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Abstract 
Obtaining correct area estimations for different land-cover or 
environmental categories is one of the main objectives of en- 
vironmental applications of statistics. Area estimations are 
often obtained through classifying surveyed or remotely 
sensed data along with necessary adjustment. In this paper, 
three marginal area estimators, including the direct estima- 
tor, inverse estimator, and additive estimator for image clas- 
sification, were compared using Monte Carlo simulations. 
The results suggested that, under minimum constraints for 
the acceptable image classifier and under our simulation en- 
vironment, (1) both inverse and direct estimators were as- 
ymptotically unbiased and asymptotically zero-dispersed as 
sampling fraction increased; (2) the direct estimator normally 
has a smaller bias than the inverse estimator, but the inverse 
estimator normally had smaller dispersion than the direct es- 
timator when the sampling fraction was small; and (3) the 
additive estimator was not asymptotically unbiased and was 
competitive with the other two methods only when sampling 
fraction and number of classes were both small. Simulated 
feasible regions for the three marginal area estimators are 
presented in  this paper. 

Introduction 
Image classifications are commonly used for area estimations 
of land-cover types. Mapped or direct count of classified pix- 
els, as a marginal area estimator, often contains components 
of bias, or classification errors. The true classifier accuracy is 
represented by the population confusion matrix, which is es- 
timated by the sample confusion matrix. It is often necessary 
to make calibrations on the direct counts in order to obtain 
better estimates for the marginal areas (Dymond, 1993; Stohr 
et al., 1994; Schriever and Congalton, 1995). The calibrations 
of the marginal area estimates are based on the utilization of 
the sample confusion matrices. Three distinctive calibration 
methods, the direct correction method (Card, 1982), the in- 
verse correction method (Bauer et al., 1978), and the additive 
correction method (Dymond, 1992), had been introduced into 
image classification. The objective of this research is to eval- 
uate the application feasibility of the three marginal area cor- 
rection techniques under reasonable constraints for classifiers 
using simulation methods. 

The inverse estimator (Bauer et al., 1978) makes use of 
the sample omission probabilities or frequencies to estimate 
the corresponding population omission (a priori) probabili- 
ties, and was named the "classic correction method" by Cza- 
plewski and Catts (1990; 1992). Because the computation of 
the estimates of this method involves the inverting of the 
sample omission probability matrix, it is therefore called the 
inverse correction method by researchers and in this paper. 
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The direct estimator of the marginal areas h s been sug- 
gested by Card (1982) for image classification. It has been a theoretically compared with the inverse estimat r (Jupp, 
1989). Using the asymptotic multinomial distribgtion, Card 
(1982) proved that the direct estimator is an asyrplptotic max- 
imum-likelihood estimator for the marginal area+ The direct 
estimator uses the sample commission (a posteriori) probabil- 
ity matrix to estimate the population commissiop probability 
matrix, and therefore it was called the "inverse rplethod" by 
Czaplewski and Catts (1992). One advantage of 

putation. 
timator is that it does not involve matrix 

The inverse estimator had been widely used in remote 
sensing applications and has been frequently redorted as giv- 
ing satisfactory results (Maxim et a]., 1981; Prisley and 
Smith, 1987; Hay, 1988). However, in recent years, it has in- 
voked strong criticisms for its instability when ~e sample 
omission probability matrix becomes singular or near-singu- 
lar (Jupp, 1989). In a recent simulation study by Czaplewski 
and Catts (1992), the direct estimator has been shown to be 
systematic superior to the inverse estimator under no con- 
straint for the simulated sample confusion matriyes. Though 
the studv bv Cza~lewski and Catts (1992) demonstrated that ., d 

the inverse correction is inferior if the sample confusion ma- 
trix is random, it did not provide an explanatiori for the con- 
trasting fact that the inverse correction had been practically 
acceptable in most application cases. 

The apparently simplest method is the newlb proposed 
additive method by Dymond (1992). The basic idea for this 
method is that the true ground area of a class can be esti- 
mated by the area classified by the classifier pluq a single 
correction term. The additive correction method retains the 
asymptotic unbiased property of the correction (but not abso- 
lutely unbiased, as it was shown in our simulation). The var- 
iance of the estimation depends on the differenck of the true 
ground area and the classified area. However, no work com- 
paring the additive correction with other methods had been 
found by the author. To compare the additive cqrrection 
method with the other two methods was anotheq objective of 
this research. 

In a recent paper, Yuan (1996) introduced t e concepts 'i of minimum practically acceptable classifier and, reasonably 
acceptable classifier. Yuan's work theoretically roved that 
the inverse correction exists when the classifier 9 s minimum 
practically acceptable, and the solution is stable if the classi- 
fier is also reasonably acceptable. However, no comparison 
with other correction methods had been made iv that paper 
under the condition of acceptable classifiers. 
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For the purpose of comparison and demonstration, a 
simple proportional estimator or simple expansion was also 
simulated in the study. Simple expansion assumes that the 
true area of a ground class is strictly proportional to the area 
of the same class in the sample verification region. The sim- 
ple proportional estimator is an unbiased but not absolutely 
unbiased estimator for the true ground areas. The variance of 
the estimation depends on the true area (proportion) of the 
given class in the sample verification region, and normally 
this variance is too high to be acceptable as demonstrated by 
Cochran (1977, pp. 21-22). 

Preliminaries 
Let r denote as number of the classes for our consideration. 
Assume that the true population confusion matrix for a clas- 
sifier is C, and the sample confusion matrix obtained from 
the field data is C,: that is, 

Define 

where 

N, = (true) population number of pixels being classified 
from class i to class j by the classifier, unknown; 

N, = (true) population number of pixels in class i ,  un- 
known; 

NJ = (true) population number of pixels being classified 
into class j by the classifier; 

N = total number of the pixels in the population (whole 
scene); 

n ,  = sample number of pixels identified being classified 
from class i to class j by field verification; 

n, = sample number of pixeIs in class i; 
n ,  = sample number of pixels being classified into class 

j; and 
n = total number of pixels in the sample (sample size). 

In order to simplify our following notations, we define 
two vectors as follows: 

where T consists of all unknown parameters for the classi- 
fier-the "true" numbers of pixels for the classes; and M 
consists of the numbers of pixels in each classes classified by 
the classifier ("mapped" pixels). Notice that T is an un- 
known vector whereas M is a known vector. The task for the 
area estimation correction is to obtain better area estimates of 
T based on knowledge of M and the sample confusion matrix 
cs .  

The population omission and commission probability 
matrices P, and Q, are defined based on the population con- 
fusion C, matrix: i.e., 

where 

Nij p.. = - " N,., 
Nij Q.. = - 

'I N j  

N . 
Q,. = ' 

' N  

and 

P,, is the omission (a priori) probability for a pixel being 
classified as in class j given the condition it is from 
class i, 

Q,J is the commission (a posteriori) probability for a pixel 
being from class i given the condition it is classified 
as in class j, 

P, is the marginal a priori probability for class i, and 
Q, is the marginal a posteriori probability for class j. 

The sample omission and commission probability (fre- 
quency) matrices P, and Q, can be defined similarly based 
on the sample confusion matrix: i.e., 

p.. = -' 
ni 

- -. q.. = -' 
' nd 

where 
p ,  is the sample omission (a priori) probability for a 

pixel being classified as in class j given the condition 
it is from class i ,  

q ,  is the sample commission (a posteriori) probability for 
a pixel being from class i given the condition it is 
classified as in class j, 

p, is the sample marginal a priori probability for class i, 
and 

qJ is the sample marginal a posteriori probability for 
class j. 

Marginal Area Estimators 
Inverse Estimator 
The inverse estimator is based on the inverse of the sample 
omission probability matrix (Bauer et al., 1978). This method 
has been advocated by Hay (1988). Denote 

the inverse estimator for the marginal areas. Because 

If P, is used to estimate P,, then the inverse estimates 
can be solved from the equations 
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or, in matrix form, 

Thus, the inverse estimates can be obtained by inverting P: if 
its inverse exists. In most application cases, P: is invertible 
&, therefore, the following equation holds: 

T('j = (PT)-l M . 

demonstration. The details about simple expansdon had been 
discussed by Cochran (1977, p. 50). We denote 

Because (P;)-' could have some negative elements, the 
estimator T(l1 could also have some negativelements, but not 
all of them. If that happened, those negative elements can be 
adjusted to zeros. 

Direct Estimator 
The direct estimator (Card, 1982) is based on the sample 
commission probability matrix. Let's denote 

TCdl = (Np, N$J, . . ., 
the direct estimator for the marginal areas. Because 

If Q, is used to estimate Q,, then the direct estimate wdJ 
for Ni can be obtained: i.e., 

or, in matrix form, 

T(dj = QsM . 
Additive Estimator 
The additive correction (Dymond, 1992) is based on the idea 
that the true number of pixels in a class can be estimated by 
the classified number of pixels in the same class plus a cor- 
rection term. Similarly, let's denote 

the additive estimator for the marginal areas. Because 

N i . = N , , + N i . - N ,  

= Ni + (Pi. - Qi) Ni 

the difference (Pi, - Q.,)N is the desired correction term. If 
the sample a priori and a posteriori marginal probabilities 
are used to estimate the corresponding population probabili- 
ties, the additive correction can be obtained by 

w, = Ni + (pi. - q.3 N 

= Ni + (ni,ln - n,ln) N 

= Ni + (ni, - n,i) Nln 

or, equivalently, 

Because subtraction is used in the computation, some of 
these estimates could be negative, but not all of them. As in 
the inverse correction situation, if that happens, the negative 
estimates can be adjusted to zeros. 

Proportional Estimator 
The discussion of the simple proportional correction or sim- 
ple expansion is only for the purpose of comparison and 

the proportional estimator for the marginal areas~. The ele- 
ments of TrPj have the simplest form: i.e., 

Classifier Constraints 

such invertibility is requiring that the 
minimum acceptable (Yuan, 1996). 

That is, 

is practically minimum acceptable 
probability of getting correct 

pii = Prob,,,,, (class i l class i) > 0.5 i f l . 2  ,..., r. 

Similarly, we can define a minimum accept ble classi- 
fier, though it can hardly be verified, if I 
pii = Pr~b,,,,,,~~, (class i l class i) > 0.5 i ~ =  l , ~ ,  ..., r. 

Yuan (1996) has proved the existence of the inverse cor- 
rection under the minimum practically acceptable condition. 

Using notations of n,], a practically minimu acceptable 
classifier would have 7 

justified. 

Random Model for C, 
Because there is no theoretical distribution mod 1 for the e 
population confusion matrix, uniform distributiqn is used for 
generating population confusion matrices. That i , for a given 
population size N, 5 

(I) Assume N,,, N2,, . . . , N, are uniformly distribhted inside a 

> 0 and N,, + N,, + - .. + N, = N; and 

is minimum acceptable. 

Random Model for C, 

(1) Asssume simple random sampling scheme is bsed. The dis- 
tribution for C, can be approximated by normal distribution. 
Using a binomial model under simple ~ a m ~ l i 4 ~  scheme, 
one can prove (Cochran, 1977, pp. 50-51) that! 
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N N;. N. 
V(n j , )  = n ( 1  - f ) - - ( I  - > ) ,  

N-1 N N 

By the central limit theory 

or, equivalently, 

ni -t N(E(n i ) ,  V(n , ) )  as n+N . 
In practice, n,,, n,,, . . . , n, are confined by conditions: 
0 < ni,SNj., 0 < n,, S N,,, . . . , 0 < n ,  < N, and n,. + n,, 
+ + n,  = n = fl. 

(2) Using similar binomial reasoning, we have 

1 - f  N N.. Ni, v(E2) =--A ( 1  - -1, 
n n N-1 N N 

By central limit theory 

or, equivalently, 

In practice, n,, n,, . . . , n,, are also confined by conditions 
0 < n j  S Nil, . . . , 0.5nj. < n,i 1 N;,, . ,,.. . , 0 < n ,  < N;,, where 
nil > 0.5 ni is such that the classifier is practically minimum 
acceptable; and nil + n, + - .  . + n,  = n ,  

Evaluation Criteria 
Two evaluation criteria used by Czaplewski and Catts (1992) 
are adopted with minor modification for this simulation. As- 
sume for each sampling fraction f, mp population confusion 
matrices are simulated. For each simulated population confu- 
sion matrix, m, sample confusion matrices are simulated. Let 
T, be the "true" marginal area vector for the ith simulated 
population and TITI be the estimate of T, based on the simu- 
lated jth sample confusion matrix where e = i for the inverse 
estimator, e = d for the direct estimator, e = a for the addi- 
tive estimator, and e = p for the proportional estimator. 

Average Absolute Bias 
Using above definitions, the mean estimation vector for the 
ith population is 

The average error vector for the given estimator and the 
given population is 

To reduce the scaling factor, the corresponding relative 
bias vector 

is introduced, where 

Let by] = IIBylll be the total relative absolute bias for the 
population i, then the average absolute relative bias for all 
m, simulated populations is 

Average Dispersion 
For the ith simulated population, the square root of the mean 
of the sum of errors is defined by 

where llAlz is the 2-norm of a vector x. 
Considering the scaling factor, the relative dispersion for 

the ith simulated population is given by 

The average dispersion for all m, simulated populations 
is 

In our simulation, the measurements bee) and dce) were 
computed for four different estimators for each sampling 
fraction that ranged from 0.05 to 0.95 of 0.05 increment. 

Simulation Procedure 
The simulation procedure is as follows: 

(1 )  Generate sample population confusion matrix P,: 
(1-1) Generate true population marginal areas (uniform) T 

= (N,,, N,,, . . . , N J T  such that N,, + N,, + . . + N ,  = 
N. 

(1-2) For each N,, generate uniform vector (N;,, N,,, . . . , N,J 
such that Nil > 0 ,  . . . , Nii > 0.5N,,, . . . , N,, > 0 and N,, 
+ N,, + .. + Nir = N;.. 

(2)  Generate confusion matrix P, consistent with the P, gener- 
ated in step (1): 
(2-1) For given sampling fraction f ,  let n = f*N. 
(2-2) Generate true sample marginal areas normal approxi- 

mations (n,,, n,,, . . . , n , )  such that 0 < n,,N,, and n,, 
+ n, + ..- + n,  = n. 

(2-3) For each n,,, generate normal approximations (nj l ,  n,, 
. . . , nJ such that 0 5 nj, 5 Nj,  n,  > 0.5 nj and n, + n,  
+ ... + n,  = n,,. 

(3) Compute four marginal area estimators: If some of the ele- 
ments of an estimator are less than zero, then adjust them 
to zero. 

(4)  Update statistics including the two accuracy measures for 
the given simulated population. 

(5)  Repeat steps (2)  to (4)  m, times. Output the final statistics 
for the given population and update the statistics including 
the accuracy measures for the same sampling fraction. 

16) Repeat steps (1) to (5) m, times. Output the final statistics 
for the given sampling kaction. 

(7)  Repeat steps (1)  to (6) for f = 0.05, 0.10, . . . , 0.95. 
( 8 )  Repeat steps (1 )  to (7) for r = 4, 6 , .  . . , 20. 
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Figure 1. Average absolute bias under various sampling fraction schemes, where 
the x-axes represent the sampling fraction ( f ) ,  the yaxes represent the normalized 
average absolute bias, and r = the number of classes in the classification. 

In the simulation, we set m = m, = 50, that is, 2500 pairs of 
population and sample confusion matrices had been simu- 
lated for each sampling fraction f. For each r (number of 
classes), 45000 such pairs have been simulated. 

The simulation process was conducted on the supercom- 
puter Cray Y-MP2/216 in the National Supercomputing Center 
for Energy and the Environment. Total simulation took about 
10 CPU hours. 

Simulation Results 
The simulation results are plotted in Figure 1 and Figure 2. 
In those plots, the x-axes represent sampling fractions that 
ranged from 0.05 to 0.95 by an increment of 0.05; the y-axes 
represent the average absolute bias and average dispersion, 
respectively. Those plots adequately demonstrated the bias, 
dispersion, and asymptotic characteristics of the four simu- 

lated estimators under the minimum practically acceptable 
constraint and changing parameters r and f 

Average Bias 
The average absolute biases (in short, bias) for the four esti- 
mators under different sampling schemes are given in Figure 
1. Some important observations can be made on those plots. 

(1) When r is small (r < 10) and the sampling fraction is small 
(f 5 0.35), the proportional estimator often has the smallest 
bias and the inverse estimator often has the largest bias. 
However, they are all within acceptable range and show a 
tendency of decreasing bias as the sampling fraction in- 
creases. 

(2) When r is large (r  > 10) and the sampling fraction is small 
(f < 0.25), there is not a significant difference among differ- 
ent estimators in terms of bias, and they all show a tend- 
ency to decrease as the sampling fraction increases. 
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Figure 2. Average dispersion under various sampling fraction schemes, where the 
x-axes represent the sampling fraction (f)  the yaxes represent the normalized aver- 
age dispersion, and r = the number of classes in the classification. 

(3) When the sampling fraction f is large, the bias in the pro- 
portional estimator increases rapidly. The bias in the addi- 
tive estimator become stabilized but far-away from zero; and 
the bias in both the direct and inverse estimators ap- 
proaches zero. 

(4) The direct estimator generally has the smallest bias of all 
four estimators under all sampling fractions. 

ymptotically biased estimators (proportional and additive 
estimators), this suggests that their estimates will be domi- 
nated by bias when f is large. 

(2) When the sampling fraction f is small, proportional and di- 
rect estimators normally have significantly bigger disper- 
sions than inverse and additive estimators. This suggests 
that, when the sampling fraction is small, estimates ob- 
tained by inverse and additive estimators are more stable 
than those obtained by others. 

Average Dispersion 
The average dispersions for the simulations are displayed in 
Figure 2 .  The following are the direct observations. Estimator Evaluation 

(1) The dispersions for all four estimators approach zero as the 
sampling fraction f increases. For asymptotically unbiased 
estimators (inverse and direct estimators), this means that 
they asymptotically approach the true values of T. For as- 

(1) The proportional estimator is not suggested for use because 
of its large dispersion when the sampling fraction is small, 
and its large bias when the sampling fraction is large. 

(2) Both the inverse and additive estimators fairly behaved 
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Furible region for Auriblc region for 

Additive estimator 
D k t  estimator 

Figure 3. Feasible region for the additive estimator, Figure 5. Feasible region for the direct estimator, where r 
where r = the number of classes. = the number of classes. 

when the sampling faction is small (f < 3), particularly 
when r 2 8, because of a reasonable bias and small disper- 
sion. However, the additive estimator is not suggested for 
use when the sampling fraction is large because of its strong 
bias. 

(3) Both the inverse and direct estimators are asymptotically 
unbiased and zero-dispersed. However, the direct estimator 
has a systematic bias smaller than the inverse estimator. 
When the sampling fraction is large, the direct estimator is 
asymptotically better than the inverse estimator. This result 
is similar to that of Czaplewski and Catts (1992). When the 
sampling fraction is small, the inverse estimator has a bias 
similar to that of the direct estimator, but with a signifi- 
cantly smaller dispersion. Therefore, the inverse estimator 
could be more suitable for applications when the sampling 
fraction is small, which is the common situation in accu- 
racy verification of image classification. 

The simulated feasible regions for the three marginal 
area estimators are plotted in  Figure 3, 4, and 5. However, 
those regions were obtained from the interpretation of the 
simulations study reported in  this paper and therefore are 
dependent on the simulation environment. They could be 
used as reference, but should not be considered as strictly 
proven statements or universal rules for method selection. 

Conclusions 
Through Monte Carlo simulation, three marginal area estima- 
tors for image classification were statistically studied. The re- 

sults suggest that, if the classifier i s  minimum practically 
acceptable, then different estimators have different feasible 
regions and no single one is systematically superior to the 
others in all sampling situations. When the sampling fraction 
is small, additive and inverse estimators are relatively better 
than the direct estimator. When the sampling fraction is 
large, the direct estimator is better than the inverse estima- 
tor. The additive estimator is strongly biased and is not sug- 
gested for use when the sampling fraction is large or when 
the number of classes is large. 

The real situation could be more complicated than our 
simulation. For instance, the simulation only modeled the 
case when 

We still don't know the statistical behavior of the marginal 
area estimators when 

which is probably more realistic in  image classification. We 
suspect that when o increases, the inverse estimator has 
more chances of getting better estimates than does the direct 
estimator, and when o decreases, the direct estimator has 
more chances of getting better estimates than does the in- 
verse estimator. However, more simulation work is needed 
i n  order to better characterize this situation. 

Figure 4. Feasible region for the inverse estimator, where 
r = the number of classes. 

Feasible region for Inverse estimator 
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