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Abstract 
An empirical examination of the effects of resampling upon 
the spectral and textural classification of a high spatial reso- 
lution multispectral image i s  described. Spectral and textural 
maximum-likelihood classifications are performed upon un- 
resampled and upon bilinear and cubic convolution resam- 
pled versions of the image. The texture classifications use 
spectral training data and additional texture training data 
calculated using the grey-level difference histogram algo- 
rithm. The resampling algorithms increase the overall classi- 
fication accuracies in a statistically significant manner which 
vary between individual classes. These results are explained 
b y  consideration of the interaction between the local smooth- 
ing properties of the resampling algorithms and the grey- 
level structure of the image. The results indicate that spectral 
and textural classification procedures may  be applied to im- 
ages, after they have been resampled, without a reduction in  
the classification accuracy, and that textural classification 
procedures should use class training statistics collected from 
the resampled image. 

Introduction 
Automated image classification procedures are required to rou- 
tinely process the increasingly large remotely sensed data sets 
that are becoming available. The classified images produced by 
these procedures must be georeferenced to allow them to be 
compared temporally and to produce synoptic land-cover maps. 
Conventional classification procedures assume that surface fea- 
tures located in the image can be discriminated systematically 
by examination of their spectral signatures. However, because 
of sensitivity to externally induced spectral variations (e.g., at- 
mospheric and viewing geometry effects) and because of intrin- 
sic variations associated with surface features (e.g., vegetation 
varies with maturity, canopy closure, and moisture stress) 
(Wharton, 1989), it is necessary to redefine the spectral signa- 
tures (i.e., class training statistics) each time a new image is 
classified. Under an automated classification scheme, the class 
training statistics may be collected by the simultaneous exarni- 
nation of the image and coregistered ground reference data 
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that define the locations of representative land-cover units. 
The image and ground reference data may be coregistered 
most conveniently by georeferencing the image into the same 
coordinate system as the ground reference data. This is be- 
cause ground reference data are conventionally collected in 
an Earth-based coordinate system and because well estab- 
lished image georeferencing techniques may be used. This 
approach also ensures that the resultant classified image will 
be georeferenced. 

Image georeferencing is performed by mapping a regular 
grid of Earth-based coordinates into the remotely sensed im- 
age. The coordinates of the regular grid define the locations 
of the pixel centers in the georeferenced image and may be 
mapped into the sensed image using non-parametric tech- 
niques (i.e., ground control collected from the image and 
from a map) or using parametric techniques (i.e., a model of 
the sensing geometry) (Baker et al., 1975). The grey-level val- 
ues of each georeferenced image pixel are then interpolated 
from the grey-level values of a local neighborhood of pixels 
located in the sensed image. This interpolation process is 
termed image resampling and is known to modify the grey- 
level structure and, therefore, the appearance of the image. 
Resampling effects are most obvious where neighboring im- 
age grey-level values vary rapidly, for instance, within tex- 
turally diverse regions and along boundaries between spec- 
trally distinct regions of the image. For these reasons, it is 
expected that image classification results may be different 
when georeferenced (i.e., resampled) images are used. This 
may be particularly likely when image texture information is 
incorporated into the classification procedure, because re- 
sampling operations have been shown to modify the values 
of texture measures in a non-uniform manner (Roy and 
Dikshit, 1994). 

The objective of this paper is to investigate the impact of 
conventional image resampling techniques upon the spectral 
and textural classification of a remotely sensed image. Past 
workers have observed only insignificant differences between 
the classification accuracies of satellite images resampled us- 
ing conventional techniques (e.g., Ferneyhough and Niblack, 
1977; Etheridge and Nelson, 1979; Logan and Strahler, 1979; 
Smith and Kovalick, 1985). It has been suggested that this 
may have been due to a failure to classify images that con- 
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tain many boundaries between spectrally distinct classes where 
the resampling effects will be most evident (Atkinson, 1988) 
and because of insufficiently detailed ground truth information 
(Shlien, 1979). In accordance with these suggestions, a high 
spatial resolution test image that contains many class bounda- 
ries and a ground reference map depicting a corresponding 
level of detail are used in the experiments described. 

Maximum-likelihood classifications of the test image and 
resampled versions of the test image are performed using 
spectral class training data and additional image texture in- 
formation. As resampling effects are expected to be a func- 
tion of the image grey-level structure, the classifications are 
performed using a number of texturally distinct classes. Be- 
cause there may be situations when it is more convenient to 
classify resampled images using training statistics collected 
from the unprocessed image, the impact of using training sta- 
tistics collected from the original test image and from resam- 
pled versions of the test image are examined. The accuracy 
of the classifications are compared and the significance of 
any differences observed between them are assessed using 
test statistics derived from kappa analyses. 

Overview of Commonly Used Resampling Techniques 
The most commonly used resampling techniques are cubic 
convolution, bilinear, and nearest-neighbor. Generally, cubic 
convolution resampling has the potential to reconstruct ex- 
actly any second-degree polynomial, whereas bilinear can ex- 
actly reconstruct at most a first-degree polynomial, and near- 
est-neighbor can only produce exact reconstruction when the 
image has a constant grey-level value (Keys, 1981). Nearest- 
neighbor and bilinear resampling techniques are heuristic, 
whereas cubic convolution is a limited span approximation 
of the theoretically optimal sinc resampling function which, 
in practice, cannot be used as it requires an infinitely large 
pixel neighborhood (Shlien, 1979). 

Nearest-neighbor resampled pixels are allocated a grey- 
level value equal to the grey-level value of the nearest pixel 
in the original image. Nearest-neighbor resampling is often 
used because it is computationally simple and because it 
does not introduce new grey-level values into the resampled 
image. The disadvantage of the technique is that it intro- 
duces pixd-level geometric discontinuities (up to a maxi- 
mum of .\/2/2 of a pixel), changing the telttural properties of 
the resampled imagery, making it appear visually "blocky" 
or "dappled" (Ferneyhough and Niblack, 1977). For this rea- 
son, it is recommended that nearest-neighbor resampling is 
not used for applications where the textural properties of the 
image are important. Nearest-neighbor resampling is not con- 
sidered further in this paper. 

Bilinear resampling fits a hyperbolic paraboloid through 
four neighboring pixel values in the original image to esti- 
mate the resampled pixel value (Castleman, 1979). Bilinear 
resampling has the effect of a low-pass filter and gives a vi- 
sually smooth image without the geometric discontinuities of 
nearest-neighbor resampling. 

Cubic convolution was originally developed for resam- 
pling of Landsat MsS imagery (Riffman and McKinnon, 1974) 
and is a truncated approximation of the sinc function (Foley 
et al., 1990). The cubic convolution resampler approximates 
the sinc function over a 4- by 4-pixel neighborhood and pro- 
duces a visually smooth image except in regions of high 
grey-level contrast where the contrast may be enhanced (Park 
and Schowengerdt, 1983). Park and Schowengerdt (1983) for- 
mulated the cubic convolution parametrically and demon- 
strated that the mean square error between the grey-level 
values of the original and the resampled image is minimized 
using the cubic convolution, followed by the bilinear and 
then the nearest-neighbor resamplers, respectively. Similar 
results were observed by Shlien (1979) and Keys (1981). 

Texture Calculating Algorithm 
Incorporation of texture information has been advocated as a 
means of improving spectrally based classification accuracies 
(Marceau et a]., 1990; Wang and He, 1990), especially in 
high spatial resolution imagery where classification accura- 
cies remain generally low (e.g., Cushnie, 1987; Jensen and 
Hodgson, 1987). Image texture may be described qualita- 
tively in many ways but is most often described over a fine 
to coarse continuum. As spatial patterns become more defini- 
tive in an image and extend over many pixels, the texture 
will become coarse (Haralick et al., 1983). Texture algo- 
rithms extract quantitative measures of the image texture 
measured over a small window located within the image 
(e.g., Haralick, 1979; Goo1 et al., 1985). The suitability of a 
particular texture measure for image classification and image 
segmentation procedures is dependent upon the grey-level 
structure of the image (e.g., Sali and Wolfson, 1992). However, 
recent work has shown that the one-dimensional grey level 
difference histogram (GLDH) algorithm yields classification ac- 
curacies similar to computationally more expensive second-or- 
der algorithms (such as neighboring grey-level dependence 
matrices) when applied to airborne remotely sensed terrain 
images (Dikshit, 1992). 

The GLDH algorithm (Conners and Harlow, 1980) com- 
putes a histogram of absolute grey-level difference values 
along a specified direction and then converts the histogram 
into a probability distribution. Texture information is ex- 
tracted from the probability distribution to give five texture 
features: inertia, mean, entropy, energy, and inverse difference 
moment. Of these, the energy texture feature was used in the 
experiments described in this paper because it gave the high- 
est overall classification accuracy when applied to the experi- 
mental test data. 

The grey-level difference histogram is found by counting 
the frequency of occurrence of differences in grey-level val- 
ues for a given pixel displacement: i.e., 

where 6(x, y) is the grey-level difference, f(x,y) is the grey- 
level value of the digital image at (x,y), and Ax, Ay is the 
pixel displacement. 

Let p be the probability density function (PDF) of 6(x, y) 
calculated by normalizing the frequencies of the difference 
histogram by dividing each frequency by the total number of 
occurrences. If the number of grey levels in the image is n,, 
then the PDF takes the form of an n,-dimensional vector 
whose ith component is the probability that 6(x, y) will have 
a grey-level difference value i. The GLDH energy texture fea- 
ture is defined (Conners and Harlow, 1980) as 

Generally, heterogeneous, structured, or visually coarse 
images are indicated by low energy values and homogene- 
ous, unstructured, or visually fine images are associated with 
higher energy values. 

Bilinear and cubic-convolution resampling operations 
have been shown empirically to modify the values of GLDH 
texture features extracted from a high spatial resolution im- 
age (Roy and Dikshit, 1994). The degree of modification was 
found to be dependent upon the GLDH texture feature meas- 
ure, the resampling algorithm, and the textural properties of 
the image. It was found that GLDH texture features that meas- 
ure heterogeneity had reduced average values, whereas the 
GLDH texture features that measure homogeneity, such as the 
energy texture feature measure, had increased average values 
after application of bilinear and cubic-convolution resam- 
plers. This was attributed to the local smoothing properties 
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Figure I. Spectral and spectral/textural classifications and the pairwise inter- 
classification significance tests performed between them. 

of the resamplers. Changes in the GLDH texture feature values 
were generally observed to be more pronounced in those 
parts of the image characterized by texturally fine cover 
types and in images resampled using the bilinear resampler. 

Study Site and Test Data 
The test image was sensed by a Daedalus AADS1268 Air- 
borne Thematic Mapper (ATM) over Woodwalton Fen, Cam- 
bridgeshire, U.K. This site is flat and characterized by di- 
verse semi-natural cover types which exhibit complex spatial 
distributions and provide visually discrete textural classes. 
The image was sensed under calm flying conditions with the 
ATM S-bend correction facility activated to reduce across 
track tangential scale distortions (Callison et al., 1987). ATM 
image bands 5 (0.63 to 0.69 ym), 7 (0.76 to 0.90 pm), and 9 
(1.55 to 1.75 ym) were used for classification purposes. This 
band combination is known to have low inter-band correla- 
tion (Morris and Barnsley, 1989) and is established as being 
suitable for vegetation cover mapping (e.g., Jensen and Hodg- 
son, 1987; Curran and Pedley, 1989). The dimensions of the 
test image were 220 by 1022 pixels with an approximate na- 
dir pixel dimension of 1.25m2. 

A ground reference map, produced by large-scale photo-in- 
terpretation and frequent ground based survey (Fuller et al., 
1986), was manually coregistered with the test image and then 
rasterized so that it contained the same number of pixels as the 
test image. The resultant ground reference image was used to 
define the class training statistics and to assess the classification 
results. Eight texturally distinct classes were used. The classes, 
listed in subjectively judged order of increasing coarseness, 
were water, wet grass mown and grazed (MG), wet grass, fen 
herbs, sallow scrub, fen reed, fen phalaris, and woodland. 

Experimental Methodology 
Spectral and combined spectralltextural maximum-likelihood 
classifications were performed on the original and resampled 
versions of the test image. In total, five spectral and five 
spectralltextural classifications were performed (Figure 1). In 
order to examine the impact of resampling upon training sta- 
tistic collection practices, each resampled image classifica- 
tion was performed twice using independent and dependent 
types of training statistics. Independent training statistics 
were collected from the resampled bands and dependent 
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training statistics were collected from the original unresam- 
pled bands. 

The spectral classifications used the three image bands, 
and the spectralltextural classifications used an additional 
band of GLDH energy texture feature values. The energy tex- 
ture band was calculated from the first principal component 
of the three image bands scaled over an 8-bit range. A square 
window was translated across the principal component im- 
age in steps of one pixel, and the values of the energy tex- 
ture feature were calculated in the left-diagonal, the right-di- 
agonal, and the horizontal and vertical pixel grid directions. 
The direction average of these four values was then assigned 
to the center of each window. The values of the energy tex- 
ture feature were calculated using a one-pixel displacement 
over a window 15 pixels square. This particular combination 
of texture parameters was selected because it was found to 
give high overall classification accuracies when used in con- 
junction with the original test image bands (Dikshit, 1992). 

When resampled classifications were performed, the 
spectral classifications used resampled versions of the origi- 
nal image bands and the spectralltextural classifications used 
an additional texture band derived from them. The original 
image bands were resampled with a translational shift of 
one-half pixel applied in both image axes using the cubic 
convolution and bilinear resampling techniques. This transla- 
tional shift corresponds to the zone of maximum reconstruc- 
tion error in the resampling process (Shlien, 1979) and en- 
sures that the relative phase between the test and the resam- 
pled image pixel coordinates is uniform across the image. 

Data Analvsis 
The impact of resampling upon the class training data was 
investigated prior to examination of the classification accura- 
cies. Average transformed divergence values were computed 
from the training data used to perform the spectral and the 
spectralltextural classifications of the original and the resam- 
pled versions of the test image. The transformed divergence 
is a measure of the relative effectiveness of two candidate 
feature sets for inter-class discrimination (Swain and Davis, 
1978) and the average transformed divergence is a measure 
of inter-class discrimination averaged over a set of classes 
(Thomas et al., 1987). The average transformed divergence 



TABLE 1. AVERAGE TRANSFORMED DIVERGENCE VALUES OF SPECTRAL AND 

SPECTRAL/TEXTURAL CLASS TRAINING DATA COLLECTED FROM ORIGINAL AND 

RESAMPLED VERSIONS OF A HIGH SPATIAL RESOLUTION TEST IMAGE (VALUES ARE 
SCALED OVER 0 TO 100 RANGE). 

Bilinear 
Original Cubic Convolution Resampled 
Image Resampled Image Image 

independent training statistics to assess the classification im- 
pact of using training statistics collected from the original 
rather than the resampled image bands. A small number of 
significance tests were performed between the spectral and 
the spectral/textural classifications to verify that the incorpo- 
ration of image texture information gave significantly im- 
proved classification accuracies. 

Spectral training data 
(image bands 5,7,9) 87 90 92 

Spectral and textural 
training data 9 7 9 7 98 

(image bands 5,7,9, and 
GLDH energy band) 

values were scaled so that they could be interpreted over a 0 
to 100 range (Mather, 1987). 

The overall classification accuracy and the accuracy of 
the individual classes were assessed in a conventional man- 
ner by examination of classification error matrices. The clas- 
sification accuracies were also assessed by kappa analyses 
used to compute Khat indices and associated asymptotic var- 
iances (Bishop et al., 1975). Pairwise statistical tests were 
performed to assess the significance of any differences ob- 
served between two classifications using a Z statistic (Con- 
galton and Mead, 1986): i.e., 

where Z,, is the Z statistic for comparison of classifications a 
and b; K,, K~ are the Khat indices of classifications a and b; 
and ug, u; are the asymptotic variances of Khat indices a 
and b. 

The difference between two classifications was consid- 
ered to be significant at the 95 percent confidence level if the 
absolute value of the Z statistic exceeded 1.96. The signifi- 
cance tests are illustrated in  Figure 1. Significance tests were 
performed between the different types of spectral classifica- 
tions and between the different types of spectralltextural 
classifications. In these tests, the resampled image classifica- 
tions performed using independent training statistics were 
compared with the original image classifications, and the bi- 
linear and cubic convolution resampled image classifications 
were compared. Significance tests were also performed be- 
tween the resampled images classified using dependent and 

Results 
Table 1 shows the average transformed divergence values of 
the spectral and the spectral/textural class training data col- 
lected from the original and resampled versions of the test 
image. The average transformed divergences of the spectral1 
textural training data are greater than the average trans- 
formed divergences of the spectral training data, indicating 
that the incorporation of texture information has improved 
discrimination between the classes. The average transformed 
divergences of the spectralltextural training data are very 
high (97-98) and imply that the incorporation of additional 
feature sets would not provide significantly improved class 
discrimination. In general, the training data collected from 
the resampled images have higher average transformed diver- 
gence values than the training data collected from the origi- 
nal image. This implies that the class discrimination will be 
improved in the resampled images, particularly the bilinear 
resampled image which has the highest average transformed 
divergence values. 

Tables 2 and 3 show the overall and individual classifi- 
cation accuracies and their associated Khat indices and Khat 
standard deviations for the spectral and spectralltextural 
classifications, respectively. The overall and individual clas- 
sification accuracies are illustrated in Figures 2 and 3. The 
inter-classification significance tests are illustrated in Figure 
1,  and the test results are summarized in Table 4. The tests 
have been divided into three groups: tests performed be- 
tween the different types of spectral classifications, tests per- 
formed between the different types of spectral/textural classi- 
fications, and tests performed between these two groups. 

The following observations are made from the compari- 
sons between the spectral and the spectral/textural classifica- 
tions: 

(1) The overall classification accuracy of the original image in- 
creases by 9.0 percent when it is classified using spectral1 
textural training statistics rather than spectral training sta- 
tistics. For sonie classes, such as the fen reed class, the in- 
crease in classification accuracy is considerably greater 

TABLE 2. SPECTRAL CLASSIFICATION ACCURACIES, khat INDICES,  AND khat STANDARD DEVIATIONS OF ORIGINAL AND RESAMPLED VERSIONS OF A HIGH SPATIAL 
RESOLUTION TEST IMAGE. 

(b) Cubic Convolution (c) Bilinear 
Resampled Image Resampled Image (d) Cubic Convolution (e) Bilinear 

(a) Original (Independent (Independent Resampled Image Resampled Image 
Image Statistics) Statistics) (Dependent Statistics) (Dependent Statistics) 

Pixels1 %Corr2 KhatJ K-Std4 %Corr Khat K-Std %Corr Khat K-Std %Corr Khat K-Std %Corr Khat K-Std 

Water 11609 83.0 0.819 0.0037 82.7 0.816 0.0037 82.8 0.817 0.0037 82.2 0.810 0.0037 81.6 0.804 0.0038 
Fen Reed 30612 17.3 0.123 0.0020 18.9 0.132 0.0021 19.7 0.137 0.0021 18.0 0.131 0.0020 18.7 0.139 0.0020 

Fen Phalaris 8570 52.2 0.489 0.0056 56.3 0.530 0.0056 61.1 0.581 0.0056 52.4 0.495 0.0056 52.8 0.502 0.0056 
Wet Grass 11674 40.4 0.338 0.0048 39.6 0.332 0.0048 40.2 0.342 0.0048 44.8 0.383 0.0049 46.6 0.402 0.0050 

WetGrass(MG) 8463 36.9 0.306 0.0056 37.4 0.312 0.0056 37.3 0.313 0.0056 38.9 0.322 0.0057 41.3 0.345 0.0058 
Fen Herbs 6271 30.1 0.248 0.0061 30.1 0.254 0.0060 33.9 0.294 0.0062 30.7 0.257 0.0061 31.5 0.268 0.0061 

Sallow Scrub 41016 62.9 0.516 0.0028 67.3 0.569 0.0028 71.2 0.617 0.0027 66.2 0.557 0.0028 69.8 0.601 0.0027 
Woodland 47617 83.6 0.758 0.0024 84.9 0.779 0.0023 85.4 0.788 0.0022 84.4 0.771 0.0023 85.1 0.783 0.0022 

Overall 165832 57.1 0.476 0.0014 59.0 0.498 0.0014 60.7 0.519 0.0014 58.7 0.495 0.0014 60.2 0.513 0.0014 
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than 9.0 percent. All of the classes, except the water and 
woodland classes, show significant increases in classifica- 
tion accuracy (Table 4, column Zfa). This finding confirms 
that the incorporation of image texture generally improves 
classification accuracy (e.g., Marceau et al., 1990; Wang 
and He, 1990). 

(2) The classification accuracy of the water and woodland 
classes does not improve under the spectral/textural classi- 
fication scheme. The reasons for this are unclear but may 
perhaps be attributed to their textural properties, which lie 
at either end of the fine-to-coarse texture continuum. Con- 
sequently, these classes are likely to be texturally distinct 
from their immediate surroundings, and, therefore, mixed 
texture feature values are more likely to be introduced as 
the texture calculating window is moved across their 
boundaries. This is a fundamental limitation of all win- 
dow-based texture calculating algorithms; potential solu- 
tions to this problem are discussed elsewhere (e.g., Dikshit, 
1992). 

(3) The spectral/textural classifications of the resampled im- 
ages (performed using independent training statistics) 
show increases in classification accuracv similar to those 
observed in (1). However, the classification accuracies of 
the woodland class increase under the spectral/textural 
classification scheme. This may be because the boundaries 
of the woodland class are more smooth in the resampled 
images. In general, the increases in classification accuracy 
are significant (Table 4, columns Zgb, and Zhc). 

The following observations are made from the compari- 
sons within the different types of spectral classification: 

(4) The resampled image classifications performed using inde- 
pendent training statistics have higher overall classification 
accuracies than the original image by up to 3.6 percent. 
The increases in the overall classification accuracy are sig- 
nificant (Table 4, column Zba and Zca). Individual classifi- 
cation accuracies vary but are significantly higher for the 
texturally coarse fen reed, fen phalaris, sallow scrub, and 
woodland classes. More texturally homogeneous classes, 
such as the water and wet grass classes, do not give signif- 
icantly different classification accuracies after resampling 
in this experiment. 

(5) The overall classification accuracies of the bilinear and cu- 
bic convolution resampled images classified using inde- 
pendent training statistics are significantly different (Table 
4, Column Zcb). The overall classification accuracy of the 
bilinear resampled image is higher than the overall classifi- 
cation accuracy of the cubic convolution resampled image 
by 1.7 percent. 

(6) The overall classification accuracies of the bilinear resam- 
pled images classified using dependent and independent 
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Figure 2. Spectral classification accuracies. 

training statistics are significantly different (Table 4, col- 
umn Zce). The difference between the overall classification 
accuracies is 0.5 percent. In most cases, those classes clas- 
sified using independent training statistics have signifi- 
cantly higher classification accuracies than those classified 
using dependent training statistics. 

(7) Comparison of the cubic convolution resampled image 
classifications performed using dependent and independ- 
ent training statistics reveal less significantly different re- 
sults than those observed in (6) (Table 4, column Zbd). 
The difference between the overall classification accuracies 
is not significant and is 0.3 percent. 

The following observations are made from the compari- 
sons within the different types of spectral/textural classifica- 
tion: 

(8) The resampled image classifications performed using inde- 
pendent training statistics have higher overall classification 
accuracies than the original image by up to 2.5 percent. 

TABLE 3. SPECTRAL/TEXTURAL CLASSIFICATION ACCURACIES, khat I N D I C E S ,  A N D  khat STANDARO DEVIATIONS OF ORIGINAL AND RESAMPLED VERSIONS OF A HIGH 
SPATIAL RESOLUTION TEST IMAGE. 

(g) Cubic Convolution (h) Bilinear 
Resampled Image Resampled Image (i) Cubic Convolution (j) Bilinear 

(f) Original (Independent (Independent Resampled Image Resampled Image 
Image Statistics) Statistics) (Dependent Statistics) (Dependent Statistics) 

Pixels1 %Corrz Khat3 K-Std4 %Corr Khat K-Std %Corr Khat K-Std %Corr Khat K-Std %Con Khat K-Std 

Water 11609 82.2 0.811 0.0037 81.2 0.800 0.0038 81.6 0.804 0.0038 84.1 0.831 0.0036 84.6 0.8360.0035 
Fen Reed 30612 43.8 0.353 0.0029 50.1 0.418 0.0030 51.1 0.429 0.0030 43.1 0.349 0.0029 25.6 0.188 0.0024 

Fen Phalaris 8570 69.8 0.656 0.0056 66.6 0.629 0.0056 68.7 0.653 0.0055 39.2 0.318 0.0057 11.0 -0.046 0.0039 
Wet Grass 11674 53.1 0.505 0.0047 48.7 0.458 0.0047 45.0 0.421 0.0047 21.9 0.179 0.0038 8.3 0.025 0.0026 

Wet Grass (MG) 8463 47.9 0.464 0.0054 43.5 0.419 0.0054 42.3 0.406 0.0054 53.1 0.504 0.0056 35.1 0.315 0.0053 
Fen Herbs 6271 31.2 0.288 0.0059 29.9 0.274 0.0058 31.6 0.290 0.0059 39.3 0.333 0.0066 38.1 0.273 0.0071 

SallowScrub 41016 74.4 0.649 0.0027 73.0 0.636 0.0027 72.1 0.629 0.0027 64.4 0.539 0.0028 27.4 0.1770.0021 
Woodland 47617 79.8 0.710 0.0025 85.5 0.786 0.0023 89.1 0.835 0.0021 75.7 0.660 0.0025 77.0 0.659 0.0026 

Overall 165832 66.1 0.579 0.0014 67.8 0.598 0.0014 68.6 0.608 0.0014 59.3 0.503 0.0014 43.9 0.3300.0013 

lNumber of pixels defining class 
=Percentage of correctly classified pixels 
3Khat index 
4Standard deviation of Khat index 
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Figure 3. Spectral/textural classification accuracies. 

The increases in the overall classification accuracy are sig- 
nificant (Table 4, Column Zgf and Zhf), but there is no 
clear pattern among the different classes. 

(9) The overall classification accuracies of the bilinear and cu- 
bic convolution resampled images classified using inde- 
pendent training statistics are significantly different (Table 
4, column Zhg). The overall classification accuracy of the 
bilinear resampled image is higher than the overall classifi- 
cation accuracy of the cubic convolution resampled image 
by 0.8 percent. 

(10) The overall classification accuracies of the bilinear resam- 
pled images classified using dependent and independent 
training statistics are significantly different (Table 4, col- 
umns Zhj). The classification performed using independent 
training statistics has an overall classification accuracy 
24.7 percent higher than the classification performed using 
dependent training statistics. 

(11) The overall classification accuracies of the cubic convolu- 
tion resampled images classified using dependent and in- 
dependent training statistics are significantly different 
(Table 4, columns Zgi). The classification performed using 
independent training statistics has an overall classification 

8.5 percent higher than the classification performed using 
dependent training statistics. 

Conclusions and Discussion 
The impact of bilinear and cubic convolution resampling 
upon the supervized maximum-likelihood classification of a 
high spatial resolution test image has been investigated. The 
classifications were performed using spectral class training 
data and combined spectralltextural class training data. Ex- 
amination of the average transformed divergence values of 
the training data indicated increased overall class separabili- 
ties when the data were collected from resampled versions of 
the test image. This was supported by examination of the 
overall classification accuracies of the resampled images 
which were significantly higher than the overall classification 
accuracies of the original test image. The overall spectral 
classification accuracies increased from 57.1 percent (original 
image) to a maximum of 60.7 percent (bilinear resampled im- 
age). The overall spectral/textural classification accuracies in- 
creased from 66.1 percent (original image) to a maximum of 
68.6 percent (bilinear resampled image). The bilinear resam- 
pled images had significantly higher overall classification ac- 
curacies than the cubic-convolution resampled images by 1.7 
percent and 0.8 percent when spectral and spectralltextural 
training statistics were used, respectively. These findings 
may be explained by consideration of the interaction be- 
tween the local smoothing properties of the resampling algo- 
rithms and the grey-level structure of the image. 

Bilinear and cubic-convolution resamplers can be ex- 
pected to smooth the image and therefore reduce the image 
noise and the spectral variability of the image classes. Conse- 
quently, the separability of spectral class training data can be 
expected to increase after resampling, giving improvements 
in  spectrally based classification accuracies. This effect will 
be counteracted, however, by smoothing of the boundaries 
between spectrally distinct classes. This will increase the 
likelihood of mixed boundary pixels and, therefore, increase 
the likelihood of their misc lass~cat ion.  

It is likely that the cubic-convolution resampler does not 
give as large improvements i n  classification accuracy as the 
bilinear resampler because it produces less smooth imagery 
that more closely resembles the original image. The degree of 
resampling-induced image smoothing will also be dependent 
upon the local grey-level structure of the image. The bilinear 
and cubic-convolution resampling algorithms interpolate 
grey-level values from 2- by 2- and 4- by +pixel neighbor- 
hoods, respectively. Consequently, resampling-induced 
smoothing will be most apparent in  those parts of the image 
which have grey-level variations occurring at  the same spa- 

- 

Between Spectral and 
Within Spectral/Textural Spectral/Textural 

Within Spectral Classifications ClassiEcations Classifications 

Zcal Zba Zcb Zce Zbd Zhf Zgf Zhg Zhj Zgi Zfa Zhc Zgb 
-- - - 

Water -0.32* -0.61* 0.29* 2.45 0.98* -1.35* -2.04 
Fen Reed 4.88 3.34 1.54* -0.97* 0.27* 18.02 15.47 

Fen Phalaris 11.65 5.28 6.35 10.10 4.56 -0.42* -3.46 
Wet Grass 0.46* -0.97* 1.43* -8.71 -7.36 -12.67 -7.01 

Wet Grass (MG) 0.92* 0.75* 0.17* -3.90 -1.30* -7.62 -5.87 
Fen Herbs 5.26 0.63* 4.65 2.99 -0.35* 0.23* -1.76" 

Sallow Scrub 25.86 13.43 12.39 4.30 3.08 -5.13 -3.44 
Woodland 9.31 6.41 2.89 1.59* 2.49 39.13 22.78 

Overall 22.02 11.47 10.54 2.92 1.67* 14.55 9.30 

'Zca is test statistic for significance analysis between classifications c and a 
*Denotes insignificant difference at the 95% confidence level 
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tial scale a s  these pixel neighborhoods. Texturally fine cover 
types are  characterized by  localized grey-level variation a n d  
are, therefore, more likely to  fall into this category than  more 
coarse cover types characterized b y  grey-level variations oc- 
curring over larger spatial scales. This  may  explain w h y  the  
spectral classifications of the  texturally smooth classes are 
similar in t h e  original a n d  the  resampled images, whereas 
the  spectral classifications of t h e  less texturally smooth clas- 
ses are  observed to b e  significantly improved after resam- 
pling. These explanations cannot  be  used reliably to  explain 
the  spectral/textural classification results because the  interac- 
tion of the  texture measure with the  grey-level structure of 
t h e  image is  no t  easily understood. 

The  impact  of using training statistics collected from the  
original test image to classify resampled versions of the  test 
image was  also examined. In  these experiments, the  overall 
spectral/textural classification accuracies of the  resampled 
images were found to be  significantly poorer w h e n  they were 
performed using training statistics collected from the  original 
image. This  phenomenon was  no t  observed w h e n  the  images 
were classified using only spectral training statistics. This  in- 
dicates that, w h e n  resampling is  necessary prior to classifica- 
tion, texturally based classification procedures may  use 
training statistics collected from the  resampled a n d  not  the  
original image. 

The  results described in this paper  are  empirical; there- 
fore, i t  cannot be  certain that  they wil l  b e  applicable to  other 
images a n d  resampling a n d  texture calculating algorithms. 
However, they indicate that remotely sensed images may b e  
classified after they have been resampled without  causing a 
reduction in the  classification accuracy. In some cases, the  
bilinear a n d  cubic-convolution resampling techniques may  
improve the  classification accuracies because of their local 
smoothing effect. However, the  benefits of image smoothing 
prior to  classification wil l  b e  subject to  counteracting trends 
of spatial inter-class a n d  intra-class variability (Townshend 
a n d  Justice, 1981). Consequently, a n y  classification improve- 
ments  associated with resampling-induced smoothing wil l  b e  
dependent  u p o n  the  grey-level structure of the  image a n d  
will  not  necessarily be  always improved, particularly w h e n  
images containing many spectrally distinct class boundaries 
are used. 

The  motivation of this s tudy has been the  perceived re- 
quirement for automated image classification procedures. 
The  findings described in this  paper indicate that such  pro- 
cedures may be  implemented using georeferenced (i.e., re- 
sampled) imagery without  a reduction i n  the  classification 
accuracy. This  may be  particularly important because recent 
trends i n  image classification have been towards the incorpo- 
ration of contextual information a n d  knowledge-based rules 
(e.g., Mason et al., 1988; Argialas a n d  Harlow, 1990; Ton  et 
al., 1991; Kontoes et al., 1993) using techniques which  are 
amenable to  automation i n  this  manner .  
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