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Abstract 
The recent emphasis on metadata standards must be accom- 
panied by vigilance in  unbiased reporting of geometric accu- 
racy. A cross-validation technique is shown to be capable of 
providing more accurate estimates of geometric error than 
the traditional method of using transformation residuals 
when modest numbers of ground control points are availa- 
ble. This method also provides a much more accurate indi- 
cation of the effects of choosing different polynomial orders. 

Introduction 
A cross-validated method of estimating error in polynomial- 
based geometric transformations is presented. Polynomial 
rectifications are widely applied in both remote sensing and 
geographic information system (GIS) applications. For cases 
with moderate numbers of control points, the cross-validated 
method is shown to provide estimates of geometric error 
which are as good or better than traditional methods which 
use residuals directly from the transformation calculation. 
Polynomial rectification calculates a global mathematical 
transformation for converting from one image or map coordi- 
nate system (u ,  v)  to another (x, y) (Moik, 1980; Castleman, 
1979). The general form of the polynomial model is 

where u and v are the Cartesian coordinates of the original 
image, x and y are the Cartesian coordinates of the trans- 
formed coordinate system, N is the mathematical order of the 
polynomial equation, and a and b are empirically derived 
coefficients. 

Thus, first-, second-, and third-order polynomials would 
have three, six, and ten terms, respectively, and would re- 
quire at least a like number of control points for calculation. 
Additional points would result in a statistical fit for the 
transformation with increasing degrees of freedom. In order 
to choose the appropriate equation for this transformation, 
one must understand the trade-offs between the mathemati- 
cal stability of lower order polynomials versus the ability of 
higher order polynomials to fit more complex patterns of ge- 
ometric distortion. 

Typically, the underlying distortion is not entirely un- 
derstood when performing a geometric rectification, and an 
analyst must determine the appropriate polynomial expres- 
sion from empirical evidence. The standard method for as- 
sessing the accuracy with which a transformation models the 
actual geometric distortion is the root-mean-square error 
(RMSE) of the residuals for points used in the transformation. 
RMSE is calculated as 
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where n is the number of samples and a is the estimated 
value minus the actual value. 

RMSE is often calculated separately for the x and y com- 
ponents of each control point in order to provide information 
on relative error associated with that point. Total R M ~ E  based 
on transformation residuals is often cited as an accuracy sta- 
tistic for the entire image. However, because the control 
points are not independent from the transformation coeffi- 
cients, RMSE will underpredict the actual error found else- 
where in the transformed image when the degrees of freedom 
are small. As the number of control points increases, the 
transformation coefficients will converge towards an im- 
proved estimate and RMSE will asymptotically approach ac- 
tual error. This relationship is portrayed in Figure 1. 

The most effective manner for testing the actual geomet- 
ric accuracy of a transformation is to use an independent set 
of control points. These independent points are sometimes 
referred to as "pass" or "check points. However, in many 
remote sensing applications, the availability of control points 
may be quite limited. This problem often arises in remote ar- 
eas with few cultural features or when coarse spatial resolu- 
tion limits the discrimination of ground features. In these 
cases, an analyst may not have the luxury of exempting po- 
tential control points from the calculation in order to have a 
pool of independent check points. The result will generally 
be an overly optimistic statement of geometric accuracy for 
the rectified image based on RMSE of transformation residu- 
als. 

Beyond the problems of reporting biased estimates of 
cartographic fidelity, a misunderstanding of the geometric ac- 
curacy for transformed products may have strong repercus- 
sions on subsequent analyses. For example, Townshend et 
al. (1992) document examples where misregistration by 0.2 
pixels may cause 10 percent error in change detection using 
satellite imagery and 1.0 pixel misregistration may cause 50 
percent error. Clearly, it is important in such studies to have 
an unbiased understanding of the true registration accuracy. 
Similar problems may occur when map products derived 
from the transformed imagery are combined with other data- 
sets in a geographic information systern (CIS) (Chrisman, 
1989; Walsh et al., 1987; Vitek et al., 1984). 

A biased error estimate may also create problems when 
the analyst uses the RMSE to choose between various orders 
of polynomials in the geometric rectification. This may be 
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I Control Points I 
Figure 1. Idealized curves 
of estimated and actual 
RMSE versus number of 
control points. 

ameliorated to some degree by comparing the RMSE of alter- 
nate transformations using similar degrees of freedom (i.e., 
more points for higher order polynomials). However, the lack 
of independent test points may obscure whether higher order 
polynomials are simply fitting localized displacements in the 
control points or whether they are modeling legitimate global 
trends. While higher order polynomials will fit complex dis- 
tortions in the control points more effectively, they also may 
create large, undesirable deviations elsewhere in the image. 
Welch et al. (1985) demonstrate how higher order polynomi- 
als provide worse results for rectifications of Landsat The- 
matic Mapper (TM) data even though the RMSE suggests an 
improved transformation. Despite this finding, it is still not 
uncommon to find examples of third or higher order polyno- 
mials being applied to Landsat data. 

Despite the great importance of the relationships between 
the number of control points, degrees of freedom, bias in the 
RMSE, and actual geometric error, I could not find any serious 
discussion of this in any of the seven college level remote 
sensing textbooks I have at my disposal. Of these, only a cou- 
ple refer to the minimum number required to calculate a 
transformation or to the use of pass points. The Manual of Re- 
mote Sensing (Colwell, 1983) does cite the reduction in abso- 
lute error with increasing numbers of points, 
however, I could find no mention of the bias in RMSE as cal- 
culated by most image processing software packages. 

A possible solution to the problem of biased error esti- 
mates is offered by cross-validation methods. Instead of per- 
forming a single transformation with all the control points, 
the cross-validated method uses iterative sample substitution 
and calculation to create a pool of pseudo-check points 
which are independent from a corresponding pool of trans- 
formation coefficients. The mean error for predicting these 
pseudo-check points is expected to more effectively repre- 
sent the actual error of a single geometric rectification calcu- 
lated from all control points. 

Approach 
The cross-validation approach used here is based on the 
jack-knifing technique described by Mosteller and Tukey 
(1977). Rather than simply taking the residuals of a single 
transformation, the cross validated RMSE (RMSE*) is calculated 
by removing the first control point (u ,  v,) from the pool and 
calculating a geometric transformation using the remaining 
points (u!~, v,). This transformation is then applied to the first 
point (u,, v,) and its difference from the true value (x,, yi) is 
calculated. The first point is then replaced in the pool, and 
the process is applied iteratively to each point in the entire 
set. The differences in x and y are then substituted for u in 
Equation 2. For example, the cross-validated RMSE for the x 
component of the rectification would be 

where f(ui) equals the transformation u + x calculated with- 
out sample i applied to sample i. 

I first tested the cross-validated RMSE on coordinate pairs 
with a known geometric transformation. Thirty coordinate 
pairs (u, v) were generated to represent image control points. 
Simulated map coordinates (x, y) for these points were then 
created using a simple affine transformation with the addi- 
tion of random local displacements. This was calculated by 
multiplying u and v coordinates by 30.0; rotating by 45" 
around the origin; and adding a random, normally distrib- 
uted, circular error (mean = 0.0, standard deviation = 15.0) 
to each point. 

After this, the cross-validated method was tested on 
Landsat TM and Daedelus Nsool scanner data with nominal 
ground resolutions of 28.5 and 18 metres, respectively. The 
study area for this test corresponded to four adjacent U.S. 
Geological Survey (USGS) 7.5-minute quadrangle maps cover- 
ing an area of foothills in the Sierra Nevada of California 
(Millerton Lake West, Little Table Mtn, Knowles, and 
O'Neals). The area ranges in elevation from approximately 
120 to 900 metres above sea level and contains moderate, 
rolling topography. Coordinates for 30 control points were 
identified in the TM imagery (Scene-ID ~~5042034008821610) 
and digitized from the USGS map sheets. Thirty control 
points were also generated for the N ~ O O I  data (NASA flight # 
88-112), with 24 of these points corresponding directly to 
those selected in the TM data. 

Geometric rectifications of these three datasets were per- 
formed using different orders of polynomials and varying 
numbers of control points. The number of control points 
ranged from a minimum of one degree of freedom for the 
given order of polynomial to a maximum of 20 points. For 
each combination of polynomial order and number of control 
points, 25 subsets were randomly selected from the total 
pool of 30 control points. This replication was done to pro- 
vide an indication of the range in values which might be en- 
countered if different individuals were to have selected 
control points in the area. Ten independent check points 
were randomly selected to accompany each subset, and three 
different calculations of RMSE were performed on the trans- 
formation of each subset. The three methods for calculating 
RMSE were 

the standard method using residuals of the transformation 
calculation, 
testing transformation coefficients against independent check 
points, and 
the cross-validation method. 

Results 

Simple Affine Transformation 
Results for the affine transformation with random local dis- 
placements provided a useful reference because the actual 
nature of the geometric distortion was known. Table 1 pro- 
vides the mean value for each type of RMSE calculation and 
treatment (i.e., polynomial orderlnumber of points). Boxplots 
in Figures 2 and 3 display the distribution of RMSE values 
from the 25 replications for each treatment. As expected, 
RMSE for the standard method based on transformation resid- 
uals started low and increased to a maximum of approxi- 
mately 15 for both first- and second-order polynomials. RMSE 
based on transformation residuals stabilized at approximately 
seven control points (df = 3) for the first-order transforma- 
tion. After this, the transformation residuals underestimated 
the actual error, as indicated by the check points, by approx- 
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Figure 2. RMSE for f~rst-order transformation of simulated data. 
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Flgure 3. RMSE for second-order transformation of simulated data. 
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imately 15 to 25 percent. The cross-validated RMSE overpre- 
dicted greatly at low numbers of control points, but con- 
verged towards a more accurate estimate of actual error with 
nine or more control points. 

As the number of control points increased, the RMSE 
based on transformation residuals for the second-order trans- 
formation increased more slowly than for the first-order 
transformation. Even when comparing across similar degrees 
of freedom, the traditional RMSE measure suggested better re- 
sults than first order until 19 control points were used. How- 
ever, the actual RMSE from the independent check points 
showed that the second-order transformation provided con- 
sistently worse results. Again, the cross-validated RMSE 
greatly overpredicted actual error of the second-order trans- 
formation when the number of control points was very 
small. However, it quickly converged towards much closer 
agreement with the independent check points. Even with 20 
control points, the standard RMSE based on the second-order 
transformation residuals underpredicted actual error by 40 
percent while the cross-validated measure showed a discrep- 
ancy of only 12 percent. Given the relatively small difference 
in the standard RMSE between first- and second-order polyno- 
mials, it is likely that an experienced analyst would correctly 
select the more conservative first-order polynomial. However, 
the cross-validated RMSE provided a much clearer indication 
that the first-order transformation is more appropriate. 

I believe that the overprediction of error by the cross- 
validated method at very low numbers of control points 
arose from two sources. First, because one control point was 
left out of the transformation calculation during each itera- 
tion, the degrees of freedom were reduced and the calcula- 
tion was more sensitive to local deviations from the global 
trend. Second, at small numbers of control points there was 
a much higher probability that the sample being omitted 
from a calculation fell outside of the convex hull of the re- 
maining points. The resulting extrapolated estimates were 
likely to have particularly high error. The cross-validated 
RMSE for the first-order transformation was more accurate 
than the standard method when using nine or more control 
points and provided better results for second order with ten 
or more control points. Because the overprediction of RMSE 
was quite large when the minimum possible number of con- 
trol points was used in the cross-validated method, the seal- 
ing of the y axis on many of the following figures was set to 
truncate large values. This decision was made to increase the 
readability of the diagrams as a whole. 

One feature which is apparent in Figures 2 and 3 is the 

TABLE 1. MEAN RMSE FOR TEST COORDINATES USING (A) TRANSFORMATION 
RESIDUALS, (B) I N D E P E N D E N T  CHECK POINTS, AND (C) THE CROSS-VALIDATED 

METHOD. 

# Control First Order Second Order 
Points A B C A B C 

tight variance displayed by the cross-validated RMSE esti- 
mates. This occurs because each cross-validated estimate is 
itself the mean of multiple iterations. Variance for a single 
cross-validated RMSE (u2) is calculated as (Mosteller and Tu- 
key, 1977) 

Landsat TM Rectification 
Landsat TM data are characterized as having very stable im- 
age geometry (Welch et al., 1985). The range of elevations 
found in the test area, while not particularly extreme, were 
sufficient to create localized scale changes and displace- 
ments. It is not immediately clear from examination of topo- 
graphic maps if a higher order polynomial would help to 
compensate for topographic trends. Mean values of the three 
different R M ~ E  calculations are provided for treatments of the 
TM imagery in Table 2. Boxplots displaying the spread of 
values for first- and second-order polynomial models are dis- 
played in Figures 4 and 5. 

Once again, RMSE values based on transformation residu- 
als rose as the number of control points increased. Compari- 
son with check points indicates that the standard RMsE 
underpredicted error in the first-order transformations by at 
least 10 percent. It is somewhat surprising to find that the 
first-order polynomial continued to provide biased estimates 
even with the use of 20 control points. Using the standard 
RMSE, the second-order transformation appeared to have 10 
percent less error than first order after RMSE levels off. How- 
ever, check points show that the standard RMsE generally un- 
derpredicted error in  the second-order transformation by at 
least 20 percent. As before, the second-order transformation 
actually provided worse results than first order. This result is 
consistent with the previous findings of Welch et al. (1985) 
for TM data. 

The cross-validated RMsE overpredicted greatly with 
small numbers of GCPS, but converged towards very close 
agreement with the actual error documented in the check 
points. The cross-validated RMSE provided comparable re- 
sults to the standard method when the number of control 
points exceeded 11 for first order. However, cross-validation 

TABLE 2. MEAN RMSE (METRES) FOR TM DATA USING (A) TRANSFORMATION 
RESIDUALS, (6) INDEPENDENT CHECK POINTS, AND (C) THE CROSS-VALIDATED 

METHOD. 

# Control First Order Second Order 
Points A B C A B C 
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Figure 4. RMSE (metres) for first-order rectification of TM data. 
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Figure 5. RMSE (metres) for second-order rectification of TM data. 
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In actuality, polynomial-based approaches are generally 1 
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inadequate for this complex type of distortion. Analysts con- 
tinue to apply polynomial rectifications to NSOOl imagery, 
though much better results may be obtained using localized 
interpolation based on triangles or quadrilaterals (Chen and 
Rau, 1993; Devereaux et al., 1990; Thormodsgard and Lille- 
sand, 1987; Zobrist et al., 1983), global positioning systems 
and digital elevation data (Fisher, 1991), or other new meth- 
ods such as thin plate splines and the biharmonic, multi- 
quadric method (Fogel and Tinney, 1994). This example is 
provided for the sake of exploring the robustness of the 
cross-validated RMSE, rather than endorsing the headache of 
performing polynomial rectifications on aircraft scanner data. 

Mean RMSE estimates for rectifications of the NSOOl im- 
agery are presented in Table 3. Boxplots displaying the 
spread of values for first-, second-, and third-order polynomi- 
als are presented in Figures 7, 8, and 9. As usual, the RMSE 
estimated from transformation residuals increased consis- 
tently with the number of control points. Actual error indi- 
cated by check points generally decreased, though there was 
a small upturn in RMSE for the first-order transformation at 
high numbers of control points. This was likely due to a 
temporarily recurring pattern in the randomly selected subset 
of control points. 

With 20 control points, the standard R M ~ E  underpre- 
dicted the error of first order by 24 percent, second order by 
31 percent, and third order by 54 percent relative to the in- 
dependent check points. For first- and second-order polyno- 
mials, the typical overprediction observed in the cross-vali- 
dated RMSE was less of a problem than the underprediction 
by transformation residuals regardless of the number of con- 
trol points. The cross-validated RMSE performed better for 
third-order transformations when the number of control 
points exceeded 13. As with some treatments in the affine 
transformation test, the mean cross-validated RMSE for sec- provided better when more than l3 'On- ond-order transformations sometimes underestimated actual trol points were used for second order. Despite the general error by as much as 16 percent. However, this is still seen to overprediction with small numbers of control points, there 
be an improvement over the standard RMSE metric. were examples of cross-validation providing equivalent or 

better results than the traditional method with as few as In examining the standard R M ~ E  in Table 3, an analyst 
may be tempted to choose the third-order polynomial with seven points in the first-order transformations, or nine points 
20 control points. However, even with the standard in the second-order transformations. The cross-validated it is clear that the third-order model is not necessarily an im- measure made it much clearer than did the standard RMSE provement when comparing with consistent degrees of free- that the second-order transformation was not appropriate for dom (i.e., versus 16 points with second order). cross- use in the rectification. validated RMSE correctly indicates that the third-order 

The bias in the standard RMSE and the cross-validated transformation provides worse results no matter how many 
RMSE is displayed in Figure 6 by subtracting these estimates the 20 possible control points are used, 
from the RMsE of the independent check points. The consis- 
tent underprediction by transformation residuals is con- 
trasted with the overprediction of the cross-validated method. TABLE 3. MEAN RMSE (METRES) FOR NSOOl DATA USING (A) 

 hi^ might suggest the use of both statistics to establish up- TRANSFORMATION RESIDUALS, (B) ~NDEPENDENT CHECK POINTS, AND (C) THE 

per and lower bounds on geometric accuracy when there are CROSS-VALIOATED METHOD. 

relatively small numbers of control points. However, cross- # Control First Order Second Order Third Order 
validation did underpredict the actual error of some second- Points A B C A B C A B C 
order treatments in the test of the affine transformation, so 

5 49 262 332 this might not be a robust strategy. With both orders of poly- 6 73 216 228 
nomials, the cross-validated RMSE becomes practically unbi- 7 90 171 194 
ased with 19 or 20 control points. 8 91  188 159 48 308 409 

9 97 178 157 57 275 259 
10  104 173 159 73 205 244 

Daedelus NSOOl Rectification 11 113 172 167 76 213 212 
The NSOOI scanner is subject to much more complex geomet- 12 115 169 163 79 182 188 37 496 1168 
ric distortions than TM data due to the relative instability of 13 117 166 161 80 183 177 46 337 942 
aircraft platforms and the increased influence of topographic 14 117 168 158 81  179 169 48 338 302 
relief at aircraft operating altitudes. Further, the data used 15 118 168 152 84 177 160 55 296 305 
here had not been corrected for systematic changes in pixel 16  123 165 151 89 167 155 72 229 299 
size with off-nadir view angles. Thus, it was expected that a 1 7  120 173 146 90 166 152 73 217 257 

higher order polynomial would be required for rectification, 1 8  127 174 155 96 163 149 81  229 253 
19  128 178 159 97 157 148 82 210 248 

though it was unclear what order polynomial would be ap- 20 130 172 158 101 147 151 86 186 230 
~ r o ~ r i a t e .  
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Figure 7 .  RMSE (metres) for first-order rectification of NSOOl data. 
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Figure 9. RMSE (metres) for third-order rectification of NSOOl  data. 

Conclusions 
The cross-validated R M ~ E  was found to provide as good or 
better estimates of geometric error than those provided by 
transformation residuals when the number of control points 
exceeded a relatively small threshold value. It appears that 
the cross-validated RMSE should be suspect until the number 
of control points exceeds five degrees of freedom for a given 
order of polynomial. This requirement should not limit its 
effective use, however, because smaller numbers of control 
points are shown to make the standard RMSE calculation 
quite suspect as well. In addition to providing a more accu- 
rate depiction of geometric error, the cross-validated RMsE 
also greatly reduces the ambiguity in selecting the polyno- 
mial order of a rectification. 

The cross-validated method is computationally demanding 
because it requires as many transformations to be calculated as 
there are control points. However, historical computational 
limits have practically vanished in the face of modern proc- 
essing capabilities. The importance of accurate statements for 
the geometric characteristics of spatial data products has 
been widely acknowledged (Townshend et al., 1992; Lunetta 
et al., 1991; Chrisman, 1989; McGwire and Goodchild, 1996). 
The standard RMSE, as calculated from transformation residu- 
als, is a diagnostic which has been confused as an accuracy 
statistic. It is actually a weak diagnostic at that, given that it 
generally cannot identify when a higher order polynomial 
provides significantly worse results. It is the author's opinion 
that the cross-validated RMSE, or a similar alternative, should 
be provided in addition to the standard RMSE measure when 
independent check points are not used. This requires both 
incorporation of the algorithm in image processing and GIs 
software, as well as its consideration as a metadata entry in 
data accuracy standards. 
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The Photogrammetric Society, fondon 
~ e m b e r s h i ~  Application I 

Membership of the Society entitles you to The Photogram- 

metric Record which is published twice yearly and is an 

internationally respected journal of great value to the 

practicing photogrammetrist. The Photogrammetric 

Society now offers a simplified form of membership to 

those who are already members of the ASPRS. 

PLEASE USE BLOCK LETTERS 

To: The Honorable Secretary 

The Photogrammetric Society 

Dept. of Photogrammetry & Surveying 

University College London, Gower Street 

London WClE 6BT, England 

I apply for membership of the Photogrammetric Society as, 
O Member-Annual Subscription $60 

O Junior Member (under 21) or Full-time Student-Annual Subscription $30 

O Corporate Member-Annual Subscription $360 

The first subscription of members elected after the 1st of January in any year is reduced by half. 

I confirm my wish to further the objects and interests of the Society and to abide by the Constitution and By-Laws. I 
enclose my subscription. 

Surname, First Names 

Age next birthday (if under 21) 

Profession of Occupation 

Educational Status 

Present Employment - 

Address 

- 

ASPRS Membership No. 

Date Signature of Applicant 

Applications for Corporate Membership, which is open to Universities, Manufacturers and Operating Companies, 
should be made by separate letter giving brief information of the Organization's interest in photogrammetry. 


