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Abstract 
The use of remotely sensed data as input into geographical 
information systems has promoted new interest in issues re- 
lated to the accuracy of multispectral classification. This pa- 
per investigates the impact of ~lassificati~nuncertaint~ o i  
the estimation of area from satellite derived land-cover data. 
Applying four variant; of the maximum-likelihood classifier, 
it is shown that the estimated area for different land-cover 
classes is highly influenced by the methods which are used 
for classifier training. To evaluate the uncertainty of area es- 
timates, a new error modeling strategy is proposed. Assum- 
ing that attribute uncertainty in image classification is 
field-based rather than pixel-based, the image is segmented 
in fields according to similarities in the probability vectors of 
adjacent pixels. In simulating uncertainty, this field structure 
is explicitly taken into account. Using different strategies for 
image segmentation, it is shown that the spatial correlation 
of classification uncertainty has a major impact on the as- 
sessment of the uncertainty of area estimates. 

Introduction 
Since the launch of high-resolution remote sensors, the use 
of satellite images as a major source of spatial information 
has been the subject of extensive research in a broad range of 
applications. As a result of these research efforts today, the 
benefits of high-resolution remote sensing technology are 
widely recognized. In particular, the extraction of land-cover 
information from remotely sensed data has received consid- 
erable attention over the last ten years and has become al- 
most common practice in many application areas. A wide 
range of classification approaches for the extraction of land- 
cover information has been developed, and many strategies 
and modifications have been proposed to improve classifica- 
tion accuracy obtained with these classifiers. 

In most classification studies, map accuracy is assessed by 
means of a confusion matrix which compares a sample of the 
classified pixels with reference data obtained from aerial pho- 
tographs or ground surveys. In recent years many authors 
have commented on the shortcomings of the confusion matrix 
as an estimator of classification accuracy. Much work has 
been published on optimal strategies for ground truth sam- 
pling, accuracy measures have been refined to deal with 
chance agreement, and methods have been presented to esti- 
mate statistically sound classification probabilities from the 
confusion matrix (van Genderen, 1978; Rosenfield et al., 1982; 
Congalton, 1988; Foody, 1992; Stehman, 1992; Green et al., 
1993; Stehman, 1995). Yet the most fundamental drawback of 
the confusion matrix is its inability to provide information on 
the spatial structure of the uncertainty in a classified scene. 
Measures of uncertainty and class membership probabilities 
can only be derived for a land-cover class as a whole and are 
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considered as representative for each pixel that is assigned to 
that class, thereby ignoring the complex spectral response that 
is present in a multispectral satellite image. 

Today much attention is given to error modeling and er- 
ror propagation in GIS databases. The motivation behind this 
research is the general acknowledgment that a successful use 
of GIS as a decision support tool can only be achieved if it 
becomes possible to attach a quality label to the output of 
each GIS analysis. Most commercial GIs packages do not pro- 
vide tools for the modeling of error in individual data layers 
and for the tracking of error when data layers are manipu- 
lated and combined in a GIS-based spatial analysis. Yet the 
issue of spatial data uncertainty is given high priority on the 
GIS research agenda and is one of the most frequently cov- 
ered topics in recent scientific literature on GIS. With the in- 
creasing use of remotely sensed data as input into 
geographical information systems, the accuracy of multispec- 
tral classification also gained more attention and new ap- 
proaches were taken to describe and model the uncertainty 
that characterizes the classification process. 

One of the most frequently used techniques to study the 
effect of uncertainty in source data on the quality of GIS-de- 
rived products is Monte Carlo simulation modeling. Starting 
from a number of assumptions regarding the magnitude and 
spatial distribution of error in the source layers involved, 
each of these layers is randomly sensitized with error. Ap- 
plying a sequence of GIS functions to the perturbed data lay- 
ers yields an output that differs from the result obtained with 
the original source data. Repeating this process M times 
yields a set of M different output layers which allows charac- 
terization of the uncertainty that is present in the result of 
the analysis. If the output of the analysis is numerical, e.g., 
area estimates of different map categories, summary statistics 
can be derived. While the mean value obtained for the area 
of each category can be used as an estimate of the area that 
is actually occupied by that category, the variance of these 
estimates gives an indication of the uncertainty that is in- 
volved. 

Monte Carlo simulation is computationally intensive yet 
it has the advantage of being universally applicable to any 
type of GIS analysis, regardless of its nature or complexity. 
This is the main reason why it has been used so frequently 
in recent error propagation studies emanating from a broad 
range of applications and dealing with, for example, the deri- 
vation of gradient and aspect (Heuvelink et al., 1990; Can- 
ters, 1994), viewsheds (Fisher, 1992), and floodplains (Lee et 
al., 1992) from digital terrain models; the valuation of land 
from land-use and soil information (Fisher, 1991); the model- 
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ing of forest growth (Mowrer, 1994); and the selection of 
suitable sites for nuclear waste disposal (Brunsdon et al., 
1990). Goodchild and Wang (1988) suggested the use of class 
membership probabilities for the stochastic modeling of the 
uncertainty inherent to statistical image classification. Tradi- 
tionally, the output of classification is an image in which 
each pixel is assigned to the most likely class, i.e., the one 
with the highest probability. Class membership probabilities 
on which the assignment is based are usually disregarded. It 
is obvious that in doing so a lot of valuable information on 
classification uncertainty is lost. 

This study presents a new method for the stochastic 
modeling of classification uncertainty. Starting from a com- 
mon application, the derivation of area estimates from land- 
cover classification, it will be shown how our conception of 
classification uncertainty affects area estimation as well as 
the assessment of the uncertainty of area estimates. Assump- 
tions about the nature of classification uncertainty are re- 
flected in the classification procedures we use as well as in 
the definition of the stochastic error model on which the as- 
sessment of uncertainty is based. In this paper we will first 
discuss different approaches to statistical image classification 
and evaluate their impact on the estimation of area. Next we 
will propose a new strategy for uncertainty assessment 
which makes optimal use of class membership probabilities. 
The proposed method will be applied to a small test area sit- 
uated along the Belgian-Dutch border, northwest of the city 
of Ghent. 

Traditional Approaches to lmage Classification 
Most classification methods assume that an image scene can 
be decomposed into a small number of spectrally separated 
classes, each of which can be allocated to a well-defined 
type of land cover. This corresponds to a model of the 
Earth's surface that consists of a collection of homogeneous 
patches of land with precise boundaries and a unique combi- 
nation of properties that can be related to a particular land- 
cover type. Changes are supposed to occur only along patch 
boundaries. In reality, however, changes in land cover are 
less abrupt and the definition of different land-cover classes 
is more ambiguous. For example, vegetation classes tend to 
inter-grade gradually, making it very difficult to assign part 
of a transition zone to one vegetation class (Foody et a]., 
1992). This problem of class definition is encountered in vi- 
sual as well as in digital image interpretation. It points at the 
inability of Boolean classification methods to properly deal 
with the mapping of continua. 

In agricultural areas, land-cover classes are in general 
more easy to define. Sometimes, however, they are a mixture 
of different cover types. For example, orchards have a heter- 
ogeneous structure due to the regular alternation of tree can- 
opy and grassland filling the space in between the trees. As 
such they are usually easy to identify by visual interpretation 
of aerial photographs. In digital image processing the typical 
alternation of cover type might be detected by introducing 
texture as an extra feature in the classification procedure, yet 
the success of this approach highly depends on the resolu- 
tion of the imagery. Strahler et al. (1986) make a distinction 
between high-resolution and low-resolution scene models, 
depending on whether the resolution cells of the image are 
smaller or larger than the elements in the scene. In the high- 
resolution case, elements that are part of a heterogeneous 
class may be individually resolved. In the low-resolution 
case, different cover types that are part of the same class will 
contribute to the spectral reflectance values of individual 
pixels, thus blurring the distinctive texture of the class and 
impeding a clear spectral definition. This problem of mixed 
pixels, of course, also occurs along the boundaries between 
different land-cover classes. In zones of highly heterogeneous 

land use such as suburban areas, the occurence of mixed 
pixels often makes it difficult to obtain spectrally dissimilar 
class signatures and may ultimately lead to a low proportion 
of correctly classified pixels. 

Problems with traditional classification methods are es- 
sentially due to the inability of these methods to deal with 
attribute uncertainty for individual pixels. This is reflected in 
the methods that are used for the determination of class sig- 
nature as well as in the classification procedures themselves. 
In supervised classification the description of each class is 
based on the statistics obtained from a set of training pixels 
which are considered to be representative for that class. 
These pixels are regarded as "pure" in two ways. First of all, 
it is assumed that only one type of land cover occurs within 
the boundaries of these pixels. Secondly, no doubt is enter- 
tained as to the class to which these pixels actually belong. 
Now, even if we suppose that individual land-cover classes 
can be defined in an unambiguous way, which may be the 
case for some classes (e.g., water) but which is certainly 
questionable for others (e.g., residential area), the problem 
still remains as to how representative pixels, so far as they 
exist at all, should be selected. Especially in the low-resolu- 
tion case, the occurrence of perfectly homogeneous pixels 
will be rare and a clear spectral definition of land-cover clas- 
ses from selected training pixels will be hampered by small 
inclusions of other cover types and spatially homogeneous 
mixing at the subpixel level. 

Once spectral signatures are defined, supervised classifi- 
cation assigns each pixel in the image to exactly one spectral 
class using a discriminant function which may be based on 
the measurement of spectral distance (parametric methods) 
or on the frequency histograms of the classes considered 
(nonparametric methods). Although some of these methods 
(e.g., the maximum-likelihood classifier) produce class mem- 
bership probabilities for each pixel, they are basically 
grounded on the concepts of classical set theory. While it 
may be tempting to consider the class membership probabili- 
ties of the traditional maximum-likelihood classifier as indic- 
ative of class mixture at the subpixel level, it remains 
questionable if reliable conclusions on fuzzy membership 
can be drawn from the output of a supervised classification 
procedure which generates spectral signatures from training 
pixels that are entirely assigned to a priori defined cover 
types through a hard classification procedure. Traditional un- 
supervised classification methods show the same inadequacy 
to deal with attribute uncertainty. By means of a clustering 
algorithm, spectral space is iteratively partitioned into 
regions, each of which corresponds to one spectral class. Pix- 
els inside a region are considered as entirely belonging to 
that class. After classification no information on the probabil- 
ity of class membership is available. 

Fuuy Approaches to lmage Classification 
Fuzzy logic is increasingly used for the handling of uncer- 
tainty in geographical databases (Burrough and Frank, 1996). 
Building on concepts of fuzzy set theory, new methods for 
accuracy assessment have been presented (Gopal and Wood- 
cock, 1994) and new classification approaches have been de- 
veloped to properly deal with uncertainty in class allocation. 
Starting from the assumption that each training pixel can 
contribute to the spectral signature of each predefined class, 
Wang (1990a; 1990b) modified the traditional maximum-like- 
lihood classifier by calculating a fuzzy mean and a fuzzy co- 
variance matrix for each class. The fuzzy mean is given by 
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where n is the total number of training pixels, j(x) is the 
membership function of class i, and xj is the jth pixel mea- 
surement vector, containing the brightness values of the 
pixel in each spectral band. The fuzzy covariance matrix is 
given by 

As can be seen, the contribution of each training pixel to the 
fuzzy mean and fuzzy covariance of a class i is determined 
by its membership value. For each training pixel, all mem- 
bership values should be positive and add up to 1. A mem- 
bership value close to 1 indicates that the pixel almost 
certainly belongs to that class; a value close to 0 indicates 
that the pixel is very unlikely to belong to that particular 
class. The membership values for each training pixel can be 
taken from a previously determined classification which is in 
a fuzzy representation (Wang, 1990a) or can be derived from 
the class membership probabilities of a traditional maxi- 
mum-likelihood classification of the same image (see below). 
Once fuzzy class signatures have been determined, the stan- 
dard maximum-likelihood procedure is applied, except that 
the mean and covariance matrices in the definition of the 
probability density function for each class are replaced by 
their fuzzy counterparts. The probability density function for 
class i thus becomes 

where N is the number of spectral bands used in the classifi- 
cation. 

In contrast to traditional supervised approaches, where 
class signatures are obtained by hard classification of a set of 
training pixels, the use of fuzzy sets throughout the entire 
process of image classification ensures that the class mem- 
bership values for each pixel in a classified scene can be in- 
terpreted as the probabilities of a fuzzy event. As Wang 
(1990a) demonstrated, class membership values produced by 
the fuzzy classifier allow correct assessment of the propor- 
tions of component classes in a pixel. Other fuzzy classifica- 
tion methods have also been proposed. Bezdek et al. (1984) 
developed a fuzzy c-means (FCM) clustering algorithm that 
has been used with success in the unsupervised classification 
of remote sensing data (Cannon ef al., 1986). In a study on 
land-cover mapping in suburban areas, Fisher and Pathirana 
(1990) demonstrated that also for the fuzzy c-means classifier 
the proportion of the area of a pixel that is occupied by a 
particular type of land cover is highly correlated with the 
fuzzy membership value of that class. However, as the exper- 
iments which are described in this paper are all based on su- 
pervised classification, alternative approaches, which may be 
equally useful or even more appropriate in some cases, will 
not be given further consideration here. 

Indicators of Classification Uncertainty 
Before evaluating the accuracy of a classified land-cover 
scene or the quality of the outcome of a GIS analysis in 
which satellite derived land-cover data are used, it should be 
clear what type of accuracy one is attempting to measure. 
Possible disturbances that may occur during the registration 
of the satellite image as well as the processes involved in its 
sequential treatment will all contribute to the accuracy of the 
classification. As such, the assessment of classification accu- 
racy is a complex matter. This complexity is reflected in the 
many strategies and accuracy measures that have been pro- 

posed in the past. The use of different terminologies to ad- 
dress the issue of classification accuracy, including terms 
like precision, uncertainty, and reliability, only adds to the 
confusion. While all these concepts have a clear meaning, 
they are often mixed up (Janssen and van der Wel, 1994). 

The most obvious way of assessing classification accu- 
racy is by comparing the class assigned to a pixel in the clas- 
sification with the corresponding class observed in the field. 
The comparison of the classified land-cover to the actual 
land-cover is usually recorded in a confusion matrix. For 
each land-cover class the confusion matrix reports the num- 
ber of pixels that are classified into class i but actually be- 
long to class j (commission errors) as well as the number of 
pixels that belong to class i but are wrongly assigned to class 
j (ommission errors). From the confusion matrix global or 
class-dependent measures of accuracy are derived by divid- 
ing the number of correctly classified pixels by the total 
number of pixels in the sample. Methods have been pre- 
sented to estimate statistically sound class membership prob- 
abilities from the confusion matrix, taking into account the 
sampling strategy that is applied (Green et al., 1993). Esti- 
mated probabilities derived in this way are, however, identi- 
cal for all pixels that have been assigned to the same class. 
Hence, no information about the spatial distribution of clas- 
sification reliability within the classes is available. 

Alternatively, a s  was already mentioned, one might con- 
sider the probabilities that are generated by statistical classi- 
fication as indicators of the reliability of pixel assignment. In 
maximum-likelihood classification it is assumed that the 
spectral signature of a class i can be approximated by the 
multivariate normal distribution with the probability density 
function for that class given by Equation 3. According to 
Bayes theorem, the probability that the assignment of a pixel 
at x to class i is correct is then given by 

p( i  Ix) = 
p(x  I i )p( i )  

p Ix) 
(4) 

where p(i) is the probability that class i occurs in the image 
and p(x) is the probability of finding a pixel from any class 
at location x (Richards, 1986, p. 175). In mathematical terms 
p(x) can be written as follows: 

where m is the number of classes. The p(i) are called prior 
probabilities. They represent the chance that a pixel in the 
image belongs to a given class, irrespective of its spectral 
characteristics. In the literature several methods have been 
proposed for the assessment of prior probabilities (Strahler, 
1980). If no external information on the study area is avail- 
able prior to the classification, the value of p(i) is usually 
kept constant for all classes. In that case, Equation 4 simpli- 
fies to 

The advantage of working with class membership proba- 
bilities produced by statistical classification is that these 
probabilities provide information on classification reliability 
at the level of each individual pixel. Immediately it should 
be pointed out, however, that probabilities derived in this 
way cannot be considered as pure indicators of classification 
accuracy as they only reflect the uncertainty that is inherent 
to the statistical classification procedure itself, therefore not 
taking into account all problems related to the definition of 
the class signatures on which the classification is based. In 
contrast, the indices that are derived from the confusion ma- 
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trix can be considered as direct measures of the accuracy of dl] = {(xi - F ~ ) ~  Z;l (xi - p,)]1i2 - (9) 
the classification because they reflect the overall impact of 
all possible errors that may have occurred in the sequential In this study, weights were calculated using the distance 

processing of the image. Hence, it is probably more correct decay function suggested by Campbe11 (lg8'): i.e.s 

to speak of classification uncertainty instead of classification 1 d, < do 
accuracy when using class membership probabilities from 
the maximum-likelihood classifier to evaluate the result of a 
classification. This inconvenience does not detract from the 

Wl1 = d, > du (10) usefulness of these indicators. The accuracy of classification 
can only be verified in the field and, as such, is necessarily 
restricted to global assessment based on statistical sampling. 
For the purpose of error modeling, this may prove more re- with 
strictive than the indirect measurement of classification accu- 
racy by way of the uncertainty that follows from statistical 
classification. 

Some authors have used maximum-likelihood member- 
ship probabilities to evaluate the reliability of a classifica- 
tion. Foody et al. (1992), for example, demonstrated how 
class membership probabilities may be used to improve the 
quality of a classification by identifying areas that are less 
satisfactorily classified. Maselli et al. (1994) defined a new 
measure which they called "relative probability entropy" to 
express the heterogeneity of class membership probabilities 
and used it as an indicator of classification uncertainty. As 
was already mentioned, the Fuzzy c-Means classification al- 
gorithm also produces class membership values. Fisher and 
Pathirana (1993) used FCM membership values to improve 
the results of change detection from multitemporal satellite 
imagery. Class membership values also offer interesting op- 
portunities for the visualization of uncertainty. In a recent 
paper, Fisher (1994) presented a new method for the dy- 
namic display of classification reliability which is based on 
the random assignment of classified pixels to other cover 
types, depending on their class membership values. 

The value of class membership probabilities derived 
from the maximum-likelihood classifier as indirect indicators 
of classification accuracy will increase if additional measures 
are taken for a better definition of class signatures. In this 
study a robust variant of the maximum-likelihood classifier 
has been applied. Robust estimators give less weight to atypi- 
cal pixels when determining the mean and covariance matrix 
from the sample data. This increases the spectral separability 
of the class signatures. The most frequently used robust esti- 
mator is the so-called M-estimator which takes the form of a 
weighted average. Using this estimator, the expressions for 
the mean and the covariance matrix for a class i, respec- 
tively, become 

N is the number of spectral bands used in the classification, 
and b, and b, are two constants with a value of 2.00 and 
1.25, respectively, as recommanded by Campbell. As can be 
seen, observations which are close to the class centroid re- 
ceive full weight. These are the observations which are con- 
sidered to be representative of the class. As the Mahalanobis 
distance increases, weights will decline accordingly. 

One may have noticed that the robust estimators (Equa- 
tions 7 and 8) somewhat resemble the definition of the fuzzy 
mean and fuzzy covariance matrix (Equations 1 and 2) (both 
are weighted means). However, there is a clear difference be- 
tween both. While the robust mean and robust covariance 
matrix are calculated from class-specific training samples, 
the fuzzy mean and fuzzy covariance matrix for each class 
are derived from the complete set of training data. Although 
robust estimation deals with atypical training pixels, it does 
not recognize the fact that pixels may contribute to the spec- 
tral signature of more than one class. 

Estimating the Area of Different Land-Cover Classes 
Estimation of the area of different cover types in a classified 
scene is one of the most well-known operational applications 
of remote sensing. Area estimation often has economic impli- 
cations, for example, when assessing total area and potential 
yield for different crops in connection with agricultural pol- 
icy monitoring. It is, therefore, important that attention be 
paid to the quality of area estimation. First of all, one should 
strive to obtain area estimates for the different classes in the 
image which are as close as possible to the real proportion 
taken by each class. On the other hand, it is important to 
quantify the reliability of the estimates, which may differ 
from one class to another, in order to be able to evaluate the 

and 

with w,) the weight that is associated with the jth pixel in the 
sample. 

Weights have to be calculated on the basis of the atypi- 
cal character of the observation with respect to the mean and 
covariance matrix that need to be estimated. Due to this in- 
terdependence, weights have to be determined by iteration. 
The class typicality of a pixel is negatively related to the dis- 
tance between the pixel and the class centroid and is usually 
measured by means of the Mahalanobis distance 

usefulness of the estimates and to decide if additional meas- 
ures should be taken to obtain better results. This paper fo- 
cuses on area uncertainty assessment. However, because 
estimation of area uncertainty cannot be detached from area 
estimation itself, we will first look at a number of techniques 
that can be applied for the derivation of area estimates from 
classified satellite data. 

The easiest way to derive area estimates from a classified 
image is by simply counting the number of pixels that have 
been allocated to each of the classes in the hard classifica- 
tion result. This is common practice, yet it is clear that area 
estimates obtained in this way will be biased as a result of 
classification error. Although measures to improve classifica- 
tion accuracy will also improve area estimation, some bias 
will always remain. Statistical methods based on classical 
and inverse calibration have been applied to correct area es- 
timates for misclassification bias using error information 
from the confusion matrix (Bauer et al., 1978; Card, 1982; 
Prisley and Smith, 1987). Recent studies have indicated that 
the inverse estimator is consistently superior to the classical 
estimator with respect to bias and precision (Czaplewski and 
Catts, 1992; Walsh and Burk, 1993). Inverse calibration is rel- 
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atively easy to apply. Let us consider a sample of n pixels from the original Landsat data as a reference, and obtained a 
which are classified into one of m categories using remote strong correlation between predicted and actual forest cover. 
sensing, and which are also independently labeled by field Pech et al. (1986) applied different multivariate calibration 
survey. From this sample, a confusion matrix C can be con- methods (Brown, 1982) for estimating sub-pixel vegetation 
structed, with each element c ,  indicating the number of pix- cover with a linear composite reflectance model. Similar 
els that are classified into class i but actually belong to class methods might be followed to model the relationship between 
j. Let R represent an (m by m) diagonal matrix with its ith class proportions and class membership probabilities when 
element equal to the number of pixels in the sample classi- more than two image classes are involved. 
fied into class i, and r be an (m by 1) vector of the total Which techniques one can apply for area estimation will 
number of pixels in the image allocated to each class. Then depend on the type of information about error or uncertainty 
the inverse estimator t of the true number of pixels in each that is available. Area calibration at sub-pixel level, as de- 
class is given by scribed above, may be an interesting alternative to global cal- 

ibration methods, especially if area estimates for smaller 
t = (C' R-') r (12) sub-regions are required, yet it can only be applied if spa- 

tially more detailed reference data (e.g., higher resolution sat- where (C'R-') is a matrix of conditional probabilities with its ellite are available for a representative part of the area. ijth element indicating the probability p(t, I c,) that the true If this is not so, inverse or classical calibration can be ap- class of a pixel is i given it is classified into j. Column vec- plied using information contained in the enor matrix. If tors in this matrix each sum to 1. Czaplewski and Catts 
(1992) recommend a minimum of 500 to 1000 randomly cho- ground truth is insufficient to derive a reliable error matrix 

(see above), no calibration will be possible. In that case, sen samples for inverse calibration, assuming, of course, that however, one can still use Equation 13 for the derivation of the confusion matrix is truly representative of the classifica- area estimates. Indeed, referring to the observed correspon- tion. If misclassification error is different for various sub- dence between membership values and class proportions in regions, the area should be properly stratified and calibration previous studies, the use of membership probabilities for should be applied to each of the strata. area estimation, applying Equation 13, is likely to produce Both classical and inverse calibration require reference more reliable estimates of area than simply counting the data that are independent of the data used to train the classi- 
number of pixels for each class. Due to a lack of reference For the case presented in this paper, not enough data, this is also the method that has been applied in this samples were available for calibration. For that reason, the In the following we will look at the impact of differ- area of each class was calculated directly from the maxi- ent variants of the maximum-likelihood classifier on the esti- mum-likelihood classification of the image. Because the max- mation of area, using pixel counting as well as probability imum-likelihood classifier assigns each pixel to the most Next, a new method for the quantification of the likely class, it is clear that the proportion of different land- reliability of area estimates be proposed, Although in cover classes in a classified image will deviate from the ac- 
this paper the method will only be demonstrated in connec- tual area that is covered by each class. Categories that occur tion with uncalibrated area estimation, it should be men- as the most likely 'lass, yet with low mem- tioned that the technique can also be used to assess the bership probabilities, will be overestimated. Categories that uncertainty of area estimates that are obtained by inverse cal- are often present as the second most likely class, with proba- ibration (see Equation 121. bilities that are not negligible, will be systematically under- 

estimated. To reduce this bias, the area of a class i was 
estimated as follows: Application 

Area estimation was applied to a subset of a geometrically 
n corrected Landsat image, located along the Belgian-Dutch 

A, = C p(i ~ x ~ a  
=I 

(I3) border, northwest of the city of Ghent, and covering an area 
of 13 by 13 km (Lambert coordinates: LL 210495N, 96010E; 

where p(i Ix,) is the probability of class i for pixel x,, n is the UR 223480N, 109000E). The study area is partly situated in 
total number of pixels in the image, and a is the area that is the Scheldepolders (upper part of the image), partly in the 
covered by each pixel. Meetjesland (lower part), and is characterized by a highly 

Of course, it is not possible to guarantee that area esti- fragmented pattern of land use. Using a maximum-likelihood 
mates derived from Equation 13 are truly unbiased. First of approach, the image was classified into 11 categories which 
all, Equation 13 assumes that class membership probabilities were regrouped into five major types of land cover (forest, 
for mixed pixels are directly related to the proportion of sub- grassland, agriculture, built-up area, and water) (Figure la). 
pixel component classes. While Wang (1990a) observed a Spectral signatures were obtained by stratified random sam- 
strong correspondence between class membership probabilities pling from two training areas (100 by 100 pixels each), one 
derived from fuzzy maximum-likelihood classification and located in the Scheldepolders, the other in the Meetjesland. 
class proportions, the strength of the relationship will much Only for water was the signature derived from a non-super- 
depend on the characteristics of the training data. If class sig- vised classification (ISODATA) as the number of pixels in the 
natures are not representative of the cover type because of training areas belonging to this class was too small to obtain 
poor quality reference data, or if class distributions strongly a representative class signature. For the other classes, spec- 
deviate from multinormality, it is questionable if the correla- tral signatures were determined using four different ap- 
tion between membership probabilities and class proportions proaches: normal, robust, fuzzy, and fuzzy robust estimation. 
will still be marked. On the other hand, the mixed pixel inter- The principles of fuzzy and robust classification have been 
pretation of Equation 13 is somewhat simplistic because it described earlier in this paper. As no reference classification 
does not consider the effects of spectral confusion between was available for the study area, class membership probabili- 
classes. If unbiased area estimates are to be derived from lin- ties produced by the conventional maximum-likelihood clas- 
ear models of the type of Equation 13, again some calibration sifier were used to indicate to what extent each training 
technique should be applied. Some interesting work has al- pixel contributes to the fuzzy mean and fuzzy covariance 
ready been done in this area. Foody (1994) used regression matrix of the different classes. Fuzzy robust estimation of 
analysis to estimate sub-pixel forest cover from spatially de- class signatures, as proposed by Vandeneede et al. (19951, 
graded Landsat MSS data using forest cover estimates derived combines the advantages of fuzzy and robust estimation pro- 
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(c) (d) 

0 agricuiture grassland forest bmlt-up land water 
Frgure 1. Vrsualrzat~on of the flrst (a), the second (b), the thrrd (c), and the fourth most lrkely class (d) for the fuzzy robust 
maxrmum-l~kelrhood classrfrcat~on of the study area. 

cedures. The only difference with fuzzy classification is that 
membership values for the training pixels are based on ro- 
bust instead of conventional estimation of sample mean and 
covariance matrix. After classification, pixel probabilities for 
the 11 initial categories calculated from Equation 6 were 
combined to obtain membership values for the five major 
types of land cover. 

For each classification strategy (normal, robust, fuzzy, 
and fuzzy robust), total area was estimated for the five major 
types of land cover. Table 1 reports the area for each land- 
cover class, calculated by simply counting the total number 

of pixels assigned to each class. It is immediately clear that 
the way in which class signatures are determined has a non- 
negligible impact on the estimation of area. With robust esti- 
mation of spectral signatures, the area of built-up land seems 
to increase compared to conventional classification results. 
One of the reasons for this turned out to be the limited pres- 
ence of homogeneous pixels of built-up area in the training 
sample, which leads to a less clear signature for this class 
strongly overlapping with the signatures for the other classes 
(especially agricultural land). On the other hand, the road in- 
frastructure that appears within the area defined by the train- 
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TABLE 1. AREA (HA) FOR EACH LANDCOVER CLASS BY PIXEL COUNT 

built-up 
forest grassland agriculture land water 

normal 1050.28 3999.64 9147.36 2561.48 141.24 
robust 1022.40 3952.76 8801.28 2982.32 141.24 
fuzzy 1109.48 3932.76 8700.52 3016.00 141.24 

fuzzyrobust 1032.76 3897.16 8631.92 3196.92 141.24 

will be discussed below, however, will make it clear that the 
changes which have been observed are meaningful. Hence, 
we may conclude that the use of fuzzy and robust techniques 
for classifier training may have a significant impact on the 
estimation of area. Unfortunately, in this case study it could 
not be verified which of the four methods produced the best 
results because true areal proportions were unknown. 

built-up 
forest grassland agriculture land water 

normal 1051.48 3882.96 9351.64 2471.96 141.96 
robust 1025.72 3578.76 9306.88 2846.68 141.96 
fuzzy 1164.48 3806.08 8859.76 2927.72 141.96 

fuzzyrobust 1083.84 3781.76 8790.36 3102.08 141.96 

ing plots was not registered as such. Mixed pixels which 
partly belong to the road network therefore contributed to 
the spectral signature of all classes. Robust estimation of sig- 
natures narrows the spectral definition of the different cover 
types. This explains why a lot of mixed pixels which were 
originally assigned to other cover classes are now assigned to 
built-up area. Fuzzy estimation of class signatures has a simi- 
lar effect, again indicating that there is a strong spectral con- 
fusion between built-up area and the other cover classes. 
Fuzzy robust estimation combines both strategies. This is 
also reflected in the results of area estimation. The estimated 
area for water always remains the same no matter what strat- 
egy is applied, which proves that water has a very distinc- 
tive signature that is not easily confused with other classes. 

The confusion between different cover types becomes ap- 
parent when, next to the most likely class, the second most 
likely class (Figure lb) as well as the probability of occurrence 
of the most likely class are displayed (Figure 2). The latter 
gives an idea of the trust that can be put in the assignment of 
a pixel to the most likely class. As could be expected, uncer- 
tainty in the classification mainly occurs along the edges of 
the parcels. The detailed structure of the parcels in the Me- 
etjesland brings about a relatively high degree of uncertainty 
in the southern part of the image. In particular, built-up area 
is characterized by high classification uncertainty. Where pix- 
els are assigned to built-up area, it is mainly agricultural land 
(and to a lesser extent forest area) which occurs as the second 
most likely class. This confirms the sensitivity of area estima- 
tion for agricultural land and built-up area to the way in 
which class signatures are determined. 

Table 2 reports the area which is obtained for each land- 
cover class if membership probabilities are taken into ac- 
count in the estimation (Equation 12). Compared with the 
results shown in Table 1, estimated values are higher for for- 
est and agricultural land, lower for grassland and built-up 
area, and this for all variants of the maximum-likelihood 
classifier. Again, this is easily explained when looking at the 
spatial distribution of uncertainty. Forest and agricultural 
land often occur as the second most likely class in pixels 
with a relatively low first likelihood probability. Grassland 
and especially built-up area are also present in the second 
likelihood image, yet mostly in pixels with a high first likeli- 
hood probability. For water the use of class membership val- 
ues has no major impact on area estimation. As the probabil- 
ity map shows, hardly any uncertainty is involved in the 
assignment of pixels to this class. Of course, one cannot at- 
tach significance to the changes in area estimates in Tables 1 
and 2 without having any notion of the reliability of these 
estimates. The results of the uncertainty assessment which 

Modeling the Uncertainty of Area Estimates 
Although Equation 13 produces estimates of the area of each 
land-cover class taking into account the uncertainty of pixel 
assignment, it does not give an indication of the reliability of 
these estimates. To evaluate the impact of classification uncer- 
tainty on area estimation, Monte Carlo simulation has been 
applied. Simulation modeling in connection with image clas- 
sification requires the definition of a mechanism that generates 
multiple versions of the classified image in such a way that 
the marginal distribution in each pixel corresponds with the 
class membership probabilities produced by the classifier. For 
example, if a pixel has a probability of 0.8 for grassland, one 
has to make sure it is assigned to that class in approximately 
80 percent of all simulated coverages. If it is assumed that all 
pixels are independently assigned to a land-cover class, it is 
relatively easy to define a stochastic process which satifies 
this requirement. As class membership probabilities always 
add to one, each class can be matched to a sub-interval in the 
range 0 to 1 with its length proportional to the probability of 
that class. Generating a uniformly distributed random number 
in the range 0 to 1 and assigning the pixel to the class that 
corresponds with the interval including this randomly drawn 
number ensures that class membership probabilities for each 
pixel are respected across a large number of realizations (Fig- 
ure 3) (Goodchild and Wang, 1989). 

Figure 4 shows an enlargement of a small section of the 
fuzzy robust classification of the test area (a) together with 

( 0.20 - 0.49 0.95 - 0.99 

0.50 - 0.74 1.00 

11 0.75 - 0.94 
Figure 2. Probability of the most likely class. 
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the corresponding probability image (b). Figure 5a shows an 
example of a simulated classification which was generated 
from the class membership probabilities of the fuzzy robust 
classifier using the approach just described. Although the 
simulated coverage resembles the original outcome of the 
classification, the image is highly fragmented in areas with 
low first likelihood probabilities. This is a result of the inde- 
pendence of the outcome in neighbouring pixels. Still, if one 
wants to assess the impact of image classification uncertainty 
on the output of some GIS analysis using Monte Carlo simu- 
lation, it is of utmost importance that the simulated cover- 
ages can be considered as good representations of the real, 
yet not exactly known, variation in land cover, i.e., as being 
part of the same statistical population. The simulation pro- 
cess should therefore not only respect class membership 
probabilities for each pixel, but should also take into account 
the structural characteristics of the land-cover scene. 

In agricultural areas, as in the case study which is pre- 
sented here, the Earth's surface can be considered as consist- 
ing of a collection of adjacent "fields" inside of which no 
major variation in cover type occurs. Uncertainty in land- 
cover assignment is therefore bound to a field as a whole 
rather than to each pixel which is part of it. In terms of im- 
age classification, this means that, if one assumes that a pixel 
belongs to a specific class, one has very good reasons to as- 
sume that adjacent pixels with similar spectral characteristics 
probably belong to the same class. To ensure that structural 
features of land cover are preserved in the modeling, a new 
strategy for simulation is proposed. Assuming that attribute 
uncertainty in image classification is field-based rather than 
pixel-based, the image is segmented in fields according to 
similarities in the probability vectors of adjacent pixels. In 
the simulation of land cover, this field structure is explicitly 

20% 60% 20% 
grassland I agriculture I built-up land 

0 0.2 0.8 1 

Figure 3. Mechanism for random class assignment: the 
sub-interval allocated to each class is proportional to the 
probability of that class. The pixel will be assigned to 
grassland if the random value is between 0.0 and 0.2, to 
agricultural land if it is between 0.2 and 0.8, and to built- 
up land if it is between 0.8 and 1.0. 

taken into account. Instead of drawing a random number for 
each individual pixel, only one number is drawn for all pix- 
els belonging to the same field. Based on this single drawing, 
each pixel is assigned to one cover type depending on its 
own class membership probabilities, as explained above. 
This mechanism still guarantees that the proportion of reali- 
zations in which a pixel is assigned to a specific class tends 
to its membership probability for that class. In addition to 
this, pixels that belong to the same field will have a high 
probability of being assigned to the same class. As such, the 
spatial structure of simulated land cover will be more realis- 
tic, at least if fields are defined in a proper way. 

If we consider fields as groups of adjacent pixels with 
similar spectral characteristics, there is still some room left 
for interpretation. For instance, the grouping of adjacent pix- 
els could be based exclusively upon the identity of the most 
likely class. In that case, the maximum-likelihood classifier 
immediately produces the field structure. However, when 

m 

(a) (b) 

0 agriculture .I built-up land ( 0.20 - 0.49 0.95 - 0.99 

grassland water 0.50 - 0.74 1.00 

forest 111 0.75 - 0.94 
F~gure 4. Deta~l of the fuzzy robust maximum-likelihood classificat~on of the study area (a) and first likelihood probablllty im- 
age (b). 
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segmenting the image in this way, little use is made of the value of r is smaller than the first likelihood probability, to 
information on classification uncertainty which is stored in class 2 if the value of r is larger. Because membership proba- 
the class membership probability vectors. A relatively simple bilities for adjacent pixels are very alike, pixels will be as- 
strategy which makes better use of uncertainty information signed to both classes in only 10 percent of the realizations 
consists of grouping pixels if not only the first, but also the (0.60 < r < 0.70). In 60 percent of the cases all pixels will 
second, third, and so on likelihood classes are the same. be assigned to the most likely class (r < 0.60), and in the re- 
How many classes should be involved depends on the signif- 
icance of the first, second, third, and so on most likely class. 
If for the majority of the pixels the sum of class membership 
probabilities almost equals one for the first and second most 
likely class, additional classes will no longer contribute to a 
clear identification of the field structure. Using more classes 
in that case would only lead to a further fragmentation of the 
image, thus blurring the spatial pattern of membership val- 
ues. Figure 5b shows an example of a simulated classifica- 
tion, using a field definition that is based on the two most 
likely classes. As can be seen, the image is much less frag- 
mented than the one obtained by independently assigning 
each pixel to a class (Figure 5a). 

The grouping of pixels does not necessarily imply that 
all pixels which belong to the same field will also be part of 
the same land-cover class in each simulated classification. 
Although during simulation only one random number is 
drawn for each field, the assignment of a pixel to a class will 
still depend on its class membership probabilities. If these 
probabilities are almost alike for all pixels in the field, the 
chance of having all pixels assigned to the same class will, 
of course, be high. Yet if the differences in probability values 
increase, there will also be a higher chance for pixels to be 
assigned to other classes. As such, the result of the simula- 
tion will reflect the degree of heterogeneity within the fields. 
Figure 6 demonstrates class assignment within one field if 
there are only two classes. In the example it is assumed that 
class 1 is the most likely class (membership probabilities are 
given in Figure 6a). Figures 6b, 6c, and 6d show the outcome 
of the simulation process for three different random draw- 
ings r (0.55, 0.65, 0.75). Pixels are allocated to class 1 if the 

Fl 
0.64 0.66 0.69 

(a) (b) 

- 
(c> (4 

Figure 6. Class assignment within one field in the case of 
two classes: first likelihood probability (a), class assign- 
ment for r = 0.55 (b), r = 0.65 (c), r = 0.75 (d). 
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m forest grassland agriculture built-up land water 

per field (1st) 1084.76 3780.45 8790.81 3101.99 141.95 
per field (lst, 2nd) 1083.49 3781.88 8788.97 3103.70 141.95 
per field (lst, znd, 3rd) 1083.81 3781.47 8790.11 3102.66 141.95 
per field (lst, znd, 3rd, 4th) 1083.92 3781.38 8790.82 3101.92 141.97 
per pixel 1083.82 3781.61 8790.42 3102.21 141.95 

u forest grassland agriculture built-up land water 

per field (1st) 
per field @st, 2nd) 
per field (lst, Znd, 3rd) 
per field (lst, znd, 3rd, 4th) 
per pixel 

maining 30 percent to the second most likely class (r > 
0.70). 

Results and Discussion 
Five simulation strategies have been applied, all based on 
the class membership probabilities generated by the fuzzy ro- 
bust classifier yet using a different number of likelihood clas- 
ses for the segmentation of the image. Table 3 reports area 
and standard deviation for the five major types of land cover 
after 200 simulations. As expected, the method of simulation 
has no impact on the assessment of area itself. Area esti- 
mates do not significantly differ from the estimates that were 
calculated directly from Equation 13 (Table 2). This shows 
that class membership probabilities for individual pixels are 
respected across realizations. Yet the assessment of uncer- 
tainty in the determination of area, as reported by the stan- 
dard deviation, produces rather different results, depending 
on the simulation strategy that is applied. If pixels are inde- 
pendently assigned, as has so far been done in most studies 
on the modeling of error in classified imagery, standard devi- 
ation is small. At first sight this might give the impression 
that area estimates are quite reliable. If modeling is based on 
fields, however, the standard deviation is substantially 
higher. The way in which fields are defined plays an impor- 
tant part. If segmentation is solely based on the identity of 
the most likely class, standard deviation is very high. As 
more classes are involved in the definition of a field, the 
number of fields identified in the image will increase (Table 
4) and the standard deviation will decrease accordingly. 

The question that is raised at this point is, of course, 
which of the applied simulation strategies will give the 
best indication of area uncertainty or, in other words, 
which strategy best models the spatial structure of spectral 
response. In this context it is interesting to have a closer 
look at the membership probabilities for each of the clas- 
ses. As was mentioned earlier class membership values in- 
dicate to what extent the first, second, third, and so on 
most likely class contribute to the spectral characteristics 
of a pixel. 

Table 5 shows that for practically all pixels in the image 
(99.4 percent) the cummulated probability of the three most 
likelv classes exceeds 0.95. One mav therefore assume that 
the rkmaining two classes do not add significantly to the 
identification of the field structure. This is confirmed bv the 
spatial characteristics of the likelihood images (Figure i). 
While the third likelihood image still has a spatial structure 
that can easily be associated with the detailed pattern of land 
cover also found in the first and second likelihood image, 
the fourth likelihood image shows large patches of uniform 
land cover with grassland dominating in the northern part of 
the image and forest in the southern part. In the fifth likeli- 
hood image (which is not shown here), the majority of pixels 

is attributed to water. Water is the class with the most dis- 
tinctive signature and is therefore not surprisingly the least 
likely class for almost all pixels that belong to other cover 
types. Using the fourth likelihood image in the segmentation 
does not lead to a major increase in the number of fields (Ta- 
ble 4) and therefore has a relatively small impact on the as- 
sessment of uncertainty compared with the results obtained 
with the three most likely classes. From this it can be con- 
cluded that the standard deviations which are obtained from 
the simulation that is based on the use of the three most 
likely classes offer a good indication of the uncertainty in 
area kstimation. 

As was mentioned before, the strategy for uncertainty 
modeling that is presented can also be applied in connection 
with inverse area calibration. In that case the segmented im- 
age can be obtained in exactly the same way as above, using 
the class membership probabilities produced by the maxi- 
mum-likelihood classifier. For the simulation of land cover 
for each field, however, probabilities will be derived from 
the confusion matrix (see Equation 12). More in particular, if 
a field is classified into class j, random simulation for the 
pixels belonging to that field will be based on the probabili- 
ties found in the j-th column of the conditional probability 
matrix (C'R-I). Because the segmentation strategy implies 
that all pixels that belong to the same field are also part of 
the same class in the original classification, conditional prob- 
abilities for these pixels will be equal. Hence, the entire field 
will be allocated to one class in the simulated image. This is 
in contrast to simulation based on maximum-likelihood 
probabilities, where pixels that belong to the same field may 
be allocated to different classes because their probability vec- 
tors are different (Figure 6). 

If simulation is based on conditional probabilities de- 
rived from the confusion matrix, one may also use alterna- 
tive strategies for the segmentation of the image. The 
segmentation method that has been presented in this paper 
works well with a small number of classes. However, as the 
number of classes increases, the image structure that is ob- 
tained will become more fragmented and larger fields may 
include a lot of small, isolated clusters of pixels that are not 
part of the actual structure of the land-cover scene. A variety 
of segmentation methods have been described in remote 

TABLE 4. NUMBER OF FIELDS FOR DIFFERENT SEGMENTATION STRATEGIES 

strategy number of fields 

1st 
lst, 2nd 

lst, 2nd, 3rd 
lst, znd, 3rd, 4th 

per pixel 
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sensing literature to extract homogeneous regions from spa- 
tially heterogeneous classifications, using spectral and/or tex- 
ture data (Haralick and Shapiro, 1985; Ryherd and 
Woodcock, 1996). All of these methods can be applied in 
combination with the approach for uncertainty modeling that 
is proposed in this study. Alternatively, the field structure 
can also be obtained by digitizing field boundaries from ex- 
isting maps, or by extracting them from existing spatial data- 
bases, assuming that up-to-date information of this kind is 
readily available. However, it is important to note that the 
method for uncertainty modeling that is proposed assumes 
that only one image class occurs within the boundaries of 
each field. Indeed, this is the main justification for the sto- 
chastic modeling of uncertainty at the field level. If segmen- 
tation and classification are carried out independently, this 
one field-one class relationship cannot be guaranteed. Hence, 
per-field simulation of uncertainty using other segmentation 
strategies than the one that has been proposed will only 
work well if a post-classification phase is involved in which 
each segment (field) is allocated to exactly one image class. 
This combined segmentation-classification approach is often 
applied in remote sensing studies (Janssen et al., 1990; Gong 
and Howarth, 1992; Fung and Chan, 1994; Johnsson, 1994). 

An important issue in the kind of simulation modeling 
that is applied in this study is the determination of the mini- 
mum number of realizations that is necessary to obtain rea- 
sonable estimates of area and its associated uncertainty. Both 
are estimated by the sample mean and sample variance 
which are obtained after repeating the simulation process a 
futed number of times. Expressions have been derived to cal- 
culate the variance of these estimators (Heuvelink, 1993). 
Both are inversely related to the number of realizations. The 
problem with these expressions, however, is that they are 
also dependent on the output variance of the simulation pro- 
cess which, of course, is not exactly known. That is why in 
this study the required number of realizations was derived 
experimentally. To get an idea of the variation in the sample 
variance, the Monte Carlo method was repeated ten times 
and this for 20, 50, 100, 150, and 200 realizations, respec- 
tively. For 200 realizations, the coefficient of variation of the 
sample variance proved to be below 0.05 for all types of land 
cover, at least for the experiments where image segmentation 
was based on more than two classes. This result was consid- 
ered satisfactory to allow some trust to be put in the out- 
come of the uncertainty assessment. 

Conclusion 
With the increasing use of GIS, there is a greater concern for 
spatial data quality and a growing awareness that GIS tech- 
nology can only reach its potential if the appropriate tools 
are provided to associate confidence limits with the output 
of a GIs analysis. The most important obstacle when han- 
dling uncertainty in geographical information systems is the 
lack of knowledge about the error present in the source data. 
When working with existing cartographic material, the infor- 
mation on data quality is usually sparse. Map making in- 
volves different data collection, generalization, and 

TABLE 5. PROPORTION OF THE TOTAL NUMBER OF PIXELS IN EACH PROBABILITY 
CLASS FOR DIFFERENT SEGMENTATION STRATEGIES (PERCENTAGES REFER TO THE 

CUMMULATED PROBASILIN FOR ALL THE CLASSES ~NVOLVED IN THE SEGMENTATION 
OF THE IMAGE) 

0.20-0.49 0.50-0.74 0.75-0.94 0.95-0.99 1.0 

representation procedures, sometimes of a high level of ab- 
straction, all leading to a degradation of data quality that is 
not easily described in a formal way. It is therefore clear that 
the key to a better understanding and modeling of source er- 
rors in GIS lies in the reduction of the level of abstraction in 
GIS databases (Goodchild and Wang, 1988). In this respect, 
the integrated use of digital satellite data in a GIs environ- 
ment offers interesting challenges. Indeed, when using fuzzy 
classification approaches, class membership values indicating 
to what extent a pixel is likely to belong to each of the clas- 
ses in the image can be derived. Being available for each 
pixel, these membership values provide valuable information 
with respect to the spatial structure of uncertainty in the 
classified image. 

In this paper it has been demonstrated how class mem- 
bership values can be used in the estimation of area for dif- 
ferent land-cover classes as well as in the assessment of the 
uncertainty of these area estimates. Applying four variants of 
the maximum-likelihood classifier, it has been shown that 
the method which is used for the training of the classifier 
may have a considerable impact on the estimation of area, 
especially for classes with less distinctive signatures. A new 
method for the stochastic modeling of classification uncer- 
tainty has been proposed which makes optimal use of the 
class membership values derived from the classification. The 
method is based on the segmentation of the image in so- 
called "fields," i.e., groups of adjacent pixels with similar 
class membership values. Instead of looking at the uncer- 
tainty for each individual pixel, the fields in the segmented 
image are considered as the elementary spatial units in the 
error simulation process. Using different strategies for image 
segmentation, it has been made clear that the spatial charac- 
teristics of classification uncertainty have a strong impact on 
the assessment of the uncertainty of area estimates. This 
stresses the importance, as also mentioned by other authors, 
of properly dealing with the spatial structure of uncertainty 
in stochastic error modeling. Although the assumption that 
classification uncertainty is field-based rather than pixel- 
based is justified for agricultural areas, it is important to 
mention that it is probably not a useful strategy to apply in 
areas with semi-natural vegetation where classes tend to in- 
ter-grade gradually. Here, the use of a continuous model of 
spatial variation or a combination of both discrete and con- 
tinuous modeling may be more appropriate. 

Acknowledgments 
This research is part of the Belgian Scientific Research Pro- 
gramme on Remote Sensing by Satellite - phase three (Fed- 
eral Office for Scientific, Technical and Cultural Affairs), 
contract Telsat/III/03/004. The scientific responsability is as- 
sumed by its author. I would like to thank Dr. Raymond Cza- 
plewski and two anonymous reviewers for their valuable 
comments. Thanks also go to Hans Dufourmont for the use of 
the Landsat data and the training sets, Johan Vandeneede for 
providing the source code for the maximum-likelihood clas- 
sification, and Frank Forier who assisted in preparing the fig- 
ures. 

References 
Bauer, M.E., M.M. Hixson, B.J. Davis, and J.B. Etheridge, 1978. Area es- 

timation of crops by digital analysis of Landsat data, Photogmm- 
metric Engineering 6. Remote Sensing, 44:1033-1043. 

Bezdek, J.C., R Ehrlich, and W. Full, 1984. FCM: The fuzzy c-means 
clustering algorithm, Computers and Geoscience, 10:191-203. 

Brown, P.J., 1982. Multivariate calibration, Journal of the Royal Statisti- 
cal Society, 44287-321. 

Brunsdon, C., S. Carver, M. Charlton, and S. Openshaw, 1990. A review 
of methods for handling error propagation in GIs, Proceedings of 

PE&RS April 1997 



the First European Conference on Geographical Information Sys- 
tems, Amsterdam, The Netherlands, pp. 106-116. 

Burrough, P.A., and A.U. Frank (editors), 1996. Geogmphic Objects with 
Indeterminate Boundaries, Taylor & Francis, London, UK, 345 p. 

Campbell, N.A., 1980. Robust procedures in multivariate analysis I: Ro- 
bust covariance estimation, Applied Statistics, 29:231-237. 

Cannon, R.L., J.V. Dave, and J.C. Bezdek, 1986. Efficient implementation 
of the Fuzzy c-Means Clustering Algorithm, IEEE Transactions on 
Pattern Recognition and Machine Intelligence, 8:248-255. 

Canters, F., 1994. Simulating error in triangulated irregular network 
models, Proceedings of the Fifth European Conference and Exhibi- 
tion on Geographical lnfomation Systems, Paris, France, pp. 169- 
178. 

Card, D.H., 1982. Using known map categorical marginal frequencies to 
improve estimates of thematic map accuracy, Photogrammetric En- 
gineering b Remote Sensing, 48:431439. 

Congalton, R.G., 1988. A comparison of sampling schemes used in gen- 
erating error matrices for assessing the accuracy of maps generated 
from remotely sensed data, Photogrammetric Engineering b Remote 
Sensing, 54:593-600. 

Czaplewski, R.L., and G.P. Catts, 1992. Calibration of remotely sensed 
proportion or area estimates for misclassification error, Remote 
Sensing of Environment, 39:29-43. 

Fisher, P.F., 1991. Modelling soil map-unit inclusions by Monte Carlo 
simulation, International Journal of Geographical Information Sys- 
tems, 5:193-208. 

, 1992. First experiments in viewshed uncertainty: Simulating 
fuzzy viewsheds, Photogrammetric Engineering b Remote Sensing, 
58:345-352. 

, 1994. Visualization of the reliability in classified remotely 
sensed images, Photogrammetric Engineering b Remote Sensing, 
60:905-910. 

Fisher, P.F., and S. Pathirana, 1990. The evaluation of fuzzy member- 
ship of land-cover classes in the suburban zone, Remote Sensing of 
Environment, 34:121-132. 

, 1993. The ordering of multitemporal fuzzy land-cover informa- 
tion derived from Landsat MSS data, Geocarto International, 8:5- 
14. 

Foody, G.M., 1992. On the compensation for chance agreement in image 
classification accuracy assessment, Photogrammetric Engineering b 
Remote Sensing, 58:1459-1460. 

, 1994. Ordinal-level classification of sub-pixel tropical forest 
cover, Photogrammetric Engineering b Remote Sensing, 60:61-65. 

Foody, G.M., N.A. Campbell, N.M. Trodd, and T.F. Wood, 1992. Deriva- 
tion and applications of probabilistic measures of class membership 
from the maximum-likelihood classification, Photogrammetric Engi- 
neering & Remote Sensing, 58:1335-1341. 

Fung, T., and K. Chan, 1994. Spatial composition of spectral classes: A 
structural approach for image analysis of heterogeneous land-use 
and land-cover types, Photogrammetric Engineering & Remote 
Sensing, 60:173-180. 

Gong, P., and P.J. Howarth, 1992. Land-use classification of SPOT HRV 
data using a cover-frequency method, International Journal of Re- 
mote Sensing, 13:1459-1471. 

Goodchild, M.F., and M.-H. Wang, 1988. Modeling error in raster-based 
spatial data, Proceedings of the Third International Symposium on 
Spatial Data Handling, Sydney, Australia, pp. 97-106. 

, 1989. Modeling errors for remotely sensed data input to GIs, 
Proceedings of the Ninth International Symposium on Computer- 
Assisted Cartography, Baltimore, Maryland, pp. 530-537. 

Gopal, S., and C. Woodcock, 1994. Theory and methods for accuracy as- 
sessment of thematic maps using fuzzy sets, Photogrammetric Engi- 
neering & Remote Sensing, 60:181-188. 

Green, E.J., W.E. Strawderman, and T.M. Airola, 1993. Assessing classi- 
fication probabilities for thematic maps, Photogrammetric Engineer- 
ing & Remote Sensing, 59635-639. 

Haralick, R.M., and L.G. Shapiro, 1985. Survey: Image segmentation 
techniques, Computer Vision, Graphics, and Image Processing, 29: 
100-132. 

Heuvelink, G.B.M., 1993. Error Propagation in Quantitative Spatial 

Modeling, Applications in Geographical Infomation Systems, KNAGI 
Netherlands Geographical Studies, Utrecht, The Netherlands, 151 p. 

Heuvelink, G.B.M., P.A. Burrough, and H. Leenaers, 1990. Error propaga- 
tion in spatial modeling with GIs, Proceedings of the Fint European 
Conference on Geographical Information Systems, Amsterdam, The 
Netherlands, pp. 453462. 

Janssen, L.L.F., M.N. Jaarsma, and E.T.M. van der Linden, 1990. Integrat- 
ing topographic data with remote sensing for land-cover classifica- 
tion, Photogmmmetric Engineering 6. Remote Sensing, 5131503-1506. 

Janssen, L.L.F., and F.J.M. van der Wel, 1994. Accuracy assessment of sat- 
ellite derived land-cover data: A review, Photogmmmetric Engineer- 
ing b Remote Sensing, 60:419-426. 

Johnsson, K., 1994. Segment-based land-use classification from SPOT sat- 
ellite data, Photogmmmetric Engineering b Remote Sensing, 60:47- 
53. 

Lee, J., P.K. Snyder, and P.F. Fisher, 1992. Modeling the effect of data er- 
rors on feature extraction from digital elevation models, Photogmm- 
metric Engineering and Remote Sensing, 58:1461-1467. 

Maselli, F., C. Conese, and L. Petkov, 1994. Use of probability entropy for 
the estimation and graphical representation of the accuracy of maxi- 
mum likelihood classifications, ISPRS Journal of Photogmmmetry 
and Remote Sensing, 49:13-20. 

Mowrer, H.T., 1994. Monte Carlo techniques for propagating uncertainty 
through simulation models and raster-based GIs, Proceedings of the 
International Symposium on Spatial Accumcy of Natuml Resource 
Data Bases, Williamsburg, Virginia, pp. 179-188. 

Pech, R.P., A.W. Davis, R.R. Lamacraft, and R.D. Graetz, 1986. Calibration 
of LANDSAT data for sparsely vegetated semi-arid rangelmds, Inter- 
national Journal of Remote Sensing, 7:172%1750. 

Prisley, S.P., and J.L. Smith, 1987. Using classification error matrices to 
improve the accuracy of weighted land-cover models, Photogrammet- 
ric Engineering & Remote Sensing, 53:1259-1263. 

Richards, J.A., 1986. Remote Sensing Digital h a g e  Analysis, An Introduc- 
tion, Springer-Verlag, Berlin, Germany, 281 p. 

Rosenfield, G.H., K. Fitzpatrick-Lins, and H.S. Ling, 1982. Sampling for 
thematic map accuracy testing, Photogmmmetric Engineering b Re- 
mote Sensing, 48:131-137. 

Ryherd, S., and C. Woodcock, 1996. Combining spectral and texture data 
in the segmentation of remotely sensed images, Photogmmmetric En- 
gineering & Remote Sensing, 62:181-194. 

Stehman, S.V., 1992. Comparison of systematic and random sampling for 
estimating the accuracy of maps generated from remotely sensed 
data, Photogrammetric Engineering 6. Remote Sensing, 58:1343-1350. 

, 1995. Thematic map accuracy assessment from the perspective of 
finite population sampling, International Journal of Remote Sensing, 
16:589-593. 

Strahler, A.H., 1980. The use of prior probabilities in maximum likeli- 
hood classification of remotely sensed data, Remote Sensing of Envi- 
ronment, 10:135-163. 

Strahler, A.H., C.E. Woodcock, and J.A. Smith, 1986. On the nature of 
models in remote sensing, Remote Sensing of Environment, 20:121- 
139. 

Vandeneede, J., F. Fierens, P. Dewaele, P. Wambacq, and A. Oosterlinck, 
1995. Development of image processing software in the TelsatlIIll2 
program, Space Scientific Research in Belgium, Volume III: Earth Ob- 
servation, Part 1, Federal Office for Scientific, Technical and Cultural 
Affairs, Brussels, Belgium, pp. 71-88. 

van Genderen, J.L., B.F. Lock, and P.A. Vass, 1978. Remote sensing: statis- 
tical testing of thematic map accuracy, Remote Sensing of Environ- 
ment, 7:3-14. 

Walsh, T.A., and T.E. Burk, 1993. Calibration of satellite classifications of 
land area, Remote Sensing of Environment, 46281-290. 

Wang, F., 199Oa. Fuzzy supervised classification of remote sensing im- 
ages, BEE Transactions on Geoscience and Remote Sensing, 28:194- 
201. 

, 1990b. Improving remote sensing image analysis through fuzzy 
information representation, Photogrammetric Engineering 6. Remote 
Sensing, 56:1163-1169. 

(Received 11 December 1995; revised and accepted 18 April 1996; revised 
19 June 1996) 

April 1997 PE&RS 


