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Abstract investigation of the sensitivity of these measurements to clas- 
Calcuiation of landscape metrics from land-cover data is be- sification error (Hess, 1994).  he objectives of this paper are 
coming increasingly common. Some studies have shown that two-fold: (1) to determine the sensitivity of landscape 
these measurements are sensitive to differences in land-cover metrics to land-cover misclassification, and (2) to determine 
composition, but none are known to have tested also their the sensitivity of landscape metrics to differences in land- 

to land-cover misc~ass~f icat~on~ error sirnula- scape condition. These objectives are necessarily connected. 
tion model was written to test the sensitivity of selected land- Ideally, landscape pattern metrics would be insensitive to 
scape pattern metrics to misclassification, and regression misclassification but sensitive to differences in land cover. 

analysis was used to determine i f  these metrics were signifi- Land-cover data, mapped from Landsat TM for the Ches- 
cantly related to differences in land-cover composition. Corn- apeake Bay Regional Watershed, were used for this study. 
parison of sensitivity and regression results suggests that The data were divided into 57 eight-digit U.S. Geological 
differences in land-cover composition need to be about 5 Survey (us~s)  hydrologic units or watersheds. Sensitivity to 
percent greater than the misclassification rate to be confident misclassification is tested using a simulation model based on 

that differences in landscape metrjcs are not due to mjsclas- a published land-cover error matrix (Green et a]., 1993). Sen- 

sification. sitivity to differences in landscape condition is tested by 
comparison to the amount of human land use in the water- 
shed. Landscape condition is measured as the ratio of an- 

Introduction thropogenic land use to total area (U) (O'Neill et al., 1988). 
Analysis of landscape Pattern makes use of measurements of Low values reflect that a watershed is primarily forested, 
the connectedness (e.g., contagion, percolation), diversity while high values reflect dominance by human land uses. 
(e.g., ~hannon diversity, dominance), shape complexity (e.g., use of u as a measure of landscape condition is based 
fractal dimension), and size of land-cover patches to study on observations in ecology and biogeography that the Chess- 
ecological condition at local to regional scales (Turner and peake B~~ ~ ~ ~ i ~ ~ ~ l  watershed was almost entirely forested 
Gardner, 1991). These metrics (O'Neill et al., 1988) have prior to conversion to human land use (Whittaker, 1975). 
been used to assess landscape condition (Krummel et al., 
1987; Graham et al., 1991; Wickham and Norton, 1994), infer Landscape Pattern Metrics 
ecological process from pattern (Turner, 1989; Milne, 19921, Three landscape pattern metrics were chosen for analysis: 
and show how landscape configuration can impose con- average patch compaction (APC), contagion (C), and fractal 
straints on biological populations (Browder et al., 1989; Hoo- dimension (F). APC, C, and F were selected because they 
ver and Parker, 1991; Flather et al., 1992; Pearson, 1993). were found to represent orthogonal axes among 55 landscape 

a regi0na1 perspective, land-cover Patterns may be con- pattern metrics tested in a factor analysis (Riitters et al., 
sidered as either forcing or constraint functions for sub-re- 1995). Therefore, these metrics represent independent infor- 
gional dynamics, or as integral parts of strictly regional mation about landscape pattern. The formulas for calculating 
models (Allen and Starr, 1982; O'Neill et al., 1994). Informa- these metrics are listed in ~ ~ ~ ~ ~ d i ~  A. 
tion about land-cover patterns has proven useful for both lo- Average patch compaction, APC, is the ratio of patch 
cal and regional assessments of ecological condition (Vos area to the size (area) of the smallest square that will contain 
and Opdam, 1993; Meyer and Turner, 1994). that patch. The ratios are averaged over all patches in a land- 

Measurements landscape Pattern are commonly made scape. APC has a value of 0 for linear patches and a value of 
from land cover (e.g., Krummel et al., 1987; Turner, 1987; 1 for perfectly square patches (Riitters et al., 1995). 
Turner, 1990a; Turner, 1990b; O'Neill et al., 1988; Graham et Contagion, C, measures the degree to which the land- 
al., 1991; Olsen et al., 1993; Wickham and Norton, 1994; scape is composed of a few large or several small patches. 
wickham and Riitters, 1995; Wickham et a]., in press; Riit- Contagion ranges between 0 and 1. High values of contagion 
ters et al., 1995). However, measurement of landscape pat- indicate that the landscape is clumped into a few, large 
tern from land-cover maps has been undertaken without patches. 

Fractal dimension, F, is commonly calculated as twice 
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Figure 1. Map of Chesapeake Bay Regional Watershed. 
Smaller 8-digit u s ~ s  watersheds shown in white and gray. 
Gray shaded watersheds were used in error simulation 
modeling. Bold lines mark the boundaries between the 

susquehanna = upper west 

the slope of a log-log regression of perimeter versus area 
(Lovejoy, 1982). Fractal dimension ranges between 1.0 and 
2.0, with higher values indicating more complex shapes. 

A fourth metric, index of landscape pattern (I,), was cal- 
culated as the sum of APC, C, and F minus 1 (1 was sub- 
tracted from F so that its range was also 0 to 1). I,, combines 
the information contained in APC, C, and F into a single 
metric. Calculation of I, simply as the addition of APC, C, 
and F is appropriate because these metrics are orthogonal. 

Methods 
The Landsat TM-based land-cover data used in this study 
were mapped by the U.S. Environmental Protection Agency 
(USEPA) for the Environmental Monitoring and Assessment 
Program (EMAP). An unsupervised-supervised classification 
algorithm was used for mapping. Unsupervised methods 
were used to identify spectral clusters, which in turn were 
used as training sets to drive a supervised classification of 
six categories: high intensity developed, low-intensity devel- 

oped, woody, herbaceous, exposed land, and water. These 
classes were effectively urban, suburbanlresidential, forest, 
agriculture, beaches and extractive operations (mining), and 
water, respectively. 

A simulation model was used to test the sensitivity of 
landscape pattern metrics to misclassification. The simula- 
tion model randomly introduced error into the Chesapeake 
Bay land-cover map. The simulation was run 100 times on 
each watershed, providing a different spatial distribution of 
error at each iteration. The landscape metrics were then cal- 
culated at each iteration of the simulation for each water- 
shed. The simulation model was run on 39 of the 57 USGS 
watersheds in the study area (Figure I), representing all four 
physiographic provinces: Coastal Plain, Piedmont, Ridge-and- 
Valley, and Appalachian Plateau (Hunt, 1967). 

The simulation model was used to test two components 
of error in landscape metrics as a result of misclassification. 
The first was the difference between original and simulated 
mean values for each metric. This difference is the bias in 
the estimate of a landscape metric as a result of misclassifi- 
cation. Second, the confidence interval around the simulated 
mean gives a rigorous estimate of the potential variability in 
a given landscape pattern metric due to misclassification. 
The confidence interval around the simulation mean is given 
by 

where p, is the population mean at confidence level a, 
2 is the sample mean, S; is the standard error of the mean, t 
is a value from the Student's t table for a given level of a, 
and n is sample size. For this study a was 0.05, n was 100, 
and t was 1.98. 

Regression was used to test the sensitivity of the land- 
scape pattern metrics (APC, F, C, I,) to differences in land- 
cover composition (U), using the original (not simulated) 
values for each watershed. By comparing the solution of the 
regression equation to the mean difference between the simu- 
lated and original value for each landscape pattern metric, it 
is possible to evaluate both the sensitivity to misclassifica- 
tion and differences in land-cover composition. 

Prior to the regression analyses, the data (U, APC, F, C, 
and I,) were inspected for normality. All data were normally 
distributed except F and U, which showed a slight skewness. 
Each regression model was inspected for heteroscedasticity. 
None was found. 

Error Simulation Model 
The error simulation model, written using the ArcIInfo GRID 
module (ESRI, 1994), was based on (1) misclassification cal- 
culated from an error matrix, and (2) spatial autocorrelation 
in land-cover classification error (Congalton, 1988). The error 
matrix (Story and Congalton, 1986) is the standard medium 
for reporting land-cover classification accuracy (Congalton 
and Green, 1993). An error matrix is constructed as a square 
contingency table where the columns represent reference 
data and rows represent classified data. 

An error matrix from Green et al. (1993) was used to es- 
tablish the per-class accuracies for the simulation model (Ta- 
ble 1). This error matrix was chosen because (1) it was 
constructed from Landsat TM-derived land-cover data for a 
similar environment (New Jersey); (2) had a nearly identical 
legend; (3) had high accuracy rates; and (4) the conditional 
probabilities of correct classification, omission, and commis- 
sion were determined by dividing the actual pixel counts by 
the corresponding row totals. This method of conditional 
probability determination assumes that a stratified random 
sample, where the stratification was based on the classifica- 

April 1997 PE&RS 



tion results, was used to construct the error matrix (Green et 
al., 1993). This approach is commonly used to conduct accu- 
racy assessments. 

Some changes in the Green et al. (1993) error matrix were 
required before it could be used with the Chesapeake Bay 
data. The classification error reported by Green et al. (1993) 
for their built-up class was used for our urban and residential 
classes. However, we assumed that the confusion between ur- 
ban and forest reported by the authors was largely between 
residential and forest, not urban and forest, because residential 
areas contain lawns, parks, and perhaps small woodlots which 
are more likely to have a spectral signature similar to that of 
forest than to more denselv urbanized areas. For our urban 
class, we assumed that coGfusion was with barren and resi- 
dential. For our residential class, we assumed that confusion 
was with forest, agriculture, and urban. 

To incorporate spatial autocorrelation into the simula- 
tion model, the accuracy of edge pixels was reduced five per- 
centage points from that reported by Green et al. (1993) for 
the corresponding class. Likewise, the accuracy of interior 
pixels was increased by five percentage points for interior 
pixels. While previous studies have found that classification 
error tends to be higher at the edge between two land-cover 
types than in the interior of a single land-cover patch (Con- 
galton, 1988), we found no information on the actual differ- 
ence in misclassification rate between edge and interior 
pixels. We assumed an overall 10 percent difference in mis- 
classification rate between edge and interior pixels. This 
modification yields edge and interior error matrices that can 

TABLE 1. ERROR MATRIX FOR TM CLASSIFICATION OF NEW JERSEY. COLUMNS 
REPRESENT REFERENCE DATA AND ROWS REPRESENT CLASSIFIED DATA. CELL 

VALUES ARE ROW ADJUSTED PROBABILITIES. REPRODUCED WITH PERMISSION FROM 

GREEN ET AL. (1993) 

Non- Built- 
Forest Forest Up Barren Water Cloud 

- - 

Forest 0.88 0.08 0.04 0.00 0.00 0.00 
Non-Forest 0.09 0.81 0.10 0.00 0.00 0.00 
Built-up 0.16 0.06 0.78 0.00 0.00 0.00 
Barren 0.00 0.00 0.00 1.00 0.00 0.00 
Water 0.00 0.00 0.00 0.00 1.00 0.00 
Cloud 0.00 0.00 0.00 0.00 0.00 1.00 

be weighted and combined into a matrix that incorporates 
spatially autocorrelated classification error. An example is 
shown for one iteration of the simulation model for the 
Choptank Watershed (Tables 2a, 2b, and 2c). 

The eight nearest neighbors to each pixel were searched 
to define an edge. Any pixel surrounded by identical land 
cover was treated as being interior. When the simulation 
identified error on an edge, the most frequent value of the 
eight nearest neighbors was used as the correct land-cover 
type. 

The overall estimate of error (1 minus the percent cor- 
rectly classified; see Table 2c) varied slightly as a result of 
the composition of the watershed. Watersheds dominated by 

TABLE 2. INTERIOR (A), EDGE (B), AND COMPOSITE (C) ERROR MATRICES FOR CHOPTANK WATERSHED IN CHESAPEAKE BAY. COLUMNS REPRESENT REFERENCE DATA AND 

ROWS REPRESENT CLASSIFIED DATA. NUMBERS IN PARENTHESES ARE PIXEL COUNTS. MATRIX POSITIONS WHERE PIXU COUNTS ARE LESS THAN 0.1 PERCENT (0.001) 
ARE TREATED AS ZERO (0). 

Chesapeake Bay, Choptank 8-Digit USGS Watershed 

A: Error Matrix, Interior Pixels 

Woody Herbaceous Urban Residential Water Exposed Land 

Woody 
(684900) 

Herbaceous 
(1814609) 

Urban 
(2066) 
Residential 
(37117) 

Water 
(317577) 
Exposed Land 
(642) 
- - - - - --- - - 

B: Error Matrix, Edge Pixels 

Woody Herbaceous Urban Residential Water Exposed Land 

Woody 
(291116) 

Herbaceous 
(354960) 

Urban 
(7658) 
Residential 
(18948) 
Water 
(75316) 

Exposed Land 
(2017) 



Chesapeake Bay, Choptank 8-Digit USGS Watershed 

C: Error Matrix, Composite (Interior and Edge) 

Woody Herbaceous Urban Residential Water 

Woody 
(976016) 

Herbaceous 
(2169569) 

Urban 
(9724) 

Residential 
(56065) 

Water 
(392893) 

Exposed Land 
(2659) 

Exposed Land 

0.0 
(4) 
0.0 
(300) 
0.025 
(247) 
0.0 
(21) 
0.0 
(60) 
0.910 
(2420) 

forest had slightly higher overall accuracies because of a 
higher per-class accuracy for forest. The overall estimate of 
error ranged from 0.085 to 0.158 across the 39 watersheds on 
which the simulation model was run. The average error rate 
across the 39 watersheds was 0.122. 

Sensitivity of Landscape Pattern Metrics to Land-Cover Misclassification 
Because APC, F, and C all have ranges between either 0 and 
1 or 1 and 2,  the magnitude of bias in these measurements is 
directly comparable to the misclassification rate. The bias in 
landscape metrics as a result of rnisclassification was equal 
to or less than the misclassification rate (Table 3). The mean 
bias estimates, averaged over all watersheds, were 0.022, 
0.074, 0.122, and 0.070 for APC, F, C, and I,, respectively. 
Only the bias in contagion approximated the misclassifica- 
tion rate. Differences greater than these values would indi- 
cate that the difference is not simply due to land-cover 
misclassification. Also, the direction of the bias for each esti- 
mate was consistent - misclassification always resulted in 
lower values for APC, C, and I,,, and higher values for F. 

The confidence intervals about the simulated means show 
the sensitivity due to differences in the spatial distribution of 
misclassification. The confidence intervals are two or more or- 

TABLE 3. SUMMARY STATISTICS OF BIAS ESTIMATES DUE TO LANDCOVER 
MISCLASSIFICATION. 

Landscape Metric Direction Mean Minimum Maximum 

Average Patch 
Compaction decrease 0.021557 0.000980 0.051696 

Fractal 
Dimension increase 0.074297 0.017696 0.111183 

Contagion decrease 0.122129 0.075568 0.155760 
Landscape 

Pattern Index decrease 0.069620 0.008498 0.115556 

TABLE 4. SUMMARY STATISTICS OF ERROR VARIANCE DUE TO LAND-COVER 
MISCLASSIFICATION. 

Metric Mean Minimum Maximum 

Average Patch Compaction 0.000669 0.000289 0.001533 
Fractal Dimension 0.000708 0.000317 0.001410 
Contagion 0.000091 0.000020 0.000535 
Landscape Pattern Index 0.001114 0.000432 0.002265 

ders of magnitude smaller than the bias (Table 4). Variability 
in the spatial distribution of misclassification does not appear 
to affect the estimates of landscape pattern metrics. 

Sensitivity of Landscape Pattern Metrics to Land-Cover Composition 
U ranged from 0.071 (dominated by forest) to 0.685 (domi- 
nated by human land uses) across the watersheds. I, showed 
a negative relationship with U (RZ = 0.496) (Figure 2). The 
regression model (Table 5) shows that a 10 percent differ- 
ence in U between watersheds results in a change of 0.042 in 
I,. Therefore, the proportion of anthropogenic land use must 
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Figure 2. Landscape pattern index versus U. Regression 
line from Table 5 shown. 



TABLE 5. REGRESSION RESULTS FOR LANDSCAPE PATTERN I N D E X  (I,,) VERSUS U. 

Dependent Variable: Landscape pattern index (I,) 
Sum of Mean F 

Source DF Squares Square Value P r > F  

U 1 0.24527 0.24527 54.17 0.0003 
Error 55 0.24901 0.00453 
Corrected Total 56 0.49428 
RZ = 0.496 
Model: I,, = 1.468 - 0.425 (U) 

change by about 17 percent for two values of I, to be differ- 
ent by more than the mean bias due to misclassification. 

Contagion also showed a negative relationship with U (RZ 
= 0.499), but regression models of APC versus U and F ver- 
sus U were not significant. However, the signs of the rela- 
tionships (negative for F versus U and positive for APC 
versus U )  were consistent with observations that humans cre- 
ate compact patches with simple perimeters (Krummel et al., 
1987; Riitters et al., 1995). In addition, the APC versus U re- 
gression model was significant with the removal of one out- 
lier (Delmarva watershed). Others have shown that fractal 
dimension is sensitive to the amount of human land use in 
the landscape (Krummel et al., 1987; Rex and Malanson, 
1990; Wickham and Norton, 1994). 

Summary and Conclusion 
Based on the data and methods described herein, bias in 
landscape metrics does not appear to be amplified by land- 
cover misclassification. A misclassification rate of about 1 2  
percent produced mean bias estimates that were about half 
the misclassification rate, except for contagion. The bias in 
contagion was about equal to the misclassification rate. The 
bias for all landscape metrics tested had a consistent direc- 
tion, either being higher or lower than the original value for 
each watershed. The variability in the spatial distribution of 
misclassification had almost no effect on the landscape met- 
rics. 

A synthetic measure of landscape pattern (I,) was signif- 
icantly related to the amount of human impact (v in the 
landscape. Comparing bias due to misclassification with the 
regression model indicated that a difference in land-cover 
composition of at least 17 percent was needed to distinguish 
between two values of I, and be certain the difference was 
not due to misclassification. Based on these data, differences 
in land-cover composition need to be slightly larger (17 per- 
cent) than the misclassification rate (12 percent) in order to 
be confident that differences in landscape metrics are not 
due to misclassification. 
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Appendlx A 
Formulas for Calculating Landscape Metrics 

Landscape Contagion 

2 2 (vij ln (yj)) 
i-1 ,=I 

C =  1 - 
2 ln ( t )  

where t is the number of different land-cover types and vij is 
the proportion of pixel edges joining cover types i and j. 

Average Patch Compaction 

where p is the number of patches, A is the number of cells 
(i.e., area) in patch i ,  and OE is the number of outside edges 
enclosing the patch. 

Patch Fractal Dimension 

where p, is the estimated slope from the regression of ln(0E) 
on ln(A). OE and A are the same as described for average 
patch compaction. Only patches that are greater than three 
pixels are included. 
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