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Abstract 
Since its introduction to the photogrammetric community, 
Least-Squares Matching (LSM) has become a common tech- 
nique for obtaining accurate location of corresponding 
points. On several occasions, the basic model was general- 
ized to handle more than two image patches by  introducing 
unknown theoretical intensity values into the mathematical 
model. With these additional unknowns, gray values rather 
than gray-value differences are used as observations. In this 
paper, two aspects of introducing such unknowns are dis- 
cussed. The first aspect is the equivalence of the generalized 
model to the basic one. It i s  shown that, when the general- 
ized model handles only two image patches, the results of 
the matching are identical to those obtained by  the basic ap- 
proach. The second aspect is the efficiency of the solution. A 
reduced set of equations is used for the matching, and an ef- 
ficient way for calculating the unknown theoretical intensity 
values is derived. Finally, experimental results are presented 
and discussed. 

Introduction 
Least-Squares Matching (LSM) was introduced to the photo- 
grammetric community in the early 1980s (e.g., Ackermann, 
1984). Since then it has become a common technique for ob- 
taining accurate locations of corresponding image points, 
provided that good approximations are available. In its basic 

I form, LSM is aimed at finding a certain geometric (and possi- 
bly radiometric) transformation between two image patches. 
The parameters of the transformation are solved for by a 
least-squares adjustment. The actual "observations" of the 
adjustment, in the basic (linearized) mathematical model, are 
gray-value differences between corresponding pixels of the 
image patches. 

In many applications, such as image motion, close-range 
photogrammetry, and aerotriangulation, it is required to 

I match more than two image patches simultaneously. Several 
1 researchers addressed this problem (see, e.g., Agouris (1992), 
I Gruen and Baltsavias (1988), Heipke (1992), Helava (1988), 

and Wrobel (1988)). Agouris (1992) and Gruen and Baltsavias 
(1988) extended the model to more than two images by ap- 
plying geometric constraints to the equation system, while 
gray-value differences still served as the observations. Heipke 
(1992), Helava (1988), and Wrobel (1988), in a technique 
known as object-space LSM, considered the "true" intensities 
of the ground elements as additional unknowns. This paper 
will discuss two aspects of adding such unknowns to the 
mathematical model. 

In the idea presented here, the special case of two im- 
ages, which is used in the classical LSM algorithm, is general- 
ized to handle any number of patches. While gray-value 
differences can be easily used as observations in the basic 
mathematical model, it is not straightforward in the case of 
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multiple-patch matching. If we consider, for example, the 
case of three patches, three gray-value differences can be cal- 
culated for each pixel, leading to three observation equa- 
tions. Obviously, only two observations contribute new infor- 
mation. From two equations selected out of these three (say, 
the ones with the differences between the first and the sec- 
ond, and the first and the third image patches), each contains 
a different set of unknowns. Therefore, the entire system is 
separable to two sets of equations. The practical meaning of 
this determination is that additional information, hidden in 
the fact that all the patches are originated in the same 
source, is not used for the solution. 

In order to circumvent this problem, the observations in 
multiple-patch matching should be gray values. This requires 
the introduction of unknown theoretical intensity values into 
the adjustment. Each of these intensity values is associated 
with its corresponding pixels from the overlapping image 
patches. In the context of object-space LSM, the theoretical 
intensity values have the intuitive meaning of the "true" in- 
tensity values of the ground at a certain point. 

In the next two sections a mathematical model for multi- 
ple-patch matching is presented, and a reduced model is de- 
rived in order to minimize computation time. The two fol- 
lowing sections describe two aspects of using gray values rather 
than gray-value differences for the LSM. The first aspect is 
the equivalence between this model and the basic LSM algo- 
rithm. It will be shown that, if only two image patches were 
used, identical solutions would be obtained from both repre- 
sentations. The second aspect is an efficient, simple way to 
calculate the unknown theoretical intensity values once the 
geometric transformation is solved. Finally, experimental re- 
sults are presented and discussed. 

Definition of the Mathematical Model 
Assume there is a set of t? image patches that approximately 
describe the same area in the object space. Let the patches 
have the same size, n by m pixels. If there were neither geo- 
metric nor radiometric differences between the image patches, 
and the patches were centered on the same point, they 
would be identical and therefore the following identity holds 
for each pixel in each image patch in the set: 

where gl(r ,  c)  is the observed gray value of a pixel in row r 
and column c of patch i and gf(r,  c) is the unknown theoreti- 
cal intensity value at the corresponding location. If there were 
radiometric differences between the image patches, the right- 
hand side of Equation 1 would not equal zero even if there 
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were no geometric differences. Rather, it would be equal to a increase matching reliability (see Krupnik (1994)). In such 
certain error value e(r, c). cases computation time becomes significantly long. 

In reality, there are also geometric differences which An analysis of the model shows, however, that dividing 
should be modeled by the LSM. Equation 1 is then rewritten the model into two sets of unknowns, namely, the shifts and 
as the theoretical intensity values, leads to a reduced set of 

equations. A similar technique is used in solutions of other 
gi(P[r,  ~ 1 )  - gt(r, C) = e(r, c) (2) problems, among which are adjustment of aerotriangulation 

where P[r, c] is a certain geometric transformation on the blocks (e.g., Kraus (1993)) or other implementations of the 
multiple-patch matching (e.g., Ebner et al. (1993)). The theo- pixel coordinates that models the differences. Although other retical intensity values are calculated once the geometric geometric transformations may be introduced, the following unknowns (shifts in the case discussed are obtained. derivations assume that the geometric transformation be- The divided model, derived from the original model tween the patches contains only two shifts. The applicability (Equation 6) is of this type of transformation is explained by Krupnik (1994). 

Replacing the general transformation P in Equation 2 with 
the particular transformation of shifts only yields 

gi(r + Ar, c + A d )  - gt(r,c) = e(r,c) (3) 

where Ar and are the shifts of patch that are the design matrix A split horizontally and the unknown 
the adjustment. Linearizing the vector split vertically. A, and A, correspond to the coeffi- 

form of an observation equation gives cients of the unknown shifts of the patches and the coeffi- 

(r, C) - g, (r, C) = gi (r, c) dIV + gt (r, C) A C, - dgqr, c) (4) cients of the unknown theoretical intensities and contain 
2(C-1) and n - m columns, respectively. 5, and E, correspond 

where gh (r, c) + Agt(r,c) is a theoretical intensity value at lo- to the 2(C-1) shifts and n m theoretical intensities, respec- 
cation (r,c) (separated to an approximate and unknown parts), tively. 
and g;(r, c) and g;(r, c) are gray-value gradients across and The normal equation system, which solves for the un- 
along the rows, respectively. knowns, is split and has the following form: 

Equation 4 will be the same for all the image patches but 
one. In order to avoid an underdetermined equation system, 
which yields an infinite number of (yet correct) solutions, 
two of the parameters should be constrained. A common N2.1 N2.2 

way to do that is to fix one of the image patches. An obser- 
vation equations for a pixel of this patch is reduced to where N,,,k AT A, and c,A AT y. Solving for 5, in the second 

g; (r,c) - gl(r,c) = -Agt(r,c). (5) equation of Equation 9 and substituting in the first leads to 
the estimation of 6, from 

Note that fixing one patch to its original location is required 
only to prevent the model from being underdetermined. The (NISI - N1, N;: N,,,) g1 = (c, - N1,, N 2  c2) . (10) 
gray values of the constrained patch are still considered as 
observations and their contribution to the unknown theoreti- 
cal intensity values is the same as the contribution of any It can be easily shown (see Krupnik (1994)) that N,, is 
other patch. an identity matrix, multiplied by the number of overlapping 

The system presented in Equations 4 and 5 solves n . m image patches. Therefore, its inverse exists and is easily ob- 
theoretical intensity values and 2(C - 1) shifts. Each image tained. The size of the reduced equation system to be solved 
patch contributes n . m equations, which brings the total is 2(C-I), which is significantly smaller than the original sys- 
number of equations to C . n - m. The redundancy of this tem. 
model is always sufficient. If only two image patches were The theoretical intensity values, E2, can then be esti- 
used, the number of unknowns would be n - m + 2 and the mated by 
number of equations would be 2 . n . m. The redundancy is N2,2 52 = (CZ - &,I 5%) , 111) 
therefore n - m - 2. In traditional LSM with shifts only, the 
number of equations is n - m and there are two unknown or more efficiently as shown later in the paper. 
shifts. The redundancy in both cases is therefore exactly the 
same. 

Equations 4 and 5 can be written in a matrix form: i.e., 
The Equivalence between Classical LSM and Multiple-Patch 
Matching Models 

y = A t + e  (6) In this section, the equivalence between the proposed mathe- 
matical model and the classical LSM will be shown. Starting 

where A is the design matrix, y is the observations vector, 6 from  ti^^ 10, which is the reduced normal equation sys- 
is the vector of unknowns, and e is the error vector. The un- tem for calculating the geometric parameters, the derivations 
knowns are estimated by solving the normal equations are rewritten for only two image patches. It can be easily 

shown by simple matrix manipulations that 
( A T A ) ~  = A T y .  (7) 

The solution is obtained iteratively due to the linearization N1,l - N1,2 N;,; N2,l 

of the observation equations. 
(1 - C )  AT, A,,, AT,, A,,,-, 

Using a Reduced Equation System 
- - 

The normal equations system presented in the previous sec- 
tion is relatively large, especially when large image patches 
are used. Such large image patches are used, for example, to ATY-1 4,' . . . (1 - el AT,Y-, A ,,,-I 
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where 

and 

and 

where 

For only two image patches, and assuming that the theoreti- 
cal intensity values gt(r, c) are approximated by (gO(r, c) + g 
'(r, c))/2, Equations 12 and 14 are reduced to 

lr  can be clearly observed that 

- - 
N = 2N 

- - 
c = 2c 

and, therefore, 

This result shows the equivalence between the generalized 
model of multiple-patch matching presented in this work 
and the basic formulation of LSM. The advantage of the pro- 
posed scheme is its ability to match more than two image 
patches simultaneously. 

Efficient Estimation of the Theoretical Intensities 
Because the solution of the adjustment for the multiple-patch 
matching is obtained iteratively, an estimation for the theo- 
retical intensity values is required in order to improve the 
approximations for the succeeding iteration. Although it is 
possible to estimate these values directly from Equation 11, a 
simpler approach may be taken. Each row of equation system 
11 is expanded to the following form: 

and A 1 (-I 
Agt ( r , ~ )  = - 7 (g!, (LC) - 8' ( ~ d  

n-1 m-I 

C C g: (r,c) (go ( r , ~ )  - g' (r,cll 
1 "=O - g: (r,c) dl\r1 - g: (LC) A:'), (25) - .  

c = C, - N,,N;:c, = -  (I7) where the hat mark denotes the estimated values. Rewriting 
C C g: (r,c) (go (r,cl - g1 (r,c)) [:. 1: ] the equation in the nonlinear form: 

With traditional LSM, assuming only shift parameters, a line- 
arized observation equation obtaines the following form: 

where gO(r, c) and gl(r, c) are the pixel gray values in the 
"left" and "right" (or "template" and "moving") patch, re- 
spectively; g:(r, c) and gF(r, c) are the gray value gradients in 
the moving patch along and across the rows, respectively; 
and Ar, 4c are the unknown shift parameters of the moving 
patch. 

Presenting the normal equations for the traditional LSM 
in their matrix representation yields 

where 

A 1 A A 
A g t ( r , c ) = - g b ( r , c ) + - ~ g 1 ( r + A r 1 , c + 4 c 1 )  C ,=o (26) 

and, therefore, 

In other words, the estimation for the unknown theoretical 
intensity values is obtained simply by averaging the corre- 
sponding pixels from all image patches, after resampling 
them according to the estimated geometric transformation 
parameters. In any case, this resampling is done for the suc- 
ceeding iteration of the adjustment procedure and, therefore, 
the cost of calculating estimations for the theoretical inten- 
sity values is minimal. 

The latter determination can also be explained intui- 
tively. The solution for the geometric unknowns ensures that 

PE&RS October 1996 1153 



0.1 0.2 0.3 
Noise weight 

Figure 1. Effects of noise on the 
quality of matching results. 

the new image patches are resampled such that the differences 
from the theoretical intensity values are minimal. Given a set 
of gray values of corresponding pixels on different image 
patches, the value which minimizes these differences is 
merely their average. 

Experimental Results 
The idea of multiple-patch matching is demonstrated in this 
section by a set of experiments that tested the behavior of 
the matching procedure. Thirty patches from a real image 
were used, taken from areas with different texture complexi- 
ties. 

Each patch was duplicated (up to six copies were used) 
and corrupted by random noise according to the following: 
each pixel was assigned a new value g,: i.e., 

where w is a noise weight value, go is the gray-value of the 
original image patch, and u is a random number in the range 
of 0 to 255. Weight values between 0 and 0.3 were tested. 
One should realize that, when w = 0.3, the corrupted patch 
is significantly different from the original one. 

The approximations provided to the matching process 
were shifted from the centers of the image patches by a few 
pixels. This was done to check the ability of the procedure 
to converge to the correct location. 

Figure 1 shows the effect of the noise added to the 
patches on the quality of the results when correct locations 
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Figure 2. Effects of patch size on 
the quality of matching results. 
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Flgure 3. Differences between re- 
sults obtained by multiple-patch 
matching and results obtained by 
matching in pairs. 

were provided to the procedure (left set of bars in each pair) 
and when approximations are two pixels away from the cor- 
rect locations in a randomly chosen direction (right set of 
bars). Each set of bars shows the errors for which 50 percent, 
80 percent, and 90 percent of the cases were under. It is 
clearly seen that, even with noise levels of up to 0.2, and 
with shifts of two pixels, 90 percent of the image patches 
converged to a location which deviates from the true loca- 
tion by less than 0.35 pixels. 

Figure 2 shows the influence of the patch size on the 
matching results. The left set of bars in each pair refers to a 
case where the noise weight was set to 0.1 and the shift of 
the approximations was set to 1 pixel. The respective values 
for the right sets of bars are 0.2 and 3. The higher values of 
noise and shifts had an influence on the results for all patch 
sizes. However, it can be clearly observed that, while with a 
patch size of 15 by 15 pixels the error for the "90 percent" 
value in the left set of bars is approximately 9 times larger 
than that value on the right set, this factor is only 3.5 for the 
55 by 55 size patch. As expected, larger image patches yield 
more reliable results. 

Finally, Figure 3 demonstrates the different results ob- 
tained by using multiple-patch matching (left set of bars) ver- 
sus matching in pairs (right set). Here, 25- by 25-pixel patches 
with a noise weight of 0.2 were used, and approximations 
were shifted by four pixels. The results (especially the 90 
percent and the 80 percent values) indicate that, in the case 
where matching was performed in pairs, more points con- 
verged to wrong locations than in the case where multiple- 
patch matching was used. This is explained by the following 
observation. If, for example, one or more of the overlapping 
patches contain weak signal, or if convergence is marginal, 
matching in pairs may converge to a wrong location, because 
it does not use the knowledge that all the patches are actu- 
ally originated in the same source. Multiple-patch matching 
improves the robustness of the solution by taking advantage 
of this knowledge. Therefore, problematic cases that are not 
solved by matching in pairs are overcome by matching all 
the patches simultaneously. 

Summarv 
In this paper, two aspects of using unknown theoretical inten- 
sity values in multiple-patch least-squares matching were em- 
phasized. The first discussed the equivalence between matching 
more than two images, using unknown theoretical intensity 
values, and classical LSM where only two images are matched, 
and gray-value differences are used as observations. The sec- 
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ond aspect is a low-cost solution (in terms of computation 
time) for the large equation system generated by adding the 
unknown intensity values. 

Multiple-patch matching provides a simultaneous and 
objective solution for finding corresponding points on more 
than two images. Although the derivations were shown for a 
simple model of transformation between the image patches, 
generalizing it to other transformation is straightforward. The 
solution is efficient and suitable for any number of image 
patches, at any desirable size. 

The experimental results showed that acceptable results 
are obtained even when the approximations are two pixels 
away £corn the correct locations, and when noise with a 
weight value of 0.2 is added to each image patch. With high 
noise levels and relatively bad approximations, the use of 
large image patches increased the quality of the results signif- 
icantly. Finally, matching all the image patches simultane- 
ously, using the multiple-patch matching method, yielded 
better results than matching them in pairs. 

References 
Ackermann, F., 1994. Digital image correlation: Performance and po- 

tential application in photogrammetry, Photogrammetria, l l (64):  
429439. 

Agouris, P., 1992. Multiple Image Multipoint Matching for Automatic 
Aerotriangulation, PhD dissertation, Department of Geodetic Sci- 
ence and Surveying, The Ohio State University, Columbus, 
Ohio. 

Ebner, H., C. Heipke, and M. Holm, 1994. Global image matching 
and surface reconstruction in object space using aerial images, 
Integrating Photogrammetric Techniques with Scene Analysis 
and Machine Vision (E.B. Barrett and D.M. McKeown, Jr., edi- 
tors), Proceedings, SPIE, Orlando, Florida, 1944:44-58. 

Gruen, A.W., and E.P. Baltsavias, 1988. Geometrically constrained 
multiphoto matching, Photogrammetric Engineering b Remote 
Sensing, 54(5):633-641. 

Heipke, C., 1992. A global approach for least-squares image match- 
ing and surface reconstruction in object space, Photogrammetric 
Engineering b Remote Sensing, 58(3):317-323. 

Helava, U.V., 1988. Object-space least-squares correlation, Photo- 
grammetric Engineering b Remote Sensing, 54(6):711-714. 

Kraus, K., 1993. Photogrammetry, Volume 1, 4th Edition, Diimmler, 
Bonn. 

Krupnik, A,, 1994. Multiple-Patch Matching in  the Object Space for 
Aerotriangulation, Report number 428, Department of Geodetic 
Science and Surveying, The Ohio State University. 

Wrobel, B.P., 1988. Least-squares methods for surface reconstruction 
from images, International Archives of Photogrammetry and Re- 
mote Sensing, 27(B3):806-821. 

(Received 17 April 1995; revised and accepted 18 April 19^"' 

, (heck out the GISILIS '96 page, 
, Apply for ASPRS Certification, 
, Contact Region or Division Directors, Committee 

Hem bers,,,the ASPRS President t 
Check out the PE&RS Guidelines for Authors, 

- Apply for ASPRS Scholarships and Fellowships. 
.*% , Join, and learn about the benefits of ASPRS lembership. a=;;, 

-,. 3 gj*? 
7, Nominate someone for an ASPRS Award, >a" - :Lg, P 

*y  
8, Check out and order ASPRS publications, 
, Ask and answer questions on the Discussion pages, 
0. Find exactly what you need by searching the Directory of 

the Mapping Sciences by company, product, s( rice- and 

PE&RS October 1996 


