 4. ENCODING THE ASPECTS: METHOD 1 

TABLE 2. DATA TYPES AND STRUCTURE 

Input Output 

ID Aspect Elevation Slope Spl  PI  Sp2 P2 S ~ 3  P3 Cover Land System 
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aspect class would have greater separation power for dis- 
criminating the classes. This allowed us to assess the dis- 
criminant power of aspect i (or any other input variable) 
using its "deviation coefficient," 6 (i), defined by the ratio 
between the standard deviation and the mean of frequencies 
for aspect i. 

Once the aspect having the greatest deviation coefficient 
is found, we assigned a code of 1 to the aspect for use as the 
input to neural networks. A code for each of the remaining 
aspects was assigned as its correlation coefficient with the 
aspect having the greatest deviation coefficient. Following 
this rule, a code had been assigned to each of the aspects: NE 
= 0.11,SE = 0.77, SW = 1.00,NW = 0.75,andFL = 0.19. 

Elevation Coding 
The first elevation encoding method was to directly compress 
the elevation to the range of 0 and 1. The second method was 
to take a logarithm of elevation values and then convert the 
transformed data into the range between 0 and 1. The loga- 
rithm was taken to enhance the details of lower elevation. 

Texture measures were also extracted from the elevation 
data. The first texture measure was edge density. It required 
three steps to obtain. They were (1) applying a Laplacian fil- 
tering to the linearly stretched data, (2) thresholding the 
edge-enhanced elevation data to obtain an edge-image, and 
(3) applying average filtering to the edge-image to generate 
elevation edge density. Details of this approach are found in 
Gong and Howarth (1990). The three additional texture 
measures were the homogeneity, dissimilarity, and entropy 
of elevation. They were obtained based on elevation level co- 

I occurrence enumeration (Jensen, 1996). Textures could be 
generated from local neighborhoods of different sizes. With- 
out much prior knowledge, we used a neighborhood size of 

I 11 by 11 to generate these textures. Texture extraction was 
I done in a hope to capture local elevation patterns that could 

be helpful for land-systems classification. For instance, the 
Pedocan map was prepared based on analyzing the land 
forms through interpreting airphotos. This included the anal- 
ysis of local concavity, convexity, location on a slope, etc. 
With only elevation, aspect, and slope, none of those land- 
form features can be reflected in the neural network classifi- 

( cation. Some localized texture features such as the edge- 
density, dissimilarity, and entropy may represent, to some 
extent, the local concavity and convexity. 

Encoding the Slopes 
For the raster data set, slopes were not grouped. We com- 
pressed slopes or slope classes to the range between 0 and 1. 

Encoding Tree Species 
For the forest cover, instead of using the six parameters on 
species and percentages directly, we represented the eight 
species by eight nodes in the input layer. The percentage of 
each species in a polygon or a grid cell was used as the in- 
put value to a corresponding node. Because there was a max- 
imum of three species for a polygon or a grid cell, at least 
five nodes had zero values each time. For each tree species, 
the cover percentages were compressed to the range between 
0 and 1. 

Cover Type 
For the site aggregate of cover types, the five digits were split 
and assigned to five nodes. All the values were then com- 
pressed to the range between 0 and 1. 

Experiments 
Different combinations of input variables were examined us- 
ing neural networks. With the raster data set, the combina- 
tions included only elevation data; only topographic varia- 

bles including elevation, slope, and aspect data; topographic 
variables and cover-type data; and topographic data, eleva- 
tion texture data, species, and cover-type data in land-sys- 
tems classification. 

We tested various neural network structures with differ- 
ent numbers of nodes, different numbers of hidden layers, 
learning, and momentum rates. By comparing the perform- 
ances of different neural network codigurations, we limited 
our tests to only a few network configurations. Use of more 
than one hidden layer did not result in better land-systems 
classification. 

For each data set, we extracted certain portions of sam- 
ples from the Pedocan map for training. Because of the lack 
of in situ knowledge of the study site, knowledge regarding 
ecological land-systems classification relies on the Pedocan 
map. Different sampling strategies for network training were 
tested. These included random sampling, contiguous sam- 
pling, and dividing the study area into two halves by select- 
ing training samples from one half and testing the neural 
networks using the other half. Overall classification accura- 
cies were calculated by comparing the classification results 
with either the entire Pedocan map or all the samples except 
those used for training. 

Results from the Polygon-Overlay Based Data Set 
From the total of 36,107 polygon records, 2740 samples were 
selected randomly from each ecological land-systems class. 
These samples were randomly mixed to form the training 
samples. The number of input nodes was 19 including the 
elevation, slope, eight species, five cover types, and aspect 
coded in four nodes. A single hidden layer was used. Two 
nets were constructed with 60 and 100 nodes in their hidden 
layers, respectively. At every 100 iterations of network train- 
ing, the root-mean-square errors were calculated for the 
training samples and all the 36,107 samples. The net with 
100 nodes in the hidden layer converged faster than that 
with 60-node hidden layer, measured by the mean-square 
errors against the number of training iterations. The nets 
stopped converging after 2000 iterations with an error level 
of greater than 0.4, much larger than the desired error level 
of 0.01. The overall classification accuracy was 22.6 percent. 

Some additional tests were made with the deviation- 
coefficient-based aspect coding method. From the total sam- 
ples, 4658 polygons were selected as training samples. With 
50 nodes in the hidden layer, we performed three tests using 
the topographic features, the five cover types, and eight tree 
species as network input. The best overall classification ac- 
curacy, 26.8 percent, was obtained after 5000 iterations of 
network training (Table 5). Because the overall classification 
accuracies were rather poor, no further tests were performed 
with the polygon data set. 

Results from the Raster Data Set 

Contiguous Samples for Network Training 
Training samples can be selected interactively with the data 
displayed on a screen monitor. This is a popular method 

TABLE 5. RESULTS OBTAINED FROM THE POLYGON DATA SET 

Test 7 (Y testaccu.(%) No. iteration 

1 0.2 0.6 26.8 5000 
2 0.35 0.75 23.6 2000 
3 0.6 0.3 10.1 1500 

7 learning rate 
or momentum rate 
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Figure 1. The rasterized 
elevation of the study 
area. 

Plate 3. The aspect map 
derived from the digital 
contour line map. 

adopted in remote sensing image classification. With this 
method, contiguous patches of samples are usually selected. 
Each patch contains dozens to hundreds of samples. Approx- 
imately 23,000 samples were selected from the total of 
87,804 samples for Gaining. To make sure training samples 
were representative, it was hard to reduce the size of this 

training sample set. A one-hidden layer network was con- 
structed with 16 input nodes, 50 nodes on the hidden layer, 
and 27 nodes on the output layer. After testing a few sets of 
momentum and learning rates, a network with a momentum 
rate of 0.6 and a learning rate of 0.2 produced relatively fast 
convergence results. The best overall classification accuracy 
of 43.0 percent was achieved when the network was trained 
for 2000 iterations. This test was conducted on a Sun 
SPARC-20 computer, and it took several days to complete 
the training. Suspecting that the contiguous sampling strat- 
egy may under-represent the data variability of the study 
site, we decided to use a random sampling method for fur- 
ther analysis. 

Random Sample Selection for Network Training 
A random sampling program was developed that takes a per- 
centage as input and selects a list of samples out of the total 
samples according to the percentage specified. Approxi- 
mately 5 percent, 10 percent, and 20 percent of the total 
samples were used as training samples. More than 20 neural 
networks were tested. The primary results are presented be- 
low. 

(1) Varying the network structure and weight updating 
parameters 
Fixing the number of training samples (8910, approximately 
10 percent of the total sample) and using all the remaining 
samples for test (80,960), we evaluated the effect of network 
structure and weight update parameters. The number of in- 
put nodes (NW) includes the elevation, slope, eight species, 
five cover types, and aspect either coded in four nodes or in 
one node. Some of the better results are listed in Table 6 

I I I I I f 

Data Organization for Neural Networh 

Use o f  N e u r a l  Networks 
All Samples - Organized in Pairs of 

Input Vector vs. 
Output Vector 

r - - - - - - - - - - - - - - - - - - - - - - - - - -  
I I 
I Sampiina 1 I 
I 
I Training Sei 1 1 Testing Set 1 Land Systems Classifixation 
I I Based on Trained NN 
I 
I Testing NN I 
I I 
I I I 
I I I 
I Results of NN Tralning I 
I I 
I 1. Varying structure parameters during NN training I 

I 2. Valying the number of input variables 
I Classification 
I 

1- 3, _Vay$gsampjn~ s-cwe_ss_dziing>pin$ a-nd_tgsjng _I 
Results 

Figure 2. Data components (in rectangular boxes) and 
major procedures (in round cornered boxes) used in this 
study. 
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Plate 4. The land-sys- 
tems classification map 
from a neural network. 

based on 1000 iterations of training. Test No. 3 has the best 
results. 

(2) Varying the sample size 
Keeping the number of input nodes to be 16 (with the sec- 
ond aspect coding method), and the number of nodes in the 
hidden layer to be 50, we tested the effect of training sample 
size on the classification. Four sets of test results are listed in 
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Table 7. A small number of training samples (Tests 2 and 3) 
resulted in comparable classification accuracies. The use of a 
larger number of training samples (Test 1, approximately 20 
percent of the total samples) resulted in a lower classificatior 
accuracy. This may indicate that more training is required 
for some networks. We did not choose to use a larger num- 
ber of training samples due to the prohibitively high comput- 
ing cost. The use of approximately 10 percent of the total 
samples for training (Test 4) resulted in better classification 
accuracies. 

(3) Varying the number of input nodes and hidden layer 
nodes 
Using 8026 randomly selected training samples, the remain- 
ing 81,844 samples as testing samples, and a learning rate 
and a momentum rate of 0.2 and 0.6, respectively, we tested 
eight neural networks with different numbers of input varia- 
bles. The best overall classification accuracies are listed in 
Table 8. The overall classification accuracy with only eleva- 
tion as network input was 26.8 percent (Test 1). When eleva- 
tion, slope, and aspect (encoded with the single node 
method) were used, the best classification accuracy was 35.8 
percent (Test 2). This indicates that topographic features con- 
tributed a great deal to land-systems classification. When 
only the five cover types were used, the best accuracy was 
20.6 percent (Test 3). When inputs in Tests 2 and 3 were 
combined, the accuracy was improved to 48.9 percent (Test 
4). With the same inputs as in Test 4 but a 30-node hidden 
layer, the accuracy was 47.8 percent (Test 5). Although the 
number of hidden layer nodes in Test 5 is only 60 percent of 
those in Test 4, there is only a 1.1 percent accuracy differ- 
ence between the two tests. When including the eight tree 
species in the network inputs, the best accuracy was 52.0 
percent (Test 6). Including the eight tree species helped to 
improve the classification accuracy by approximately 3 per- 
cent. When we added the four textures and the logarithm of 
elevation to the three topographic features and the five cover 
types (Test 7), the classification accuracy was 50.8 percent, 
indicating an improvement of 1.9 percent over Test 4. When 
we used all the inputs in Test 8, the best accuracy was only 
51.0 percent, indicating no further accuracy improvement 
over Test 6. The accuracies for classifying the training sam- 
ples showed some improvements when including the tex- 
tures and the logarithm of elevation. 

(4) Network training using one half of the study area 
while testing with the other 
The study area was divided into approximately two halves 
along the middle axial in the vertical direction of the study 
area as shown in Plate 4. We randomly selected samples 
from one half and used all the samples in the other half for 
testing. However, there were only 26 classes in both halves. 
Therefore, we used 26 output nodes for network testing. Us- 
ing the three topographic features, five cover types, and eight 
species as inputs; a hidden layer of 50 nodes; and a learning 
rate of 0.2 and a momentum rate of 0.6, we made two tests 
(Table 9). In Test 1, we extracted random training samples 
from the left half while using the right half as testing sarn- 
ples. In Test 2, the two divisions were exchanged. The test 
accuracies were less than 33 percent. 

Best Overall Classification Results from This Study 
The best overall classification accuracy achieved in this 
study is 52.0 percent. This was obtained using 

16 input attributes - elevation, aspect, slope, eight tree spe- 
cies, and five cover types; 
one hidden layer with 50 nodes; 
8026 samples representing approximately 10 percent of the 
total samples randomly extracted hom each class; 
learning rate of 0.2 and momentum rate of 0.6; and 
after 4800 times of network training. 



TABLE 6. NETWORK TRAINING BY VARYING NETWORK STRUCTURE AND WEIGHT UPDATING PARAMETERS 

Test 77 (Y NIN NHN testaccu(%) train_accu(%) No. iterations aspect coding 

1 0.3 0.7 19 40 44.4 47.5 1000 Method 1 
2 0.2 0.6 19 50 45.2 48.4 1000 Method 1 
3 0.2 0.6 16 50 49.2 51.8 1000 Method 2 
4 0.15 0.65 16 30 46.0 48.7 1000 Method 2 

- 

g learning rate 
cu momentum rate 
NIN - number of input nodes 
NHN - number of nodes in the hidden layer 

TABLE 7. NETWORK TRAINING BY VARYING THE TRAINING SAMPLE SIZES 

Test 77 (Y No trai~samp-size testaccu(%) train_accu(%) No. iteration 
- 

1 0.2 0.6 17735 45.4 46.9 1000 
2 0.1 0.5 4446 46.6 51.1 1000 
3 0.2 0.6 4446 45.8 50.7 1000 
4 0.2 0.6 8910 49.2 51.8 1000 

g learning rate 
a momentum rate 

TABLE 8. BEST RESULTS OBTA~NED FROM THE USE OF DIFFERENT ~ N P U T  NODES AND HIDDEN LAYER NODES 

Test NHN NIN tesLaccu(%) train_accu(%) No. iteration Input Variables 

elevation 
aspect, elevation, slope 
5 cover types 
asp., ele., slope, 5 covers 
asp., ele., slope, 5 covers 
input of Test5 + 8 tree species 
input of Test5 + 5 tansforms of ele. 
input of Test6 + 5 transforms of ele. 

NIN - number of input nodes 
NHN - number of nodes in the hidden layer 

The confusion matrix for this classification has been calcu- 
lated (Table 10). The results are shown in Plate 4. Comparing 
the classification results from the neural network with the 
Pedocan map (Plate 2), we found through visual inspection 
that the classes were in general agreement with the Pedocan 
map. However, the neural network classification results are 
much fragmented as compared with the Pedocan map. 

Classification Uncertainty Map 
Figure 3 shows the maximum possibilities of correctly classi- 
fied grid cells. Grid cells with high possibilities appear bright 
and low possibilities appear dark in Figure 3. All incorrectly 
classified cells were assigned 0 and thus they appear black. 
Figure 4 is the uncertainty map obtained using the proposed 
method. High uncertainty areas appear bright in Figure 4. It 
can be seen from Figures 3 and 4 that high uncertainty areas 
are mostly areas with low maximum possibility values (Por- 
tion A) while low uncertainty areas generally have high max- 
imum possibilities (e.g., Portion B). However, this is not 
always true. Portions C and D indicate that incorrectly classi- 

TABLE 9. RESULTS OBTAINED FROM USING TRAINING SAMPLES FROM DIFFERENT 
DIVISIONS OF THE STUDY AREA 

t e s t  train_ No. 
scheme NTR NTT accu(%) accu(%) iterations 

1 7061 38822 32.30 44.95 2500 
2 6910 43783 28.35 45.83 750 

NTR - Number of training samples 
NTT - Number of testing samples 

fied areas may not necessarily have high uncertainties. It 
seems to us that, although the uncertainty map does not 
highlight all areas where classification was problematic, it is 
an indicator to most of the areas where classification assign- 
ments were questionable. 

Discussion 
The Pedocan map was prepared based on "(1) surface form 
and relief, (2) surfacial geological materials, (3) hydrology 
(position in the watershed and wetness), and (4) dominant 
forest ecosystems" (Pedocan Land Evaluation Ltd., 1988, p. 
29). Dominant forest species were used as indirect features 
assisting the derivation of the first three types of features. 
This study was limited by the lack of digital airphotos and 
ground truth data. Critical information on (2) and (3) is 
hardly available. The application of the neural networks re- 
lied purely on digitized contour lines from 1:50,000-scale 
topographic maps and digital forest-cover data. In compari- 
son to the airphotos and ground observations, the digital 
maps (including the Pedocan map) were secondary and were 
highly generalized. The overall accuracy of 52.0 percent is 
actually an agreement between the Pedocan map and the 
neural network classification results. Given the fact that the 
Pedocan map was used to train the neural networks, we 
treated it as the "correct" classification of the study area. Al- 
though this was not a perfect assumption, the Pedocan map 
was the best manually derived map prepared by ecologists 
for that area. Such a map does not exist for most parts of 
North America. 

Rasterizing the original data led to improvements in 
overall classification accuracies. With the polygon data set, 
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TABLE 10. THE CONFUSION MATRIX FOR THE BEST NEURAL NETWORK CLASSIFICATION RESULTS. 

there exists a large number of trivial polygons (spurious poly- 
gons) that are too small in size andlor generated by digitiza- 
tion errors. This problem can be reduced in the 50-m by 
50-m grid data set. Data for large polygons may be too gen- 
eral because spatial variation within a polygon cannot be 
captured. The raster data set overcomes this problem to some 
extent through data interpolation. The 25-foot contour inter- 
vals used in the raster data set allowed us to preserve more 
details in the elevation data. Because the slope and aspect 
for each cell were generated from the rasterized elevation 
data, there is more slope and aspect variability preserved in 
the raster data set than in the polygon data set. The discus- 
sion is centered around the following selected aspects. 

Effective Neural Network Structure 
A neural network with a single hidden layer and a learning 
rate of 0.2 and a momentum rate of 0.6 worked the best for 
this study. The number of hidden nodes tested are usually 
more than twice the number of input nodes, although some 
tests for geological mapping indicate that this is not neces- 
sary (Yang et al., 1996). Our tests indicate that a large differ- 
ence in number of hidden nodes does not lead to considera- 
bly different classification accuracies (Tests 4 and 5 in Table 
8). 

The close match between training and testing accuracies 
indicate that 5 to 10 percent of random samples from the to- 
tal samples for each class were sufficient for network train- 
ing. This may be further reduced if ground truth data are 
available. Use of a larger number of training samples requires 
a longer training time. 

Training samples selected from contiguous blocks re- 
sulted in relatively lower classification accuracies although a 

much larger number of training samples was used. Due to 
the fact that phenomena spatially close to each other tend to 
be have high auto-correlation, contiguous sampling is less 
representative than a random sampling if a similar number 
of samples are selected. In addition, network training within 
500 to 1000 iterations seems to be sufficient for evaluation of 
the potential of a particular network configuration because 
training errors and testing errors begin to decrease very 
slowly after 500 training iterations. 

Importance of Individual Data Sources to Land-Systems Classification 
We used each individual type of input data in land-systems 
classification. The elevation data are the biggest contributor 
to the discrimination of the 27  land-systems classes. The 
three topographic features jointly resulted in an overall clas- 
sification accuracy of 35.8 percent. The cover aggregates 
were the second biggest contributor while the crown closures 
of the eight forest species did not contribute much to the 
classification. Use of the eight species only produced an 
overall classification accuracy of approximately 10 percent. It 
is reasonable to see that the eight species are not as effective 
as the cover aggregates in land-systems classification. For 
each mapping unit, the dominant species and their crown 
closures depict species composition information which ac- 
counts for only part of the information provided by the cover 
aggregate. 

As can be seen from Figure 1 and Plate 1, the top por- 
tion of the study area is relatively flat with no forest cover. 
This explained why the classification accuracies are low at 
that part of the study area. At relatively flat areas, elevation 
data have less variability and thus have minimal effect on 
land-systems classification. Under such circumstances, it is 



Figure 3. The maximum 
possibilities obtained by 
a neural network with cor- 
rect land-systems classifi- 
cation. A: low maximum 
possibility area; B: high 
maximum possibility 
area; C and D incor- 
rectly classified areas. 

Figure 4. The classifica- 
tion uncertainty map. A: 
high uncertainty area; 6: 
low uncertainty area; C 
and D: incorrectly classi- 
fied areas may not nec- 
essarily have high 
uncertainties. 

desirable that the forest-cover data as an indirect source of 
information may help discriminate the land-systems classes. 
However, forest-cover information is not available for that 
portion of the study site. 

We believe that the discriminating power of the present 
input variables have been mostly exhausted. Considering that 
we have only topographic features that are directly related to 
the land-systems classification while the forest-cover infor- 
mation is only indirectly related, it is possible to further im- 
prove the neural network classification using additional data 
sources such as those on surfacial geology, hydrology, and 
spatial features that better describe or measure the land 
forms. 

Texture Measures Did Not Help Improve Classification Accuracies in Our 
Experiment 
Most neural networks tested in this study used data only 
from individual samples by ignoring the spatial relationships 
among samples. To reduce the inconsistencies in generaliza- 
tion, spatial measures and shape analysis methods may be 
employed. Although texture measures were tested, the poten- 
tial of the texture features was not fully explored due to the 
limitation of data quality and computing power. Texture 
analysis requires a large amount of computation. On the 
other hand, the 1:50,000-scale original elevation data do not 
provide much elevation information at grid cells smaller 
than 50 m by 50 m. Therefore, micro-relief features finer 
than 50 m by 50 m with less than 25-foot elevation differ- 
ence cannot be captured by texture measures. This could be 
the reason why the use of texture measures did not help im- 
prove classification accuracies. 

The Neural Network Results Are more Fragmented than the Pedocan Map 
Human interpretation of airphotos is a complex abstraction, 
selection, and generalization process. Computing techniques 
are far inferior to achieve that level of complexity of intelli- 
gent inference. Computing methods are more bounded by 
data and have poorer generalization capabilities than does 
the human brain. In this perspective, some of the disagree- 
ment between the two maps are caused by inconsistencies of 
generalization. This is only one part of the problem. Because 
the quality of any computing method relies heavily on the 
availability of high quality data, the other part of the prob- 
lem is related to the data. 

By examining the input data, we see that the slope and 
aspect derived from the digital contour lines have many un- 
desirable artifacts. For example, there are large tracts of con- 
tour shaped aspects on the top of the aspect map (Plate 3).  
With a polygon-based approach, those contour shaped as- 
pects would be the location for many small polygons. These 
are caused by the drawbacks in restoring the topographic fea- 
tures based on digitized contour lines. Employing digital ele- 
vation models extracted from stereo images would 
considerably eliminate this artifact. 

The Neural Networks Failed to Converge 
The neural network algorithm is computationally intensive 
due to the requirement of repetitive network training. With 
this algorithm, it is impossible to predict when optimal train- 
ing is achieved. Therefore, we experimented with many dif- 
ferent network configurations. 

Usually, network training is acceptable when the train- 
ing error is below a specific small value and the testing error 
stabilizes. Among all the neural networks tested in this 
study, the training errors never reached below the specified 
value of 0.01. All the training errors stopped decreasing at 
the level of greater than 0.2. We are faced with an insuffi- 
cient network training problem. Given a large number of 
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land-systems classes, w e  believe that  the  input  variables d o  
not  have sufficient discriminating power to  make network 
training converge to  l o w  training errors. 

Training Conducted for One Area Is Less Representative to Another Area 
I n  contrast t o  the  other neural  network tests utilized in this 
study, t h e  testing accuracies were over 10 percent less than  
their corresponding training accuracies w h e n  w e  experiment 
w i t h  the  two halves of t h e  s tudy area (Table 9). This  implies 
that  training samples extracted from one area may  not  b e  
completely representative to  the  other area even wi th  close 
proximity. In  order to  make t h e  neural  networks work well 
for the classification of land systems of different areas, inpu t  
features that are commonly extractable from different areas 
a n d  less sensitive to  local details should  b e  developed and 
tested. 

Conclusions 
From the  results obtained in this research, w e  conclude that  

Adequate input variables are the most important factor to 
successful land-systems classification. Digital elevation and 
cover-type aggregate data are more important than dominant 
forest species and corresponding crown closure data for land- 
systems classification. 
Organizing input data in  a raster data format can produce 
considerably higher overall classification accuracies than or- 
ganizing the data in a polygon based format for land-systems 
classification. Proper encoding of input data helps improve 
land-systems classification. A deviation-coefficient-based 
method developed for encoding nominal aspect data helped 
improve the overall classification accuracies by 3 to 4 per- 
cent. 
Random sample selection allowed us to achieve better overall 
classification accuracies than with the contiguous sample se- 
lection method when used for neural network training. In- 
volving more samples in  network training may not necessar- 
ily lead to better classification results. Approximately 10 
percent of samples from each class are sufficient for network 
training. Decreasing the training samples to approximately 5 
percent causes only a 2 to 3 percent drop in overall classifi- 
cation accuracies. 
Changes in the number of hidden layer nodes may not cause 
much change in overall classification accuracies. The neural 
network algorithm tested in this research works better with a 
learning rate and a momentum rate set around 0.2 and 0.6, 
respectively. 
The proposed classification uncertainty estimation method is 
capable of highlighting areas where land-systems classifica- 
tion is in question. 

Our approaches in this project emphasized mainly the  
technical aspects of the  l and  systems classification problem 
w i t h  neural  networks. Due to the  lack of field knowledge, a n  
ecological analysis of t h e  problem such  a s  the  appropriate- 
ness of the  land-systems classes w a s  no t  attempted. Field 
knowledge a n d  better understanding of t h e  various classes 
would  help u s  interpret the  classification results. Finding ou t  
w h y  some classes were more likely to  be  misclassified into 
each other would  provide insights o n  the  operational use  of 
the  techniques. Further tests a n d  comparisons of different ec- 
ological classification schemes would  enable u s  to  develop 
more appropriate land-systems classification methods for t h e  
s tudy area. 
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